
ar
X

iv
:c

s/
99

06
03

1v
1 

 [
cs

.S
E

] 
 2

8 
Ju

n 
19

99

Events in Linear-Time Properties
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Abstract

For over a decade, researchers in formal methods tried
to create formalisms that permit natural specification
of systems and allow mathematical reasoning about
their correctness. The availability of fully-automated
reasoning tools enables more non-specialists to use for-
mal methods effectively — their responsibility reduces
to just specifying the model and expressing the desired
properties. Thus, it is essential that these properties
be represented in a language that is easy to use and
sufficiently expressive.

Linear-time temporal logic [21] is a formalism that
has been extensively used by researchers for specify-
ing properties of systems. When such properties are
closed under stuttering, i.e. their interpretation is
not modified by transitions that leave the system in
the same state, verification tools can utilize a partial-
order reduction technique [16] to reduce the size of the
model and thus analyze larger systems. If LTL formu-
las do not contain the “next” operator, the formulas
are closed under stuttering, but the resulting language
is not expressive enough to capture many important
properties, e.g., properties involving events. Deter-
mining if an arbitrary LTL formula is closed under
stuttering is hard — it has been proven to be PSPACE-
complete [25].

In this paper we relax the restriction on LTL that
guarantees closure under stuttering, introduce the no-
tion of edges in the context of LTL, and provide theo-
rems that enable syntactic reasoning about closure un-
der stuttering of LTL formulas.

1 Introduction

Formal specification of systems has been an active
area of research for several decades. From finite-state
machines to process algebras to logics, researchers
try to create formalisms that would permit natural

specification of systems and allow mathematical rea-
soning about their correctness. However, most of
these formalisms have not been adopted widely outside
academia — their cost-saving benefits were doubtful,
they lacked tool support, and were perceived difficult
to apply [27].

Recently, the tools for proving properties of finite-
state models are becoming increasingly available and
are often used for analyzing requirements, e.g. [2, 3,
10, 4]. These tools typically require the users to spec-
ify properties using temporal logics and to describe
models of systems using some finite-state transition
representation. The tools are based on a variety of
verification techniques. For example, SPIN [16] and
SMV [22] are based on state-space exploration, also
called model-checking, Concurrency Workbench [6] on
bisimulation, and COSPAN [11] on language contain-
ment. Most finite-state verification techniques can be
fully automated, and the responsibility of the user re-
duces to just specifying the model and expressing the
desired properties. In this context, it is important
that properties can be represented in a language that
is easy to use and sufficiently expressive, to enable
even fairly novice users to use it effectively.

Linear-time logic (LTL) [21] is a temporal logic that
has been extensively used by researchers for specify-
ing properties of systems. A highly desirable property
of LTL formulas is that they are closed under stut-
tering [1]. In particular, the mechanical analysis of
such formulas, such as by the model-checker SPIN [16],
can utilize powerful partial-order reduction algorithms
that can dramatically reduce the state-space of the
model. Unfortunately, closure under stuttering can
be guaranteed only for a subset of LTL [18], and this
subset is not expressive enough to represent even fairly
simple properties, such as:

The magnet of the crane may be deactivated
only when the magnet is above the feed belt.

Users of LTL typically try to remedy this problem by

http://arxiv.org/abs/cs/9906031v1


introducing extra variables inside the model — a tech-
nique which tends to clutter the model, enlarge the
state space, and introduce errors.

Determining whether an LTL formula is closed un-
der stuttering is hard: the problem has been shown to
be PSPACE-complete [25]. Even though a complete
solution is impractical, we have been able to catego-
rize a subset that is useful in practice. In particular, a
computationally feasible algorithm which can identify
a subclass of closed under stuttering formulas has been
proposed in [15] but not yet implemented in SPIN.
The algorithm is fairly sophisticated and cannot be
applied by hand. Moreover, it is not clear how often
the subclass of formulas identified by the algorithm is
encountered in practice.

