
Theories Underlying Requirements Engineering:
An Overview of NATURE at Genesis

Matthias Jarke, Informatik V, RWTH Aachen, Ahomstr. 55,5100 Aachen, Germany
Janis Bubenko, SISU-ISE, Isafjordsgatan 26, 1250 Kista, Sweden

Colette Rolland, Universite Paris 1, rue de al Sorbonne 17,75231 Paris, France
Alistair Sutcliffe, Business Comp., City University, London ECIV OHB, UK

Yannis Vassiliou, ICS-FORTH, Dedalou 36,7 11 10 Heraclion, Greece5

NATURE is a collaborative basic research project on
theories underlying requirements engineering funded by the
ESPRIT III program of the European Communities. Its
goals are to develop
- a theory of knowledge representation that embraces

subject, usage and development worlds surrounding the
system, including 'expressive freedoms'

- a theory of domain engineering that facilitates the
identification, acquisition and formalisation of domain
knowledge as well as similarity-based matching and
classifying of software engineering knowledge

- a process engineering theory that promotes context and
decision-based control of the development process.

These theories are integrated and evaluated in a prototype
environment constructed around an extended version of the
conceptual modeling language Telos.

1 Introduction

Requirements engineering is perceived as an area of
growing importance. As we learn more about the nature of
requirements information, the traditional task of
requirements capture as an early stage in the life cycle is
complemented by several new applications of the models it
produces, and of the processes that generate these models: . the explicit and computer-supported use of

requirements, especially non-functional ones, to drive
design decisions in the systems development process
the reverse engineering of requirements models as a
central part of systems integration

5 This work is supported in part by ESPRIT Basic Research
Project 6353 (NATURE). Besides the authors as principal
investigators, the following people have contributed to
the early phases of the project: S. Jacobs, K. Pohl (RWTH
Aachen), Benkt Wangler (SISU), J.-R. Schmitt (Universit.6
Paris 1). N. Maiden, D. Till (City University). P.
Constantopoulos, G. Spanoudakis (FORTH). We are also
grateful for fruitful discussions with our transatlantic
collaborators, in particular John Mylopoulos.

19
0-8186-3120-1/92 53.00 0 1992 IEEE

. the reuse of requirements models and processes in the
evolution of a system family or in the development of
new applications; also the support of such reuse by
S t Z d X d U & ' referencemo&ls
the re-engineering of systems and business processes
based on quirements models.

All of these are no longer relevant only to traditional
information systems development. They also invade
computer-integrated manufacturing, office systems, process
control, and other areas where systems interact intensively
with their environment.

Research in requirements engineering has been
converging on a set of fundamental problems which require
theo~tical development to progress from intuitive ideas and
mono-disciplinary approaches.

Formal specification has been the prime and necessary
endeavour. However, in spite of acceptance and some prac-
tice, the industrial development community has been slow
to adopt these methods and there is growing realisation that
training may not be the answer. Furthermore, as shown in
figure 1, the requirements specification problem is now
conceptualised as the coexistence of informal and formal
languages and the orderly transition between the two. This
focus on integration with the real world makes
requirements engineering a much "softer" task than the
other steps in software development.

In an attempt to bridge the gap from linguistic
expression to formal modelling, layered semantic
specification languages have been developed. These still
require a formal notation and restrict modelling to the
perspective of what is to be developed.

I
Figure 1: Requirements vs. design engineering

Authorized licensed use limited to: Universitaetsbibliothek der RWTH Aachen. Downloaded on June 28,2023 at 08:06:44 UTC from IEEE Xplore. Restrictions apply.

In reality, software applications are embedded in a world
of organisations, people and usage. The first problem,
therefore, is to expand the modelling horizon both
vertically to span informal and formal expression, and
horizontally to model the system in its context of domain,
usage, and evolution (cf. also [Feather 19871).

The influence of domain knowledge on requirements
analysis and software specification has been recognised by
endeavours of domain analysis Freeman 19871, the use of
domain knowledge in intelligent assistant tools for
requirements analysis (ASPIS [Punchello et al. 1988]), and
development of domain knowledge frames in several reuse-
oriented projects (e.g. cliches [Reubenstein & Waters
19911, reusable patterns [Biggerstaff & Richter 19871,
generalized application frames [Constantopoulos et al.
19921). Domain knowledge is also seen as a critical part of
the description problem in reverse engineering. Domain
descriptions are intuitive and inconsistent, preventing any
generalisation or integration of this research. A formal
theory is required to define what a domain is and what
constitutes domain knowledge. Such a theory would then
provide guidance to such important questions as how to
structure and evaluate the reference models currently under
development for numerous domains.

The third convergence is process modelling, the
influence of domain knowledge on transformational
activities [Grosz & Rolland 19901 and analysis of the
context in which software engineering activities should be
applied. The process modelling community has progressed
from sequential models of activity to dynamic views of the
software process, however, the context of activity is poorly
understood.

The European community has recognized the growing
importance of basic research in this area by initiating a
collaborative project called NATURE (Novel Approaches
to Theories Underlying Requirements Engineering) which
involves the institutions of the authors in five European
countries. This paper provides an overview of the project
goals and approach. Since the project has just recently
begun, technical results are largely based on previous work.
Section 2 presents the general approach, centering around
the idea of several interrelated worlds of software
information. Sections 3 to 5 present specific knowledge
representation, domain, and process theories and section 6
concludes with a brief summary of prototype
implementation and theory evaluation strategies.

2 Basic Approach and Methodology

The basic premise of this work is that requirements
engineering differs from system specification in that it
focuses on the embedding of systems in their environment
rather than on the prescription of the system's functionality
or structure. Specifically, our basic ontology of
requirements engineering (cf. figure 2 [Jarke 19901)
suggests that an information system can be characterized by
its embedding in at least three different parts of the world.
Making these worlds explicit does not only provide a
certain degree of guidance in building a requirements model

but also allows the association of non-functional goals
with certain stakeholders.

The system must represent its subject world with
accuracy, timeliness, well-organized abstractions, etc. The
system must fit into its usage world with task-oriented
functionality, be compatible with users' models and
conform to good human factors principles of design. The
system must evolve in its development world with
reasonable time and cost, consistent with standard
procedures, and possibly under reuse of existing experience,
knowledge and pmducts.

impact
partcwatlon vwcy

/ \ / \

pgj \VI
intertine - emnency

- rrIendllmesS
- runctloM process

iepresentat

- maintainable
waL&'gurable System - reusable

- timelimess

Figure 2: Embedding systems in the world

Previous work has typically focused on one of these
worlds at a time: database modeling on the subject world,
human-computer interaction and office systems research on
thl.: usage world, and software engineering on the
development world.

The relationships among the different "worlds" must
not only be understood but actively designed. They change
the interrelationships among the external sub-worlds. For
example, a police information system may change the
relationship between its usage world -- the police -- and its
subject world -- the rest of the population. Similarly, the
communication between users (usage world) and developers
(development world) defines much of the software process.

The broad view taken here precludes a "complete"
capturing of all relevant knowledge. Indeed, many of the
implicit premises of formal methods are not present in
requirements engineering. It is productive to maintain
inconsistencies (conflict fosters creativity), to be
incomplete (oversimplification improves understanding),
etc. [Feather & Fickas 19911. It is therefore unclear if
formal specification languages such as VDM [Jones 19861
or Z [Spivey 19881 are applicable to requirements
engineering as defined here, although they play an
important role as possible languages for the system world.
In fact, it is doubtful whether any single formalism can
cajlture the richness of the requirements engineering task.

The literature has advanced a number of proposals what
we can do in such situations:
-Rely on intuition and communication of people in

- If you cannot formalize the product, try to formalize the
addition to formalism.

process.

20

Authorized licensed use limited to: Universitaetsbibliothek der RWTH Aachen. Downloaded on June 28,2023 at 08:06:44 UTC from IEEE Xplore. Restrictions apply.

- If you cannot do it in general, offer structure for specific

- If you cannot be sure you did it right, provide efficient

Our denial of the existence of a complete formalism
does not mean that it is impossible to formalize any of the
above aspects. Indeed, a unification of the above ideas is
the main goal of the project. However, the tools are
different, stemming from a combination of extended
knowledge representation technology (e.g., with exceptions
and multiple conflicting viewpoints), semi-formal
graphics, and informal hypermedia representations. To
improve communication, the process of requirements
engineering includes a frequent two-way transition between
informal and formal, functional and non-functional, product
and process-oriented aspects. A comprehensive theory of
this problem should

- be compatible, on the formal side with emerging formal
specification methods and reasoning mechanisms; and on
the informal side with industrial practice

- cover domain as well as method and process information
- be made operational using state-of-the-art representation,

domains.

backtracking through documentation.

reasoning, and management languages and tools.

Figure 3: Relating domain and process to
the knowledge representation framework

The project is organized as three interacting streams, one
concerned with domain abstraction, the second with
process, the third with representation and reasoning. Figure
3 indicates how our global model of requirements
information can be used as an integration concept for these
streams. To demonstrate this integration more effectively,
prototypical models and tools will be developed around the
same linguistic framework (Telos [Mylopoulos et al.
19901) and the same management environment
(ConceptBase [Jarke ed. 19921).

3 Knowledge Representation Theory

representational forms has certain strengths and
weaknesses, so a combination is necessary.

Formal specification languages offer the advantage of
unambiguous, precise reasoning support, and the clear
representation of interrelations between requirements. They
have been used mostly for describing the functions and the
internal behaviour of systems.

Semi-formal methods are foremost a communication
device between users and developers. They often have to
represent interrelations between requirements through
comments in natural language, can be ambiguous, and only
offer limited reasoning support.

Informal representations of requirements like text,
pictures, or animations have not yet been considered for
integration into formal methods, because there was no clear
opinion how to interrelate this kind of information.
Hypertext offers a opportunity to do this (e.g. ARIES
[Johnson & Harris 19901; gIBIS [Conklin & Begeman
19881). gIBIS, a hypertext system based on the Issue Based
Information Systems (IBIS) method, was designed to
facilitate the capture of early design deliberations. Research
has shown that the integration of hypertext and the IBIS-
method offers many advantages. However, only the
communication structure, not the contents of
communication is supported [Ramesh & Dhar 19921.

Formal specifications are normally expected to be
complete, consistent and unambiguous. However, during
the initial definition and revision of formal requirements,
they are typically fragmented, contradictory, incomplete,
inconsistent and ambiguous. Furthermore, the expressions
may include various levels of abstraction (concrete
examples, general properties, scripts etc.) and different
types of styles (text, graphic, formula, notations). Since
formal requirements are built out of non-formal, the
acquisition process must allow many freedoms
(incompleteness, inconsistency, redundancy, ambiguity,
different levels of abstraction, heterogeneous forms of
expressions [Balm 199 1, Feather & Fickas 199 11). Only a
few existing systems support the bansition between formal
and n o n - f d requirements and offer parts of the necessary
freedoms (e.g. KATE [Fickas 19871; Requirements
Apprentice [Reubenstein &Waters 19911). However, they
neither represent non-formal knowledge (forms, pictures,
text etc.) nor its interrelation to the acquired formal
knowledge in an adequate manner. Semi-formal and non-
formal methods offer the necessary freedom at the
beginning of the acquisition process, but have not much
support for reasoning about the specified requirements.
They are therefore not able to support the requirements
process in a later stage.

Initially, requirements modeling was completely
informal, consisting of text documentation and drawings.
In the late 1970s, semi-formal techniques were proposed
which combined graphical notations with an implicitly

21

Authorized licensed use limited to: Universitaetsbibliothek der RWTH Aachen. Downloaded on June 28,2023 at 08:06:44 UTC from IEEE Xplore. Restrictions apply.

Moreover, semi-formal techniques are sometimes not
informal enough: users need examples, animations and
prototyping whose automatic generation pre-supposes a
formal understanding of semi-formal representations.

Borgida et al. [1985] proposed the use of formal
knowledge representation as a backend to semi-formal
techniques. Besides the advantages of formalization in
terms of consistency and completeness checking, mapping
support and validation assistance, they emphasized
organizational principles such as aggregation
(composability of requirements), generalization (avoiding
redundancy by inheritance), and classification (meta-
modeling). Several formalizations of specific semi-formal
approaches were proposed. Perhaps the best-known are
Greenspan's formalization of SADT in RML [Greenspan
19841 and the formalization of an extended entity-
relationship model in ERAE [Hagelstein 19881. This
activity continues with object-oriented requirements models
such as Objects with Roles [Pernici 19901, the MORSE
language used in the database design tool SECS1
[Bouzeghoub & M6tais 19913, and the TEMPORA models
[Loucopoulos et al. 19911 which extend Structured
Analysis and Entity-Relationship by temporal aspects. All
of these systems (some on paper, others in various stages
of implementation) support a fixed metamodel, using logic
as the basis for formalization.

However, the formalizations of individual semi-formal
techniques must be integrated, and the need for adapting
generic representations to particular domains and process
structures became evident. A third generation of languages
for requirements modeling is therefore emphasizing
extensibility and adaptability. This necessitates the
availability of one or more meta-levels in the language
system such that data and process models can be user-
defined in a common framework.

A few meta-modeling environments have been
designed. One group, exemplified by the MetaEdit tool
[Smolander et al. 19911, emphasizes the dynamic creation
of graphical user interfaces for requirements meta-models
but only supports a pre-defined set of constraints for
semantics definition. Telos [Mylopoulos et al. 19901, a
substantial generalization of RML, allows the association
of predicative deduction rules and integrity constraints with
meta classes, thus supporting semantic definition and
consistency checking of multiple interacting metamodels.

Telos cannot only manage a requirements model as an
evolving knowledge base but also the available metadata
and process models. Metamodels can be specialized to
particular domains and methodologies. This provides the
basis for integrating domain and process engineering
theories into a knowledge representation framework for
requirements engineering. This statement is backed by
experience which covers, among other things:

- the integration of multiple language models and
mappings between them, also the propagation of change
across multiple representations [Jarke et al. 19921

- the integrated evolution of multiple levels of granularity
through meta models and tools for version and
configuration management Rose et al. 19911

- formally supported development of informal hypermedia
documentation Eherer & Jarke 19911.

The version of Telos implemented in the knowledge
base management system ConceptBase [Jarke ed. 19921
appears to cover a large proportion of the features to be
expected from an extensible knowledge representation
language for requirements modeling:
- full support for all three abstraction principles (except

automatic object classification [Borgida et al. 19891)

- no distinction is made between attributes and
relationships -- attributes are first-class objects

- full extensibility through the combination of meta-
classing with deductive rules and integrity constraints

- integration of temporal information about the evolution
of the modelled worlds as well as about the history of the
database content

- data model that lends itself to hypertext-like switching
between graphical and textual (frame-oriented)
representations, thus being fully compatible with the
usual semi-formal graphical techniques

- client-server KBMS with support for teamwork in
requirements modeling and process management which is
itself based on appropriate meta models.

However, rethinking and further development is needed
in at least three areas.

Firstly, Telos may, in its present form, have gone too
far in formalizing requirements engineering -- it provides
too few of the freedoms a requirements modeling team
needs to capture or reuse the actual requirements of some
organization. Temporary oversimplification, differences in
opinion, and incompleteness of requirements are not
adequately addressed although means are provided to work
"around the system".

Secondly, visualization should extend beyond semi-
formal graphics to natural language texts, informal
drawings, even video-scenes of possible system usage.
Though we have already prototyped an integration of Telos
with a hypermedia system [Eherer & Jarke 19913, we have
scarcely begun to understand the interplay of informal and
formal representations in requirements engineering.