In this paper we relax the restriction on LTL that
guarantees closure under stuttering, introduce the no-
tion of edges in the context of LTL, and provide the-
orems that enable syntactic reasoning about closure
under stuttering of LTL formulas. The rest of the
paper is organized as follows: Section 2 provides some
background on LTL and the notation used throughout
the paper. Section 3 discusses closure under stuttering
and introduces edges. Section 4 gives some important
properties of edges and closure under stuttering. Sec-
tion 5 describes an application of this work to property
patterns identified by Dwyer and his colleagues in [8].
We discuss some alternative approaches in Section 6
and conclude the paper in Section 7.

2 Background

We begin by briefly introducing our notation which
we have adopted from [12]. A sequence (or string)
is a succession of elements joined by semicolons. For
example, we write the sequence composed of the first
five natural numbers, in order, as 0; 1; 2; 3; 4 or, more
compactly, as 0; ..5 (note the left-closed, right-open in-
terval). We can obtain an item of the sequence by sub-
scripting: (0; 2; 4; 5)2 = 4. When the subscript is a se-
quence, we obtain a subsequence: (0; 3; 1; 5; 8; 2)1;2;3 =
(0; 3; 1; 5; 8; 2)1;..4 = 3; 1; 5.

A state is modeled by a function that maps vari-
ables to their values, so the value of variable a in state
s0 is s0(a). We denote the set of all infinite sequences
of states as St∞, and the set of natural numbers as N.

Boolean expressions are connected by ¬(not), ∧
(and), ∨ (or), ⇒ (implies), ⇐ (is implied by), and =
(if and only if). To reduce the clutter of parenthesis,
we denote the main connective in a formula by a bigger
and bolder symbol, e.g. =. We consider the connec-
tives to have decreasing precedence as follows: =, ¬, ∧,

∨, ⇒; the connectives=, ⇒, and ⇐ have the lowest
precedence. For example, the formula a∧b∨b=a⇒ b

should be parsed as: ((a ∧ b) ∨ b)= (a⇒ b).
Linear time temporal logic (LTL) is a language for

describing and reasoning about sequences of states.
These sequences can be interpreted in a variety of
ways: the state of the world as it evolves over time,
the state of a program as it is executing, and so forth.
Informally, LTL is comprised of propositional formulas
and temporal connectives ✷ (always), ✸ (eventually),
◦ (next), and U (until). The first three operators are
unary, while the last one is binary. Using these opera-
tors, one can express properties about the evolution of
a system. For example, a formula p∨◦q indicates that
either p holds in the starting state of the system, or
q holds in the following state. A formula ✷(p ⇒ ✸q)
indicates that each occurrence of p is followed, at some
point, by an occurrence of q. We now define the formal
semantics of an LTL formula, based on its syntactic
structure. Let A and B be LTL formulas, let a be a
variable name, and let s be a sequence of states, i.e.
s ∈ St∞. We denote an interpretation of formula F

in state sequence s as s[[F ]], and define it as follows:

s[[a]] = s0(a)

s[[¬A]] = ¬s[[A]]

s[[A ∧B]] = s[[A]] ∧ s[[B]]

s[[◦A]] = s1;..∞[[A]]

s[[✷A]] = ∀i ∈ N · si;..∞[[A]]

s[[✸A]] = ∃i ∈ N · si;..∞[[A]]

s[[A U B]] = ∃i ∈ N · (si;..∞[[B]] ∧

∀j ∈ {0, 1, .., i− 1} · sj;..∞[[A]])

For example, s[[✸A]] means that a formula Amust hold
at some point i in the sequence s. We do not describe
other boolean operators as they can be expressed in
terms of negation and conjunction.

We say that an LTL formula F is closed under stut-
tering when its interpretation remains the same under
state sequences that differ only by repeated states. We
denote a closed under stuttering formula as ≪F≫,
and formally define it as follows:

Definition 1 ≪F≫=

∀s ∈ St∞ · ∀i ∈ N · s[[F ]] = (s0;..i; si; si;..∞)[[F ]]

In other words, given any state sequence s, we can
repeat any of its states without changing the interpre-
tation of F . Note that s0;..i; si; si;..∞ is a sequence of
states that differ from s only by the repeated state si.

It is easy to see that any LTL formula that does not
contain the “◦” operator is closed under stuttering.



For example, ✷a is closed under stuttering because no
matter how much we repeat states, we cannot change
the value of a. On the other hand, the formula ◦a
is not closed under stuttering. We can see that by
considering the state sequence s in which s0(a) is true
and s1(a) is false. Then ◦a is false when we evaluate
it in s, and true when we evaluate it in s0; s.

3 Closure Under Stuttering and Edges

Our aim is to capture a large set of formulas that
use the “◦” operator but are still closed under stutter-
ing. We begin by developing the intuition behind the
main theorem that enables us to generate this class of
formulas. Let B be an LTL formula that is closed un-
der stuttering. Consider the formula ◦B: it may not
be closed under stuttering; furthermore, we can not
correct this by simply quantifying ◦B with ‘✷’ or ‘✸’.
To understand how stuttering can modify the inter-
pretation of ◦B, we illustrate two different stuttering
scenarios in Figure 1, where s is a sequence of states,
and s′ and s′′ are derived from s by stuttering the fifth
and the first states respectively. Note that the type of
stuttering exemplified in s′, that is, repeating any part
of the sequence with the exception of the first state,
causes no harm because B itself is closed under stut-
tering. However, stuttering the first state, as shown in
s′′, may cause problems, because ◦B is evaluated on a
state sequence that includes the new state.

s =

s’ =

s’’ =

OK

Err
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Figure 1: Effects of stuttering on formula ◦B.

To circumvent this problem, we conjoin ◦B with
another formula, F , and quantify the resulting expres-
sion with ‘✸’: ✸(F ∧ ◦B). We need the quantification
to “follow” the state s1, as s0 can be stuttered any
number of times, while the conjunct F is needed to
ignore the leading sequence of repeated states s0.

1 A
possible way to determine when a state is repeated is
to check that an LTL formula A that is closed under

1Note that we could not have used ✷ for quantification as

it distributes over conjunction. The choice of a quantifier is

dictated by the boolean operator between F and ◦B.

stuttering does not change its interpretation from the
current to the next state. Therefore, we can define F

as ¬A∧◦A. Note that F is guaranteed to be false only
when the sequence starts with a repeated state.

We now claim that the formula developed above is
closed under stuttering:

Theorem 1

≪A≫∧≪B≫⇒≪✸(¬A ∧ ◦A ∧ ◦B)≫

Proof Sketch: Let s, s′ ∈ St∞, such that s′ is the
same as s except that the first state of s′ is not stut-
tered. In other words, we can repeat the first state of
s′ a number of times and obtain s. We can rewrite
the formula ✸(¬A ∧ ◦A ∧ ◦B) as ✸(¬A ∧ ◦G), where
G = A ∧ B. If we let F = ✸(¬A ∧ ◦G), we can see
that s[[F ]] = s′[[F ]]. So, the interpretation of F is not
affected by stuttering except perhaps when we stutter
the first state s0. We have argued in the discussion
leading to the theorem that this is the case provided
that A and G are closed under stuttering, which is
true here. Thus, we only need to worry about state
sequences s which have the first state stuttered. How-
ever, in such cases the expression ¬A ∧ ◦A becomes
false because A is closed under stuttering. This means
that the entire preamble of stuttered states that might
change the interpretation of the formula is in fact ig-
nored, and thus the formula remains closed under stut-
tering. �

This theorem is the main result that allows us to
build formulas that contain the “◦” operator and are
still closed under stuttering. The theorem was enabled
by the formula ¬A ∧ ◦A, which expresses a change in
A. More exactly, it expresses an up edge in A. We
denote an up edge by ↑, a down edge by ↓, and an up
or down edge by l. Their formal definitions follow.