Finally, in possible contrast to what was said before,
requirements engineers may need more content-oriented
f aw" guidance in developing requirements models. As a
first step in this direction, we have been defining a set of
"worlds" whose relationships to the planned system should
be discussed in a requirements process (cf. fig. 2): the
subject world, the usage world, and the development world.
We claim that explicit consideration of all these worlds is
necessary but at least not covered explicitly in any existing
methodologies. Moreover, we hypothesize that the explicit
inclusion of information about such worlds and their
relationships to the intended system also addresses an
important open question in requirements engineering: the
representation and exploitation of non-functional

22

Authorized licensed use limited to: Universitaetsbibliothek der RWTH Aachen. Downloaded on June 28,2023 at 08:06:44 UTC from IEEE Xplore. Restrictions apply.

requirements. We have already shown some ideas on this in
fig. 2. Last not least, the distinction of interrelated
concerns expressed in the "worlds" model can serve as a
starting point for more detailed domain models of
requirements and their development and usage pmcesses.

In the remainder of this section, we elaborate our plans
for dealing with these extensions, organized by the kind of
"lkedam" they provide.

Extension of the Telos Formalism. Considering
the intended use of requirements models in requirements
capture, reuse, and re-engineering, several extensions to the
present Telos version are needed, without however, giving
up the advantages of formal semantics and automated
reasoning support. Mostly, these concern completeness and
consistency of requirements models.

The current version of Telos requires referential
integrity although it does allow to keep the definition of
reference objects to remain completely abstract. An
altemative to explicitly defining the referenced object is to
have them defined automatically and added to a list of
problems to be taken care of. A research issue is how that
will influence the process and at what points all references
should be sufficiently specified. More generally, the
question of automatic recovery from integrity violations
will have to be investigated to do this, the system may
have to make guesses about reasonable constraint repairs,
which may have to be retracted consistently later.

We argued earlier that temporary inconsistency of
requirements specifications may be productive as a basis for
finding out what are the real goals, what is important, etc.
Views have been a traditional mechanism to allow for this
kind of inconsistency. However, there is also another use
of inconsistency: oversimplification of models to make
them more understandable. We envision a layered
knowledge base in which the higher layers represent the
general rules whereas the lower layers may contain
exceptions to them as well. Of course, this has been a
traditional subject of default representations such as
nonstrict inheritance. Only recently, the semantics of such
models is becoming more clearly understood so that
relatively clean mechanisms for non-monotonicity and
hypothetical analyses can be developed. For example,
querying mechanisms and visualization tools should
produce multiple oversimplified representations of a
complex requirements base.

Since requirements engineering involves specifying the
change from some unsatisfactory current situation to a
more desirable future, also because reorganization of
abstractions may be often needed in a requirements process,
these non-monotonic structures must support powerful
manipulation and restructuring operations as well as the
better-known querying and presentation operations.

Integrating Formal, Semi-Formal, and Informal
Representations. The mapping between the well-
known semi-formal representations (DFDs, E-R diagrams,
etc.) and an underlying knowledge base is by now fairly
well understood. Formally, such representations are views
on the conceptual requirements model which -- at the end of

the requirements process -- should be complete and
consistent. Thus, a semi-formal graphics tool can be used
to generate a rough sketch of a data or process model which
can be automatically translated in an initial version of a
knowledge base. A remaining problem is how and when to
reconciliate the different viewpoints, also how to exploit
conflict detection for the generation of fruitful discussions
rather than suppression ofdifferences.

The relationship between formal and informal
representations is much less understood. As a first attempt
to classify the issues, we distinguish between static and
dynamic aspects.

Statically, a formal model can view an informal object
(such as an image or a video clip) as an uninterpreted node
in a Telos model described by some attributes which give
an inkling about its content. This is a very familiar
approach in software databases where the actual software is
stored in files and the database contains a description of the
software, plus a pointer to the file. Part of the description
may be information about the creator of the informal
object, in a cooperative setting also its role as an utterance
in a particular discourse (e.g., an argument in a debate).
Thus, the formal object can be considexed an access path to
the informal object. Conversely, the informal object is a
visualization or animation of the formal description which
is easier to understand

Dynamically, we have to consider the transition
between formal and informal representations. In the
creation process, the transition from informal to formal
corresponds to the classical knowledge acquisition
viewpoint, whereas the transition from formal to informal
is associated with validation (cf. fig. 1). Briefly, the
informal-to-formal transition corresponds to an abstraction
process, the other direction to conmtization and authoring.

Many individual methods for both directions have been
investigated, including manual ones (with or without
explicit representation of the abstraction process that takes
place) and automatic ones (such as natural language
understanding resp. generation). Rather than devising
specific techniques (this is done in domain and process
engineering as well as by many specialized projects), we
are interested in the representation of these static and
dynamic relationships in a concise and usable manner and
in furthering the basic understanding of their roles in the
requirements process. The integration of hypermedia and
knowledge-based approaches seems to provide a suitable
representational and technological basis for this work.

Representing and Using Quality Requirements.
Though non-functional or quality requirements play a
crucial role in requirements engineering, they have
traditionally been poorly understood. Important research
questions concern both the acquisition and the usage of
non-functional requirements. Based on previous results, we
plan to study several fundamentally different but
complementary acquisition methods.

One proposition is that non-functional requirements are
those that are expressed in a communication among
designers; argumentation structures such as Rittel's IBIS or
Toulmin's Argumatics provide the formal framework for

Authorized licensed use limited to: Universitaetsbibliothek der RWTH Aachen. Downloaded on June 28,2023 at 08:06:44 UTC from IEEE Xplore. Restrictions apply.

introducing non-functional requirements in this manner
[Conklin & Begeman 1988, Hahn et al. 1991, Ramesh &
Dhar 19921. The problem with this approach is that
requirements come in haphazard and unstructured manner.

The other extreme is a detailed study of particular
classes of non-functional requirements considered important
in general for software development. Research in the
requirements of efficiency (e.g., complexity theory,
queuing theory) and reliability (e.g., fault tolerance, formal
verification, recovery) has progressed quite far. Recently,
some information system specific requirements such as data
accuracy and security have also been investigated [Chung et
al. 1991, Mylopoulos et al. 19921.

A third approach is the half-axiomatic, half-empirical
derivation of non-functional requirements from process-
oriented theories of the firm, such as the theory of Critical
Success Factors developed by Jack Rockart at MIT or the
theory of value-added chains introduced by Michael Porter
at Harvard. Such business-oriented domain theories pave
the way for achieving impact beyond information systems.
Managers can analyse and re-organize strategic processes
inside or across organizations, with or without introducing
information systems technology in the process.

Requirements specification must pay attention to the
organizational and business environment. For instance, the
subject world model may incorporate concepts like
organizational actors, positions, channels, and business
functions, whereas a usage world model on the
organizational level may be defined in terms of users, IS
services, IS use acts etc. [Scheer 19911. Adequate mappings
between these and other concepts must be defined in order
to allow for the specification of e.g. security requirements.

From a knowledge representation and reasoning
viewpoint, the representation of individual non-functional
requirements is not difficult if we introduce ordered domains
in the language (so that we can distinguish good and bad
achievement). More difficult is the representation and
reasoning for (a) deriving and selecting process alternatives
from individual requirements, and (b) for handling trade-offs
in the process. Some experiences in multi-criteria group
decision support [Jarke 19881 may assist in approaching a
solution to these very difficult problems.

Integration of Domain and Process Knowledge.
Non-functional requirements are closely linked to questions
of domain analysis and process engineering. Systems
development, maintenance, and usage processes should all
be organized as to ensure continued quality (as perceived
from the usage, the subject, and the development world),
and these quality criteria can be expected to depend on the
domain at hand. Very little is known about how to do this;
we hope to gain some insight from a parallel project on
managing life-cycle wide quality assurance in industrial
engineering [Jarke & Pohl19921.

A second, hopefully "easier" issue related to the
integration of domain and process knowledge is that the
knowledge representation and reasoning mechanisms
provided by our approach have to be powerful enough to
capture the essential specializations needed for representing
domain knowledge and dynamics adequately and concisely.

Meta modeling is the most crucial requirement for such a
language, and we have argued that we are approaching a
reasonably good understanding both of the formalisms and
of their presentation at the user interface level.
Nevertheless, it is well-known that too general such
mechanisms lead to intractability or even undecidability of
the associated reasoning tasks, whereas domain-specific
operators may reduce such problems. A construction of
extensibility that can resolve this conflict is still an
unsolved problem Borgida 199 11.

4 Domain Theory

The importance of domain knowledge has been
recognised from two directions. First, cognitive studies of
software engineering have demonstrated that experts use a
memory schema of domain knowledge to help construction
of conceptual models ([Guindon & Curtis 1988, Guindon
1990, Sutcliffe & Maiden 19923). Second, there has been
a progressive growth in semantic richness of specification
languages to model more domain concepts. The latter trend,
manifest in semantic specification languages such as Telos,
has culminated in the recognition of different descriptive
worlds (cf. section 2) in which domain knowledge is
necessary for effective system development.

Several studies have demonstrated that domain
knowledge is employed with analogical reasoning by
software engineers [Vitalari & Dickson 1983, Sutcliffe &
Maiden 19901. Experimental studies have shown that
analogical matched specifications can be reused and that
abstraction is used by experts as strategy for understanding
and matching application domains. A model of domain
abstraction appears to be necessary for retrieving
application domain knowledge from memory and then
understanding the implications of that knowledge in a new
context. Further studies of the matching problem have
demonstrated that software engineering problems can be
described as abstract models and analogically matchedusing
a meta schema of goal related, structural and domain
knowledge. This approach synthesises concepts of
templates with object-oriented methodology and Gentner's
[lo831 structure mapping theory which defines analogy as
the matching of a structured set of propositions.

Within the NATURE project, two aspects of domain
theory are investigated: its basic structuring principles, and
its usage in similarity-based reuse.

Principles of Domain Abstraction. The domain
theory aims to describe the knowledge structures people
develop, and ultimately remember, when they are
investigating problems. Abstractions for various domains
have been proposed as templates for analogical transfer of
knowledge between domains belonging to the same class
[Gick & Holyoak 1983, Greiner 1988, Reubenstein 19901.
The assumptions of our preliminary theory [Maiden 199 1,
Sutcliffe 19911 are drawn from cognitive models of
memory: models of natural categories [Rosch 19911,
hierarchical memory schemas and categories of dynamic
memory [Schank 19821, These assert in slightly different
forms that human memory is organised in an informal

24

Authorized licensed use limited to: Universitaetsbibliothek der RWTH Aachen. Downloaded on June 28,2023 at 08:06:44 UTC from IEEE Xplore. Restrictions apply.

hierarchy of classes. Generally there is good evidence that
memory for several different types of knowledge (object,
procedure, plan) is organised hierarchically.

The domain theory starts with a preliminary model
consisting of a metaschema of domain knowledge, adapted
from TKS [Johnson et al. 19881, and a set of domain
abstractions which are modelled as classes and specialised
by addition of further knowledge to describe different views
on a single domain. The basic hypothesis that domain
knowledge is organised in a class hierarchy and that classes
share general features and can be distinguished by a small
number of key determining features. The assumption is
that most software engineering domains can be ascribed to
one of a tractably small set of domain classes.

The preliminary model proposes a schema of seven
knowledge types which defme abstract domain models:

- state transitions,
- object structure knowledge,

- goalrpurpose statements,
- object type,

- conditions on state transition,

- transformation,
- extemal event-activity triggers.

Abstract domain classes are differentiated by actions
leading to state changes of objects with respect to parts of
the system structure. System structure is a set-theoretic
concept of object membership linked to the transactional
purpose of the system. To illustrate the concept, in stock
control sets of objects (products) are held by suppliers, in
stock and with customers (delivered products). A non-
renewable resource management abstraction, of which
library loans is an example, can be distinguished from a
renewable resource management abstraction (e.g. stock
control) by the key transition of return. The retum action
causes the object to change from an on-loan state to a
resource-available state.

System purpose has been identified as an important
determinant of abstract models [Maiden 19911, so goal
related semantics are defined in terms of states which the
system attempts to achieve or maintain. Information
systems have different purposes with regard to object sets.
Stock control domains attempt to maintain a minimum
quantity of items-in-stock, while the library system
attempts to maintain stock constancy so the books-on-loan
are returned. Activity (i.e. a set of actions, or algorithms)
leading to key state transitions is determined by system
Purpose.

Other knowledge types (triggers, conditions) play a
supplementary role in differentiating domain classes.
Equivalent state transitions can be distinguished by their
triggering events. Each transition is either triggered by the
information system or events beyond that system, which
have important influences on the information system. For
instance, allocation action in the airline booking domain
can be differentiated from allocation of stock to orders in a

warehouse domain by the triggers: the former allocation is
triggered by the information system while the latter is not.
Object types, which have been promoted as determinants of
analogical reuse by [Lee & Harandi 19911, are differentiated
by their role in the domain, for instance stock items and
airline seats both act as resources.

The final part of the theory is a process to
operationalise the models by matching rules and heuristics.
These enable selection of the appropriate domain
abstraction for a set of predicates describing a new
application domain and avoids the computationally
inefficient approach of linear searching multi variate sets
of properties, typified by faceted classification.

The theory has been operationalised in an intelligent
retriever-matcher process for reuse. It has been successfully
evaluated proving the theoretical predictions of the domain
classes which should be matched with respect to a set on
input facts in predicate format [Maiden 19923. However, a
number of problems remain to be addressed.

(a) The granularity problem: The theory adopts an intuitive
view of model granularity for domain abstractions. This
has withstood the relatively weak test of evaluation with
20 domain examples. However, it has become apparent that
matching may occur at different modelling levels (object
model with relationship knowledge, information system
model with transformations and procedures). Further
research is required to identify and define matching
processes at different levels of granularity and between
different types of knowledge.

Object-structure matching, corresponds approximately
to entity relationship models found in structured methods
(e.g. SSADM, MERISE, E). Matching of dynamic
aspects will extend the theory from the domain space
towards the design space. This endeavour is tractable
because mapping at the design level has been effective in
transformation programming [Johnson & Feather 19901.

The domain theory will add an intermediate level of
abstraction linking designs to requirements through the
concepts of system purpose. The theory will be extended to
identify larger and smaller abstractions, using aggregation
and specialisation. This will enrich the theory with
concepts of an overall domain structure as a framework for
object and information system abstractions. For instance
aircraft management control is an aggregate of collision
monitoring, flight plan adherence, landing, pilot
communication and aircraft scheduling.

(b) The coverage problem: The current theory is limited in
scope by the number of abstract domain classes which have
been described. Further example-based studies of complex
software engineering analogies will be used to validate the
definition of abstract domain classes. This will be
combined with further operational testing by examples
cited in the literature to give a sample with sufficient
breadth to establish confidence in near complete coverage.

Domain abstractions is formalised using Telos to refine
the definitions and eliminate any redundancies in
definitions. These formal studies are combined with schema
development from a cognitive science viewpoint.

25

Authorized licensed use limited to: Universitaetsbibliothek der RWTH Aachen. Downloaded on June 28,2023 at 08:06:44 UTC from IEEE Xplore. Restrictions apply.

Memory schema theories [Schank 1982, Rosch 19911
and their more pragmatic instantiations such as TKS form
the basis of remodelling the domain theory metaschema to
accommodate recommendations from cognitive theories
with set theoretic leaning in the natural category class.
This is expected to lead to further elaboration of schemas
with reference to salience in human memory. The aim is to
describe types and prototypical instance of facts which can
be predicted as being important and recognisable by people.
The cognitive dimension will be tested by questionnaires,
interviews and comprehension tests.