Definition 2 If A is an LTL formula, then

↑A = ¬A ∧ ◦ A — up or rising edge
↓A = A ∧ ◦¬A — down or falling edge
lA = ↑A ∨ ↓A — any edge

The edges are also called events, as they capture the
same notion as the events proposed by the Software
Cost Reduction (SCR) researchers [14, 13]. The SCR
events cannot explicitly include temporal operators,
whereas our formalism enables reasoning about events
in arbitrary LTL formulas. For example, a formula
↑✷A has a well-defined interpretation in our language.
We also note here a strong analogy between our (logi-
cal) edges and signal edges. Computer engineers have
made good use of edges in electrical signals — most
circuitry is driven by edges, e.g. the clock. Edges are



also widely used in other engineering disciplines, e.g.
electrical engineering and telecommunications. It is
surprising that we managed to work around them for
so long in the model checking world!

4 Properties

In this section we present a few important proper-
ties of edges and closure under stuttering. We begin
by noting that edges are related by the following for-
mulas:

↑¬A = ↓A (1)

↓¬A = ↑A (2)

l¬A = lA (3)

These formulas allow us to switch between the dif-
ferent types of edges easily. The following are some
general properties of closure under stuttering:

a is a variable ⇒ ≪a≫ (4)

≪A≫ = ≪¬A≫ (5)

≪A≫∧≪B≫ ⇒ ≪A ∧B≫ (6)

≪A≫ ⇒ ≪✷A≫ (7)

≪A≫ ⇒ ≪✸A≫ (8)

≪A≫∧≪B≫ ⇒ ≪A U B≫ (9)

Note that property (5) is an equality indicating that
when a formula is negated, its closure under stutter-
ing property is preserved. Property (6) indicates that
if two formulas are closed under stuttering, then so
is their conjunction. These two formulas allow us to
conclude that

≪A≫∧≪B≫⇒≪A ∗B≫

where ∗ is any of ∧, ∨, ⇒, ⇐, or =. Such proper-
ties enable reasoning about closure under stuttering
of a formula by looking at its components. Finally,
formula (5) together with (1) and (2) allows the inter-
changeable use of ↓ and ↑ when analyzing properties
of the form

≪A≫⇒ f(↑A)

Thus, in the rest of the paper we talk only about the
↑-edges in the context of closure under stuttering.

Below we discuss closure under stuttering proper-
ties that contain edges and the “◦” operator. The first
property is a corollary of Theorem 1:

Property 1

≪A≫∧≪B≫∧≪C≫⇒≪✸(↑A ∧ ◦B ∧C)≫

It has two simplified versions:

≪A≫∧≪B≫⇒≪✸(↑A ∧B)≫

and

≪A≫∧≪B≫⇒≪✸(↑A ∧ ◦B)≫

that we often encountered in practice. In both cases
an existence property is formalized. The formulas say
that the event ↑A must happen and then B holds.
In these versions, B is evaluated right before or right
after the event, respectively.

Property 2

≪A≫∧≪B≫∧≪C≫⇒≪✷(↑A⇒ ◦B ∨C)≫

This property is logically equivalent to Property 1. Its
two simplified versions are

≪A≫∧≪B≫⇒≪✷(↑A⇒ B)≫

and

≪A≫∧≪B≫⇒≪✷(↑A⇒ ◦B)≫

They express a universality property: whenever the
event ↑A happens, B will hold. As in the case of Prop-
erty 1, B is evaluated right before or right after the
event, respectively.

Consider the following example:

Items should only be dropped on the table.

This property can be formalized as

✷(↓hold ⇒ pos = above tbl),

where hold is a state variable that is true when we
hold an item, and pos is a state variable indicating
the position. Note that an item is considered dropped
if we hold it in one state and do not hold it in the next.
Formally, we express “dropped” as hold ∧ ◦¬hold or
as ↓hold .