Theoretical development will be informed by empirical
investigation of mental abstractions possessed by expert
software engineers. Empirical studies elicit these
knowledge structures from experts for specific and
abstraction domain classes using established knowledge
acquisition techniques of repertory grid analysis and multi
dimensional scaling (e.g. [Littman 1987, Cooke &
McDonald 1987, Garg-Janardan & Salvendy 19871). This
will provide further heuristics for organising the matching
process , data about the process of abstraction followed by
expert practitioners and valuable input to the problems of
granularity in domain knowledge.

Validation of the domain theory will be undertaken in
two contexts: specification reuse and intelligent assistance
for requirement capture. The analogical matching process is
based on a design which employs multiple search heuristics
and a partitioned search space. The prototype process will
follow theoretical prescriptions to define further rules and
search heuristics for matching domain abstractions at
different levels of granularity. These predicates will be
matched against input terms derived from users. The theory
of abstraction will be used to guide the input dialogue with
the analyst. Some translation of domain terminology will
be necessary via a semantic lexicon.

In requirements capture, domain models will be
embedded in prototype tools to enable explanation and
active guidance. Initial fact gathering will receive active
guidance using diagrams of abstract templates to help
conceptual model formation. Visualisation of analogies and
knowledge structures is known to improve learning
[Gick & Holyoak 19831; hence we see specification
development and fact capture as an iterative process of
explanation and analysis in which the set of potential
abstract class matches is narrowed as the software
engineer's understanding of the domain increases. The
theory will be used to determine which types of knowledge
(e.g. structural, goal related, constraint) should be acquired
in what order with respect to the problem. A further test
will involve a view integration prototype.

Similarity of Requirements. A complementary
approach to domain theory takes a more taxonomic
approach by studying the notion of similarity between
domains and extending the idea to software design
solutions. The prime motivation behind this effort is that
similarity could be exploited in dealing with the problem
of retrieving descriptions stored in some repository
[Symonds 19881 - one of the main operational problems
of systems supporting reuse [Biggerstaff & Richter 19873.

Similarity could facilitate the provision of ranked answer-
sets in querying, enhance the ability of a retrieval system
for fuzzy queries, and help browsing strategies.

Viewing similarity in its broad sense (i.e the related-
ness of two entities considering both their commonalities
and their differences), it seems reasonable to expect that it
could be also be employed in solving other operational
problems of reuse, such as acquiring, modifying and
classifying descriptions. For instance, the matching of a
partial problem specification with an existing frame of
abstractions could indicate strategies of acquiring the
remaining knowledge, or even suggest automatic
completion of the specification. In a different usage mode,
thc same concept could be the basis of a classification
mtxhanism providing clusters, according to measures of
sirnilarity and dissimilarity. A similar idea about the
automatic re-modularization of software systems is
prcsented in [Schwanke 19913.

Similarity research in NATURE starts from work on
the: retrieval problem in the ITHACA Software Information
Base (SIB) [Constantopoulos et al. 19911. In the SIB,
similarity is modelled as typed links which associate
descriptions of requirements, designs or code. This work
soon revealed that it was necessary to quantify links to
exlpress the intensity of association and that well-defined
criteria were needed for assessing association.

The underlying assumption of previous claims about
the: potential of using similarity for reuse is that it could
provide some sort of analogical reasoning for component
matching. However, only certain kinds of similarity would
be relevant to the desired inferences while others could be
totally irrelevant or even misleading [Kedar-Cabelli 19883.
NATURE will first determine candidate dimensions (e.g.
functional similarity, structural similarity, complexity,
similarity on reliability), then evaluate these candidates.

Empirical investigations into the influence of
siniilarity on analogical problem solving [Holyoak & Koh
19871 have indicated that there are kinds of similarities that
aft'ect primarily the retrieval of the source analogues
(surfme similarities) and other kinds that affect the actual
transfer of knowledge between the source and the target
analogues (structure similarities). Concepts of similarity
therefore fit into the lexical dimension of the domain
theory. It is important to establish the set of semantic
primitives and their range of values which may be
candidates for type definition in the domain theory schema
and their role in describing source analogues and matching
to targets.

In general, requirements descriptions are expected to
have features which could be classified into relevant
(common or distinguishing) and irrelevant ones with
respect to the estimation of their similarity [Davies 1988,
Subramanian & Genesereth 19871. This direction of
research will produce sets of features, characterizing certain
forins of similarity, based on investigations of the concepts
and their causal relations within the area of requirements
engineering. These sets will provide the a-priori knowledge
that could speed up the similarity-computation process by
suggesting heuristics to limit the search space, and
quantification of relationships in models so that fuzzy and

Authorized licensed use limited to: Universitaetsbibliothek der RWTH Aachen. Downloaded on June 28,2023 at 08:06:44 UTC from IEEE Xplore. Restrictions apply.

Bayesian processes could be applied to matching. On the
other hand, it will be necessary to provide a flexible
computation scheme that could operate even in the absence
of some of these feahres by default reasoning.

The next steps will formally determine the similarity
concept in the context of requirements engineering, giving
emphasis to the identification of properties (e.g reflexivity,
symmetry) that would reflect its actual semantics, the
metrics that would be appropriate for quantifying it and the
algorithms for estimating these metrics. A study of the
interference between similarity and other non-attribute-level
general constructs of knowledge representation (e.g
InstanceOf, Isa) will enable the construction of hierarchies
whose semantics incorporate some notion of relevance (e.g
all the instances of a class are similar in sharing its
common structure Wegner 19871).

5 Process Theory

Traditionally, the software development process has
been viewed differently by the project management and
development method communities. In the context of
project management, the development process is considered
through the planning of activities and the allocation of
resources (personnel, material, etc ...). In software
development methodologies, the development process tends
to be more closely related to the system it creates.
Transformation activities are gathered into phases according
to different levels of abstraction of the product.

A clean separation between the product and the
development process [Olle et al. 19883 is also visible.
Considerable work has been done on the former and much
less on the latter. This remark applies also to the
requirements engineering phase. However, the research
effort devoted to the development process is growing and
results are beginning to appear. According to Dowson
[19871, process models can be classified in three categories:

- activity-oriented models;
- pmduct-oriented models;
- decision-oriented models.
Activity-oriented process models come from an analogy

with problem-solving, i.e. finding and executing a plan of
actions leading to the solution. They are sequential in
nature and provide a frame for manual management of
projects developed in a linear fashion. Such linear view of
design process is inadequate for methodologies which
support backtracking, reuse of previous design, and
engineering activities parallelism. The first widely used
model, the Waterfall model [Royce 19703, falls into this
category, along with the spiral model [Boehm 19881 and
the fountain model [Henderson-Sellers & Edwards 19901
which try to eliminate the well recognised lack of
flexibility of the Waterfall model.

Product-oriented process models [Finkelstein et al.
1990; Akman et al. 19901 represent the development
process through the evolution of the product. They are
more synergetic with systemic methodologies that do not
place constraints on the design process. Furthermore, they
allow design tracing in terms of the performed
transformations and their resulting products.

~

21

The most recent class of process models have
progressed to a decision-oriented paradigm. This gives the
ability to more deeply integrate the semantics attached to
the evolutionary aspects of the design. The notion of
decision in the design process allows a better understanding
of the designer's intention facilitating, in turn, better reuse
of its results. The process models of the DAIDA project
[Jarke et al. 1990; Rose et al. 19911 and of [Potts 19891
fall into this category.

All of these process models still suffer from two major
limitations:

- a granularity problem;
- semantic expression power.
Most existing models look at the process at the

macroscopic level. They are not able to precisely describe
what actually happens in the development process at a low
level of detail. In other words, they lack a sufficiently low
level of granularity. This has resulted in CASE technology
which is efficient in storing and representing the products
but only supports the process with approximate
milestones. Currently available process models only
represent the development process as a sequence of phases
without the rationale justifying the performance of these
activities. The seman tic expressiveness of these models
appears to be insufficient for providing the requirements
engineer with any prescriptive guidance.

Semantically powerful process models are one of the
key aspects of the next generation of CASE tools. They
require process planning and control and a knowledge base
to support these activities. Prototypes like SECS1
[Bouzeghoub & MCtais 19911 or OICSI [Cauvet et al.
19881 develop an expert system design approach in which
the knowledge base is composed of heuristic and
experimental knowledge on process activities combined
with more formal modeling knowledge.

Requirements Engineering

knowledge
Domain process

Functional

Specificatior Requirements Engineering
process

Requirements 1 I

Figure 4 : Requirements engineering process

The aim of the requirements process theory is to allow

- in the large as well as in the small, i.e. at several
levels of granularity; - with an emphasis on the semantics of their
activities, representing the HOW (what the process
does), the WHEN (conditions to perform activities)
and the WHY (purposes and goals of activities);

- by means of a collection of basic building blocks.

In other words, the process theory looks at the RE
process as a system and will provide means for describing
on one hand, its static, structural part - i.e the components

processes to be modelled:

Authorized licensed use limited to: Universitaetsbibliothek der RWTH Aachen. Downloaded on June 28,2023 at 08:06:44 UTC from IEEE Xplore. Restrictions apply.

of the process and their intra and intcr relationships - and,
on the other hand, its dynamic part - i.e the behaviour of
components.

The starting point is the notion of "triplet" of the
OICSI project [Grosz & Rolland 19901. It is assumed in
this approach that the basic building block of any process
can be modelled as a triplet: <situation, decision, action>.
It associates the situation the designer has to deal with to
one of the decisions he can take to solve the local problem
and to one of the actions to be performed to apply the
decision. Furthermore, the record of the selected triplets
allows the tracing of the development.

The triplet formalism is also used to represent
development process "chunks" in which the designer uses
his domain knowledge to improve the conceptual schema
[Grosz & Rolland 19911. The domain knowledge is
composed of frequently used generic patterns that the
designer can tailor to his needs. The situation part of the
triplet is such a pattern, the decision part reflects the
tailorization and the action part is composed of the actual
transformations of the conceptual schema to be performed.

Process modeling in the large and in the small.
The process theory will model software development
activities at macro and micro levels of detail. As a first
sketch of definition of the macro and micro levels, we can
recognize that activities involved in the requirements
engineering process fall into two categories :
- engineering activities are those which deal with the RE

artifacts (the specifications) and allow their creation,
evolution, modification and deletion.

- monitoring activities are required to organise and order
engineering activities, select the appropriate engineering
activity for a certain situation in the process and allocate
the resources needed to perform the engineering activity.

This classification yields a model representing the RE
process at two levels of abstraction :
- at the first level, the R E process is an organised

collection of monitoring activities:
- at the second level, the RE process is a collection of

organised engineering activities.

The macro level of monitoring activities control the
way the engineering activities are performed and allocate
available resources (personnel, material, ...) to their
performance. Macro activities can be repeatedly decomposed
into more detailed macro activities. Similarly micro-
activities can be viewed at different levels of detail.

Si tuat ional and contextual analys i s of
act iv i t ies . The process theory will explore a new
paradigm by recognising situational links between
activities and their organizational contexts. Theoretical
development is necessary to understand how activities are
related to contexts and how to characterize contexts. The
study will concentrate in particular on the characterization
of contexts which relate to view integration, those which

deal with the requirements expressive freedoms and
activities for redundancy and ambiguity elimination and
those which trigger structuration and transformational
activities for schema refinement.

Our emphasis on the contextual situation analysis is a
departure from the traditional linear process view. At the
macro level the organization and planning of activities is
based on the analysis of the domain and organizational
context of the system development. At the micro level, the
decision to perform a transformational activity will be
based on the analysis of the current situation of the
software specification.

The next step will be the definition of a taxonomy of
decisions represented as a hierarchy of decision classes. It
will be studied how the micro and macro levels fit into the
hitxarchy to help in the triplet triggering control
prwiously mentioned. Finally, the nature of activities and
th1:ir classification into a hierarchy will be studied in
connection with the taxonomy of decisions. This will
provide a general frame for guiding processes of software
engineering. Particular attention will be paid to explain the
differences between macro-level triplets representing macro
process engineering activities and micro-level triplets
dealing with the detailed transformations of specifications.

Formaliz ing the l inks be tween domain
knowledge and process activities. In order to limit
the, breadth of the context analysis, the problem will be
rationally restricted to the study of contextual links that
relate domain properties to activities for refining conceptual
scliemata, i.e. to contexts that trigger micro-activities
which aim at producing and transforming system
specifications.

Under this perspective we investigate the concept of
contextual influence on process activities. This will focus
on linking with the domain theory to model how types of
domain knowledge affect the process and product of
specification activity. The first step of the study will
colisider the domain knowledge types defined in the domain
theory. Appropriate activity templates will be defined for
ea(h domain type. The link between the domain theory and
the process theory will be established through the notion of
triplet. The situation part corresponds to the domain type
ant1 the template will be modelled in terms of decisions and
traltisformational activities.

A library of templates will serve as a knowledge base
for providing automated assistance in the software
engineering process. Process is driven by the contextual
analysis. Domain knowledge types are used to recognize
the situation the designer has to deal with. Templates
provide him with a predefined organization of modeling
activities. The decisions he makes allow the adaptation of
the template to the particular application. In the second
step of the study, the retrieval and matching process by
whiich appropriate templates can be put in correspondence
with a specific situation will be investigated.

28

Authorized licensed use limited to: Universitaetsbibliothek der RWTH Aachen. Downloaded on June 28,2023 at 08:06:44 UTC from IEEE Xplore. Restrictions apply.

6 Implementation and Validation requirements validation and reuse matching. More than one

The project follows the research method sketched in
figure 4. From observation of current practice and research,
theories are hypothesized which are falsifiable through
predictive power. To test the theories, suitable models,
methods, and formal representations are derived from them.
Selected important aspects of these will be supported by
prototypical tools. The final goal of the theory is to
improve the practice of requirements engineering. From the
three major applications, case studies will be made in
coooperation with application-oriented projects including
F-CUBE (requirements caphue), ITHACA (reuse of object-
oriented software), and WibQus (quality management).

informal
A

Theory

Knowledge Bases

.valuation c

Figure 5: Overview of research method

An important part of testing and evaluating our
knowledge representation, domain and process theories
involves the development of tool prototypes based on these
theories. In other words, we want to define tools which
make use of the domain and process theory, use the
freedoms and the links between non-formal and formal
knowledge described above. They demonstrate how to use
formal and non-formal knowledge, how and when to match
acquired knowledge against the domain and process theory,
and how to reuse existing specifications. The tools also
support the transition between non-formal and formal
descriptions, offer descriptions for reuse during the
acquisition process and make use of formal and non-formal
knowledge to support the validation of requirements.

We will use existing software tools such as SISU’s
RAMATIC shell as a framework in which to develop
prototypes to demonstrate our ideas. RAMATIC is an
extensible CASE tool development environment which
allows new tools to be configure on a repository base.
Prototypes will be developed for view integration,

theory will be tested in a single prototype, for instance the
matching prototype will validate both the domain theory
and similarity approaches.

The verification and validation tool consists of a
conceptual schema analysis and diagnosis subsystem and a
subsystem which generates natural language descriptions
from formal descriptions according to the chosen
representational framework. It is obvious that each one of
these systems may make use of domain knowledge and/or
help in acquisition of such knowledge. Correspondingly,
results from the process engineering theory will be
integrated into the prototypes in order to control the
applicability of each subtool and to guide the users.