The last property deals with the “until” operator:

Property 3

≪A≫∧≪B≫∧≪C≫∧≪D≫∧≪E≫∧≪F≫

⇒≪(¬↑A ∨ ◦B ∨ C) U (↑D ∧ ◦E ∧ F )≫

There are many simplified expressions for this prop-
erty which are omitted here for brevity.

For example, a property

Initially, no items should be dropped on the
table before the operator pushes and releases
the GO button.



can be formalized as

¬↓hold U ↓button,

where hold has the same meaning as before, and button
is a state variable which is true when the button is
pressed and false otherwise.

State

Edge
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Figure 2: Edge-detecting state

In order to effectively express properties containing
edges, it is important to realize that an edge is de-
tected just before it occurs, as illustrated in Figure 2.2

That is, ↑A becomes true in the state where A is false.
For example, consider the following property:

After the robot deposits an object on the belt,
it should not hold another object until the
sensor at the end of the belt is true.

If we formalize it as

✷(↓hold ⇒ (¬hold U sensor)),

we do not get the correct formula since its consequent
would be evaluated one state too early: ↓hold is de-
tected when hold is true, but requires hold to remain
false until sensor is true. The formula can be fixed by
considering the consequent in the “next” state:

✷(↓hold ⇒ ◦(¬hold U sensor))

5 Edges and Patterns

A pattern-based approach to the presentation, cod-
ification and reuse of property specifications for finite-
state verification was proposed by Dwyer and his col-
leagues in [9, 8]. They performed a large-scale study
in which specifications containing over 500 temporal
properties were collected and analyzed. They noticed
that over 90% of these could be classified under one of
the proposed patterns [9].

We discuss two directions for integrating our work
into the pattern system: extending the system to in-
clude events based on edges, and evaluating the effec-
tiveness of our theorems in determining closure under

2Note that we can move the detection of the edge after it

occurs if we replace the “next” by the “previous” operator.

stuttering for the newly created, edge-based formulas.
In the rest of the section we briefly discuss the prop-
erty pattern system (following the presentation in [8]),
describe our extensions based on the usage of edges,
and conclude with discussing closure under stuttering.

5.1 The Pattern System

The patterns enable non-experts to read and write
formal specifications for realistic systems and facilitate
easy conversion of specifications between formalisms.
Currently, the properties can be expressed in a variety
of formalisms such as LTL, computational tree logic
(CTL) [5], quantified regular expressions (QRE) [23],
and other state-based and event-based formalisms.

The patterns are organized in a hierarchy based on
their semantics, as illustrated in Figure 3. Some of the
patterns are described below:

Absence A condition does not occur within a scope;

Existence A condition must occur within a scope;

Universality A condition occurs throughout a scope;

Response A condition must always be followed by
another within a scope;

Precedence A condition must always be preceded by
another within a scope.

Each pattern is associated with several scopes —
the regions of interest over which the condition is eval-
uated. There are five basic kinds of scopes:

A. Global The entire state sequence;

B. Before R The state sequence up to condition R;

C. After Q The state sequence after condition Q;

D. Between Q and R The part of the state se-
quence between condition Q and condition R;

E. After Q Until R Similar to the previous one ex-
cept that the designated part of the state sequence
continues even if the second condition does not
occur.

These scopes are depicted in Figure 4. The scopes
were initially defined in [9] to be closed-left, open-right
intervals, although it is also possible to define other
combinations, such as open-left, closed-right intervals.

For example, an LTL formulation of the property
“S precedes P between Q and R” (Precedence pat-
tern with “between Q and R” scope) is:

✷((Q ∧✸R)⇒ (¬P U (S ∨R)))
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Even though the pattern system is formalism-
independent [8], we are only interested in the way the
patterns are expressed in LTL.

5.2 Events in LTL Patterns

It is often natural to express properties using
changes of states — edges. As the original pattern
system was state-based, we tried to extend it by in-
corporating edge-based events. These events can be
used for specifying the conditions as well as for defin-
ing the bounding scopes. For example, we may want
to express the properties “Event S precedes event P

between states Q and R”, or “State S precedes state P
between events Q and R”. These properties are often
hard to specify correctly, and since all of them contain
the “◦” operator (either directly or indirectly through
the use of edges), it is not trivial to determine if they
are closed under stuttering.

Introducing edges into the patterns generates an
explosion in the number of formulas. The patterns
contain up to two conditions, while the bounding in-

terval has up to two ends; each of these can be either
state-based or edge-based, giving us up to 16 different
combinations. Moreover, when a condition and an in-
terval end are of the same type (either state-based or
edge-based), we can choose to make the interval open
or closed, leading to even more possibilities. Note that
when the condition and the interval end are of differ-
ent types, there is no ambiguity because edges occur
between states.

Due to the large number of possible formulas, we
extended only some of the patterns: Absence, Exis-

tence, Universality, Precedence, and Response.
In the original pattern system, the conditions were
represented by formulas P and S, while the bounding
interval was defined by formulas Q and R. We have
considered the following possibilities:

0. P , S — states, Q, R — states;
1. P , S — states, Q, R — up edges;
2. P , S — up edges, Q, R — states;
3. P , S — up edges, Q, R — up edges.

Combination 0 corresponds to the original formula-
tion of [8], where all of P , S, Q and R are state-based.
The remaining three combinations are our extensions
of the pattern system. We assume that multiple events
can happen simultaneously, but only consider closed-
left, open-right intervals, as in the original system. We
note, however, that it is perfectly possible to have for-
mulas for all other combinations of interval bounds.
Down edges can be substituted for up edges without
changing the formulas.

In Figure 5 we show the LTL formulations for the
Existence pattern. Each of the scopes is associated
with four formulas corresponding to the four com-
binations of state-based and edge-based conditions
and interval bounds we have considered. We have
modified several of the 0-formulas (i.e. state-based
conditions and intervals) from their original formu-
lations of [8] to remove assumptions of interleaving



and make them consistent with the left-closed,
right-open intervals. For brevity, this is the only
pattern that we detail in this paper. We are currently
working on integrating our work into the pattern
system of Dwyer and his colleagues. Meanwhile, the
complete set of formulas we developed is available at
http://www.cs.toronto.edu/~chechik/edges.html.

5.3 Closure Under Stuttering and Pat-
terns

Our primary concern associated with the edge-
based extension of the pattern system is to analyze the
newly-created formulas for the closure under stutter-
ing property. Our interest in this problem is twofold:
first, we know that edge-based formulas can have prac-
tical relevance only if they are closed under stuttering,
and second, these formulas provide a good test-bed for
the closure under stuttering theorems we have devel-
oped.

Let us consider an example: a robot must pick up
a metal blank from a feed belt, weigh it, and deposit
it in a press. The specification of the robot says:

The robot must weigh the blank after pickup
from the feedbelt, but before the deposit in the
press.

The robot is equipped with a magnet and a scale at
the end of its arm. The status of the magnet is re-
ported through a state variable mgn which is true
when the magnet is on, while the scale reports a suc-
cessful weighing when the state variable scl is true.

Clearly, this fits the “Existence” pattern: a state
base condition (weighing) must happen between two
events (pickup and deposit). In Figure 5, we can find
the desired formula as D.1. Using ↑mgn and ↓mgn to
model the pickup and the deposit event, respectively,
and plugging the events into the template yields the
formula:

✷(↑mgn ∧✸↓mgn ⇒ ◦(¬↓mgn U scl) ∧ ¬↓mgn)

In order to prove that this property is closed under
stuttering, we need to show that if components of the
template, Q, R and P are closed under stuttering, then
so is the template. Q, R and P are just variables,
trivially closed under stuttering, and the analysis of

the template appears below:

≪✷(↑Q ∧✸↑R⇒ ◦(¬↑R U P ) ∧ ¬↑R)≫

by the laws of logic and LTL
= ≪✷(↑Q ∧✸↑R⇒ ◦(¬↑R U P ))∧

✷(↑Q ∧✸↑R⇒ ¬↑R)≫

by 6
⇐ ≪✷(↑Q ∧✸↑R⇒ ◦(¬↑R U P ))≫∧

≪✷(↑Q ∧✸↑R⇒ ¬↑R)≫

by Property 2, we get:
⇐ ≪Q≫∧≪✸↑R≫∧≪¬↑R U P≫∧

≪✷(↑Q ∧✸↑R⇒ ¬↑R)≫

by Property 1, this simplifies to:
⇐ ≪Q≫∧≪R≫∧≪¬↑R U P≫∧

≪✷(↑Q ∧✸↑R⇒ ¬↑R)≫

by Property 3, we get:
⇐ ≪Q≫∧≪R≫∧≪R≫∧≪P≫∧

≪✷(↑Q ∧✸↑R⇒ ¬↑R)≫

by the rules of logic we get:
= ≪Q≫∧≪R≫∧≪P≫∧

≪¬✸(↑Q ∧✸↑R ∧ ↑R)≫

by 5 and Property 1:
⇐ ≪Q≫∧≪R≫∧≪P≫∧

≪Q≫∧≪R≫∧≪✸↑R≫

by Property 1 again:
⇐ ≪Q≫∧≪R≫∧≪P≫∧

≪Q≫∧≪R≫∧≪R≫

Thus, we have proven that

≪P≫∧≪Q≫∧≪R≫⇒

≪✷(↑Q ∧✸↑R⇒ ◦(¬↑R U P ) ∧ ¬↑R)≫

which is exactly the desired property.
Note that, although the property is fairly compli-

cated, the proof is not long, is completely syntactic,
and each step in it is easy. Similar proofs were found
for all of the new edge-based formulas [24]. Such proofs
can potentially be performed by a theorem-prover like
PVS [28] with little guidance from the user. We are
currently investigating the feasibility of doing so.

6 Discussion and Related Work

Before writing this paper, we searched through nu-
merous research publications and web sites, looking
for good examples of LTL formulas containing the
“next” state, but surprisingly found just a few. We
also looked at over 500 temporal formulas collected by
Dwyer and his colleagues [7, 9] and found virtually no



A. P Exists Globally
0. ✸P

1. ✸P

2. ✸↑P
3. ✸↑P

B. P Exists Before R

0. ✸R⇒ ¬(¬P U R)
1. ✸↑R⇒ (¬↑R U P )
2. ✸R⇒ ¬(¬↑P U R)
3. ✸↑R⇒ ¬(¬↑P U ↑R)

C. P Exists After Q
0. ✸Q⇒✸(Q ∧✸P )
1. ✸↑Q⇒✸(↑Q ∧ ◦✸P )
2. ✸Q⇒✸(Q ∧✸↑P )
3. ✸↑Q⇒✸(↑Q ∧✸↑P )

D. P Exists Between Q and R

0. ✷(Q ∧✸R⇒ ¬(¬P U R) ∧ ¬R)
1. ✷(↑Q ∧✸↑R⇒ ◦(¬↑R U P ) ∧ ¬↑R)
2. ✷(Q ∧✸R⇒ ¬(¬↑P U R) ∧ ¬R)
3. ✷(↑Q ∧✸↑R⇒ ¬(¬↑P U ↑R) ∧ ¬↑R)

E. P Exists After Q Until R
0. ✷(Q⇒ if ✸R then ¬(¬P U R) ∧ ¬R else ✸P )
1. ✷(↑Q⇒ ◦(¬↑R U P ) ∧ ¬↑R)
2. ✷(Q⇒ if ✸R then ¬(¬↑P U R) ∧ ¬R else ✸↑P
3. ✷(↑Q⇒ if ✸↑R then ¬(¬↑P U ↑R) ∧ ¬↑R else ✸↑P )

Figure 5: Formulations of the Existence Pattern

explicit usage of events or the “next” operator. This
led us to conclude that the community is almost reli-
giously avoiding the “next” state operator, replacing it
with a variety of surrogates, most of which are neither
elegant nor expressive.