The reuse advisor will match domain abstractions and
new domain descriptions input by the user. Prototype
implementation will involve creation of knowledge bases
for holding specification descriptions, development of more
efficient versions of the matching process and a means of
adding knowledge of new domains. User-system interfaces
will be developed for fact acquisition and decision support
to guide analysts in selecting suitable reusable
components. The system will have a limited ability to
classify new terms according to the meta schema and hence
add new domain specific terms.

The view integration tool will assist the users in
integrating locally (and independently) developed
subschemata, using part of the domain knowledge base,
into a global, integrated schema. The work must extend
existing approaches, primarily in the sense that the
integration subsystem must provide more intelligent
service to the user of the tool. This can be achieved by
augmenting the syntactically based integration algorithms
by support from the domain knowledge that will help the
tool to better “understand” the concepts and their
relationships used in the local schemata. This
understanding is a prerequisite for meaningful integration as
well as for the restructuring of the schemata.

7 Summary and Conclusions

Reiterating, the goal of the NATURE project is to
provide a set of interacting theories that relate knowledge
representation, domain analysis, and process support
aspects of requirements engineering. The ontological
foundations of the approach are given on the structural side
by organizing requirements knowledge according to four
related “worlds” each coming with an appropriate set of
domain abstractions. On the process side, a situation-based
and decision-oriented ontology is advocated which allows
for a natural integration of both the domain-oriented
context and the role of teamwork and non-functional
requirements.

€n the representational dimension, the joint usage of
formal, semi-formal, and informal representations is being
studied, supported by a technical environment that
integrates knowledge representation, graphical views on
these, and hypermedia technology.

29

Authorized licensed use limited to: Universitaetsbibliothek der RWTH Aachen. Downloaded on June 28,2023 at 08:06:44 UTC from IEEE Xplore. Restrictions apply.

Contributions to the evaluation of requirements
engineering theories are made through the further
development of prototypical tools and knowledge
management platforms, and through the extension of
standard literature examples as to capture the hard problems
of requirements engineering.

References

[Akman et al. 19901 Akman V., ten Hagen P.J.W., Tomiyama
T.: A fundamental and theoretical framework for an
intelligent CAD System; Computer Aided Design 22, 6.

[Balzer 19911 Balzer R.: Tolerating inconsistency. hoc. 13th
International Conference on Software Engineering, Austin
Texas, 158-165

[Biggerstaff & Richter 19871 Biggerstaff T., Richter C.,
Reusability framework, assessment and directions, IEEE
Software, March 1987

[Boehm 19881 Boehm B.W.: A spiral model of software
development and enhancement; IEEE Computer 21.

[Borgida 19911 Borgida A.: A position paper on intelligent
information systems. In Balzer R., Mylopoulos J. (eh.):
Intl. Workshop on Development of Intelligent
Information Systems, Niagara-on-the-Lake, 10-13

[Borgida et al. 19851 Borgida A., Greenspan S.J. and
Mylopoulos J.: Knowledge representation as the basis for
requirements specification. IEEE Computer, April 1985,

[Borgida et al. 19891 Borgida A., Brachman R.J., McGuinness
D.L., and Resnick L.A.: CLASSIC. A structural data model
for objects. Proc. ACM-SIGMOD Conf., Portland, Oregon,
58-67

[Bouzeghoub & M6tais 19911 Bouzeghoub M. and Mbtais E.:
Semantic modelling of object oriented databases. Proc.
17th Intl. Conf. Very Large Data Bases, Barcelona, Spain

[Cauvet et al. 19881 Cauvet C., Rolland C., Proix C. :
Information systems design: an expert system approach,
Proc. Intl. Conf. Extending Database Technology, Venice,
March 1988.

[Chung et al. 19911 Chung, L., Katalagarianos, P., Mertikas,
M., Mylopoulos, J., Vassiliou, Y.: From information
systems requirements to design: a mapping framework.
Information Systems 16, 4.

[Conklin & Begeman 19881 Conklin J. and Begeman M.L: A
hypertext tool for exploratory policy discussion. ACM
Trans. Office Information Systems 6. 4, 140-151

[Constantopuoulos et al. 19911 Constantopoulos P., Jarke M.,
Mylopoulos J., Vassiliou Y .: Software Information Base:
A server for reuse. Report, ESPRIT project ITHACA, ICS-
FORTH, Heraclion, Greece.

[Cooke & McDonald 19871 Cooke N.M., McDonald J.E.: The
application of psychological scaling techniques to
knowledge elicitation for knowledge-based systems, Intl.
J. Man-Machine Studies 26, 553-550

[Davies 19881 Davies T.: Determination, uniformity and
relevance: normative criteria for generalization and
reasoning by analogy. Analogical Reasoning, Kluwer
Academic Publishers, 1988

[Dowson 19871 Dowson M.: Iteration in the software process.
Proc. 9th Intl Conf Software Engineering, Monterey, Ca.

[Eherer & Jake 19911 Eherer S., Jarke M.: Knowledge base
support for hypermedia co-authoring, Proc. Database and
Expert Systems Applications, Berlin, 465-470

82-9 1

[Feather 19871 Feather M.: Language support for the
specification and development of composite systems.
AGM Trans. Programming Languages and Systems 9, 2,

[Feather & Fickas 19911 Feather M.S. and Fickas S.: Coping
with requirements freedom. In: Proc. Intl. Workshop
Development of Intelligent Information Systems, Niagara-
on-the-Lake, Canada, 42-46

[Fickas 19871 Fickas S.: Automating analysis: An example.
Proc. 4th 1ntl.Workshop on Software Specification and
Design, Washington DC, 58-67

[Finkelstein et al. 19901 Finkelstein A., Gamer J., Goe-dicke
M.: Viewpoint-oriented software development; Proc. Conf
Le G6nie Logiciel et ses Applications, Toulouse, 337-351

[Freeman 19871 Freeman P.: Software reusability. In IEEE
Tutorial on Software Reuse, IEEE Press

[Garg-Janardan & Salvendy 19871 Garg-Janardan C., Salvendy
G., A Caonceptual Framework for Knowledge Elicitation,
Intl. J. Man-Machine Studies 26, 521-531

[Gentner 19831 Gentner D.: Structure mapping: a theoretical
framework for analogy, Cognitive Science 5 , 121-152

[Gick & Holyoak 19831 Gick M.L. and Holyoak K.J. Schema
induction and analogical transfer, Cognitive Psychology

[Greenspan 19841 Greenspan S.J.: Requirements modeling: A
knowledge representation approach to software
requirements definition. Univ. of. Toronto, Toronto, Tech.
Report. CSRG 155.

[Greiner R. 19881 Greiner R.: Abstraction-based Analogical
Inference, in Analogical Reasoning, edited by D.H.
Helman, Kluwer Academic Publishers,p. 147-170

[Grosz & Rolland 19901: G. Grosz, C. Rolland; Using artificial
intelligence techniques to formalize the information
system design process; Proc. Intl. Conf. Databases and
Expert Systems Applications, 374-380.

[Grosz & Rolland 19911 G. Grosz, C. Rolland; Why and how
should we hide conceptual models; Proc. 3rd Intl. Conf.
Software Engineering and Knowledge Engineering (SEKE),
Skokie, USA, 28-33

[Guindon 19901 Guindon R.: Designing the design process:
exploiting opportunistic thoughts, Human-Computer
Interaction Journal 5 , 305-344

[Guindon & Curtis 19881 Guindon R. and Curtis B.: Control of
cognitive processes during software design: what tools are
needed? hoc. ACM-CHI’88, 263-269

[Hagelstein 19881 Hagelstein J.: Declarative approach to
information systems requirements. Knowledge Based
Systems, 1, 4, 211-220

[Hahn et al. 19911 U. Hahn, M. Jarke, T. Rose: Teamwork
support in a knowledge-based information systems
environment. IEEE Trans. Software Eng., 17.5

[Henderson-Sellers & Edwards 19901 B. Henderson-Sellers, J.
M. Edwards, The object-oriented systems life cycle,
Comm. ACM, Sept. 1990

[Holyoak & Koh 19871 Holyoak K., Koh K., Surface and
structural similarity in analogical transfer. Memory and
Cognition 15, 4

[Jarke 19881 Jarke M.: The design of a database for
multiperson decision support. Annals of Operations
Research 16, 393412

[Jarke 19901 Jarke, M.: DAIDA -- conceptual modeling and
knowledge-based support for information systems
development processes. Technique et Science Informatique

[Jarke ed. 19921 Jarke M. (ed.): ConceptBase V3.1 User

198-234

15. 1-38

9, 2, 121-133

Manual, Aachener Informatik Berichte 92-17

Authorized licensed use limited to: Universitaetsbibliothek der RWTH Aachen. Downloaded on June 28,2023 at 08:06:44 UTC from IEEE Xplore. Restrictions apply.