For example, to simulate an up edge, it is customary
to create an extra variable, â, that signals a change in
a by being temporarily true when a is changed. This
can be modeled by a concurrent assignment to a and
â:

atomic{â← 1; a← 1; } â← 0;

Note that â is weaker than ↑a since in systems contain-
ing more than one process, â is true for a longer time
than ↑a. Since ↑a⇒ â, replacing ↑a by â in LTL prop-
erties can lead to hard-to-interpret verification results.
For example, a property

✷(â⇒ ✸p)

is a conservative approximation of

✷(↑a⇒ ◦✸p)

That is, if the former property holds, so does the later,
but the converse is not true. In many such cases the
approximation is too strong, forcing the user to modify
a possibly correct model just to be able to verify the
property. Such approximations can be so strong that
they are always false in most models. For example,
performing the substitution in the formula:

✷(↑a⇒ ◦(¬↑a U ↑b))

will most likely result in a formula that is always false
because â can be true for several consecutive states.
A property

✸(â ∧ b̂)

is an optimistic approximation of

✸(↑a ∧ ↑b)

That is, if the former property does not hold, neither
does the later, but the converse is not true. This means
that the approximation cannot be used for checking
the validity of the model. Combining conservative and
optimistic approximations can void the resulting for-
mula of any meaning.

The users of the model-checker SPIN [16] proba-
bly constitute the largest LTL user-group3. However,
judging from the four years of proceedings of the SPIN
workshop, available at [20], they seldom if ever use
properties involving events because of the common
misconception that no formulas containing “next” are
closed under stuttering, expressed, e.g., by Kamel and
Leue in [17]. This is, in our opinion, a serious problem
because we believe that edges are required to express
most nontrivial properties. For example, during our
work [26] on the Production Cell [19], edges were re-
quired in 10 out of 14 properties that we formalized,
and in many of these, simulating edges by introducing
extra variables was not possible.

A restricted use of “next”, similar to ours, is also
advocated by Lamport in his Temporal Language
of Actions (TLA) [18], where “next” is replaced by
“primed variables”, e.g., a′ indicates the value of a

in the next state. However, this is not sufficient to
guarantee closure under stuttering and an additional
restriction is placed on the TLA formulas. This re-
striction is similar in form to the one imposed by The-
orem 1.

3SPIN has over 4000 installations world-wide.



7 Summary and Conclusion

The “next” operator in linear-time temporal logics
is required for reasoning about events. However, it
is seldom if ever used in practice because of a false
belief that it does not allow construction of formulas
that are closed under stuttering. Instead, people in-
troduce extra variables to simulate events. These vari-
ables clutter the model and make it harder to analyze.
Moreover, results of the verification with respect to
these properties often cannot be interpreted correctly
without complete understanding of the modeling lan-
guage and logic, leading to errors among novice and
even expert users.

In this paper, we have introduced the notion of
edges in the context of LTL, a concept that allows us
to easily express temporal properties involving events.
We have also provided a number of theorems that en-
able syntax-based analysis of a large class of formu-
las for closure under stuttering. These theorems can
be easily added to a theorem prover for mechanized
checking. In addition, we extended the patterns iden-
tified in [8] with event-based formulations, and proved
that the resulting formulas are closed under stuttering
using the theorems presented in this paper. Unfortu-
nately, unlike the “next”-free LTL, our language of
edges is not closed, i.e., it is possible to use this lan-
guage to state a property which is not closed under
stuttering. However, we feel that it can express and
enable analysis of the majority of formulas that are
encountered in practice. For example, we were eas-
ily able to check the formalization of properties of the
Production Cell System.

We hope that the work presented in this paper will
contribute to increasing the usability of formal meth-
ods, at least in the linear-temporal logic domain.
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