[Jarke et al. 19901 Jarke M., Jeusfeld M.. Rose T.: A software
process data model for knowledge engineering in
information systems. Information Systems 15, 1, 85-116

[Jarke & Pohl 19921 Jarke M., Pohl. K.: Information systems
quality and quality information systems. Proc. IFIP 8.2
Working Conf., Minneapolis, Minn.

[Jarke et al. 19921 Jarke M.. Mylopoulos J., Schmidt J.,
Vassiliou Y.: DAIDA - an environment for evolving
information systems. ACM Trans. Information Systems

[Johnson & Feather 19901 Johnson W.L. and Feather M.:
Building an evolution transformation library: Proc. 12th
Intl. Conf. Software Engineering, Nice. France, 238-248

[Johnson & Harris 19901 Johnson W.L. and Hams D.: The
ARES Project, Roc. 5th KBSA Conf.. Liverpool, N.Y.,

[Johnson et al. 19881 Johnson P., Johnson H., Waddington R.
and Shouls A.: Task-related Knowledge Structures:
analysis, modelling and application, Proc. HCI '88,
Cambridge University Press, 35-61

[Jones 19861 Jones, C.: Systematic Software Development
Using VDM. Englewood Cliffs, NJ: Prentice-Hall

[Kedar-Cabelli 19881 Kedar-Cabelli S., Analogy - from a
unified perspective, Analogical Reasoning, Kluwer
Academic Publishers, 1988

[Lee & Harandi 19911 Lee H.Y.. Harandi M.T.: Some
interactive sspects of a software design schema acquisition
tool, USC-IS1 Tech. Report RS-91-287

[Littman 19871 Littman D.C., Modelling human expertise in
knowldege engineering: some preliminary observations,
Intl. J. Man-Machine Studies 26, 81-92

[Loucopoulos et al. 19911 Loucopoulos, P., Papastamatiou G.
Pantazis D, Diakonikolaou G.: Design and execution of
event/action DB applications. Second Intl. Workshop
Deductive Approach to Information Systems and
Databases, Aiguablava, Spain, 1-21

[Maiden 19911 Maiden N.: Analogy as a paradigm for
specification reuse, Software Engineering J. 6, 1, 6-15

[Maiden 19921 Maiden N.: Analogical specification Reuse
during Requirements Analysis, Ph.D. Thesis. City
University of London.

[Mylopoulos et al. 19901 Mylopoulos J., Borgida A., Jarke
M. and Koubarakis M.: Te1os:Representing Knowledge
About Information Systems. ACM Trans. Information
Systems 8, 4, 325-362.

[Mylopoulos et al. 19921 Mylopoulos J., Chung L., Nixon B.:
Representing and using non-functional requirements: a
process-oriented approach. IEEE Trans. Software Eng. 18,

[Olle et al. 19881 Olle T.W., Hagelstein J., MacDonald I.G.,
Rolland C.. Sol H.G.. Van Assche F.J.M.. Verryn-Stuart
A.A. Information System Design Methodologies: A
Framework for Understanding, Addison-Wesley, 1988.

[Pernici 19901 Pernici B.: Objects with Roles (ORM). Proc.
ACM Conf. Office Information Systems, Cambridge
Massachusetts, 205-2 15

[Potts 19891 Potts C.; A generic model for representing design
methods; Proc. 11th Intl. Conf. Software Engineering

[Punchello et al. 19881 Punchello P.P., Torrigiani P., Pietri
F., Burion R., Cardile B. and Conit M.: ASPIS: a
knowledge-based CASE environment, IEEE Software,

[Ramesh & Dhar 19921 Ramesh B. and Dhar V.: Supporting
systems development by capturing deliberations duing
requirements engineering. IEEE Trans. Software Eng. 18,

10. 1, 1-50..

121-131.

6, 483-497

March 1988, 58-65

6, 498-510

[Reubenstein 19901 Reubenstein H.B.: Automated Aquisiition
of Evolving Informal Descriptions, Ph.D. Dissertion, AI
Laboratory, Massachusettes Institute of Technology

[Reubenstein & Waters 19911 Reubenstein H.B. and Waters
R.C.:The Requirements Apprentice: Automated Assistance
for Requirements Acquisition. In: IEEE Transaction on
Software Engineering, March 1991, p. 226-240

[Rosch 19911 Rosch E.: Prototype classification and logical
classification: the two systems. In E.K Scholnick (ed.):
New Trends in Conceptual Representation: Challenges to
Piaget's Theory ? LEA.

[Rose et al. 19911 Rose T., Jarke M., Gocek M., Maltzahn C.,
Nissen H.: A decision-based configuration process
environment. Software Engineering Journal 6, 5.

[Ross 19851 Ross D.T.: Applications and extensions of SADT.
IEEE Computer, April 1985.24-35

[Royce 19701 : Royce W.W.; Managing the development of
large software systems; Roc. IEEE WSCON.

[Schank 19821 Schank R.C., Dynamic Memory: A Theory of
Reminding and Learning in People and Computers.
Cambridge University Press

[Scheer 19911 Scheer, A.-W., Architektur betrieblicher
Informationssysteme, Springer-Verlag

[Schwanke 19911 Schwanke R., An intelligent tool for re-
engineering software modularity, 1991

[Smolander et al. 19911 Smolander K., Lyytinen K.,
Tahvanainen V.-P. and Marttiin P.: MetaEdit - A Flexible
Graphical Environment for Methodology Modelling,
Proceedings CASE 1991, Springer-Verlag.

[Spivey 19881 Spivey, J.M.,:The Z Notation: A Reference
Manual. Prentice-Hall International,

[Subramanian & Genesereth 19871 Subramanian D.,
Genesereth M., The relevance of irrelevance, Proc. 10th
UCAI, Morgan Kaufmann

[Sutcliffe 19911 Sutcliffe A.G.. Object oriented systems
analysis: the abstract question. hoc. IFIP WG 8.1 Conf.
The Object Oriented Approach in Information Systems,
Quebec City, Canada.

[Sutcliffe & Maiden 19901 Sutcliffe A.G., Maiden N.: Software
reusability: delivering productivity gains or short cuts,

[Sutcliffe & Maiden 19921 Sutcliffe A.G. and Maiden N.:
Analysing the analyst: cognitive models of aoftware
engineering, to appear in Intl. J. Man-Machine Studies

[Symonds 19881 Symonds A., Creating a software en-
gineering knowledge base, IEEE Software, March 1988

[Vitalari & Dickson 19831 Vitalari N. and Dickson G.W.:
Problem solving for effective systems analysis: an ex-
perimental exploration, Comm. ACM 26, 11, 948-956

[Wegner 19871 Wegner P., The object-oriented classification
paradigm, Research Directions in Object-Oriented
Programming, Shriver Wegner ed., MIT Press

ROC. INTERACT90. North-Holland, 948-956.

31

Authorized licensed use limited to: Universitaetsbibliothek der RWTH Aachen. Downloaded on June 28,2023 at 08:06:44 UTC from IEEE Xplore. Restrictions apply.

