
1

 Process-Oriented Metrics for Software Architecture Adaptability

 Lawrence Chung Nary Subramanian
 Department of Computer Science Applied Technology Division
 University of Texas, Dallas Anritsu Company
 Richardson, TX Richardson, TX
 chung@utdallas.edu narayanan.subramanian@anritsu.com

Abstract

Adaptability is important to the survival and success of
just about any software system, especially due to the
rapid changes in technology, organizational structure,
human perception and needs. Measurement of the degree
to which a software system is adaptable to such changes
is often times of a critical concern to software
practitioners.

This paper proposes a framework, POMSAA (Process-
Oriented Metrics for Software Architecture Adaptability),
which aims to provide numeric scores representing the
adaptability of a software architecture as well as the
intuitions behind these scores. In this framework, the
intuitions behind the architectural adaptability scores are
traced back to the "whys" of the architecture, namely, the
requirements for which the architecture exists in the first
place. POMSAA achieves the needed tracing by adopting
the NFR Framework, which is a process-oriented
qualitative framework for representing and reasoning
about non-functional requirements (NFRs).

In this paper we show how POMSAA can be used to
calculate adaptability metrics for an architecture of a
software system, how it helps detect weaknesses and
strategic strengths in the architecture, how it helps to
understand the reasons for the weaknesses/strengths and
how to make improvements (that will help improve the
metrics), and how to recalculate the metrics for the new
architecture fast and intuitively. This paper also describes
how POMSAA was used in supporting the development of
an adaptable architecture for a real-system, a test and
measuring instrument used for testing cell phones.

1. Introduction

Adaptability is important to the survival and success of
just about any software system, especially due to the rapid
changes in technology, organizational structure, human
perception and needs [3,11,12,13,14]. Measurement of
the degree to which a software system is adaptable to such
changes will be useful to the software engineering
community.

Measurements of non-functional requirements (NFRs)
such as adaptability can occur at different phases in the

lifecycle of a software system. Thus there are several
metrics defined for such NFRs that take measurements on
the requirements for the software system [1,2], the
architecture of the software system [5], the source code of
the system [6], and metrics that take measurements during
the maintenance phase of the software system [6,7]. In
general, the earlier we are able to detect the metrics for
the software system under development, the better will be
control on the quality of the software developed.

In this paper a framework, called POMSAA (Process-
Oriented Metrics for Software Architecture Adaptability),
is proposed which aims to provide metrics for the
adaptability of a software architecture besides providing
the reasoning behind these metrics. This framework
justifies the metrics for adaptability of an architecture by
tracing them back to the requirements of the software
system for which the architecture was developed.
POMSAA achieves the needed tracing by adopting the
NFR Framework [8,9], which is a process-oriented
qualitative framework for representing and reasoning
about NFRs.

The NFR adaptability has been defined variously by
different sources [10,11,12,13]: in [10] adaptability has
been defined as the ease of system/component
modification, in [11] adaptability is defined as
modification of behavior in response to environment
changes, in [12] adaptability is defined as adjustment to
changing requirements while in [13] it is defined as easy
changeability of programs. Accommodating these
differing notions, we give a fairly general definition of
adaptability. The architectures that we have considered in
this paper are in the layered style. Also, we have assumed
that message passing is used to connect components and
this is indicated by a .

In this paper we show how POMSAA can be used
to

1. calculate adaptability metrics for an architecture
2. detect weaknesses/strategic strengths in the
 architecture and its reasons
3. how to improve adaptability metrics for the
 architecture by making modifications

This paper also describes how POMSAA was used in
supporting the development of an adaptable architecture
for a real-system, a Radio Communication Analyzer
(RCA), which is a test and measuring instrument used for
testing cell phones.

2

Section 2 defines adaptability, some of the important
concepts of the NFR Framework, and Vocabulary
Evolution System (VES), whose architecture this paper
develops (as a sub-system of RCA). Section 3 develops
the POMSAA framework for measuring adaptability with
examples of its application. Section 4 discusses the
implementation of the architectures in a real system, the
RCA, and the observations (including feedback) on using
POMSAA, Section 5 gives the conclusion, Appendices A
and B give the algorithms used to compute the metrics of
the various softgoals in the SIG, and Appendix C gives a
combined SIG for the two architectures considered in this
paper.

2. Definitions

2.1 Adaptability

Adaptation means change in the system to
accommodate change in its environment. More
specifically, adaptation of a software system (S) is caused
by change (δE) from an old environment (E) to a new
environment (E’), and results in a new system (S’) that
ideally meets the needs of its new environment (E’).
Formally, adaptation can be viewed as a function:

 Adaptation: E x E’ x S → S’, where meet(S’,
need(E’)).

 A system is adaptable if an adaptation function exists.
Adaptability then refers to the ability of the system to
make adaptation. Adaptation involves three tasks:

 1. ability to recognize δE (environment change
 detection)
 2. ability to determine the change δS to be made to the
 system S according to δE (system change
 recognition)
 3. ability to effect the change in order to generate the
 new system S’ (system change).

The meet function above involves the two tasks of
validation and verification, which confirm that the
changed system (S’) indeed meets the needs of the
changed environment (E’). The predicate meet is intended
to take the notion of goal satisficing of the NFR
Framework, which assumes that development decisions
usually contribute only partially (or against) a particular
goal, rarely “accomplishing” or “satisfying” goals in a
clear-cut sense. Consequently generated software is
expected to satisfy NFRs within acceptable limits, rather
than absolutely.

In the NFR Framework, the above three tasks for
adaptation become softgoals to be achieved by a design
for the software system. An adaptable component of a
software system should satisfice these softgoals for

adaptation. Figure 2 shows these softgoals for each
component of a Vocabulary Evolution System.

2.2 The NFR Framework

The NFR Framework [8,9] requires the following
interleaving tasks, which are iterative:

1. Develop the NFR goals and their decomposition
2. Develop architectural alternatives
3. Develop design tradeoffs and rationale
4. Develop goal criticalities
5. Evaluation and Selection

The graph that results from the application of steps 1, 3
and 4 above is called the Softgoal Interdependency Graph
(SIG). The SIG will be used to develop the metrics for
software architectures developed at step 2 above. The SIG
will also help us develop better architectures.

The NFR Framework uses the concept of satisficing.
There are different degrees of satisficing and the degrees
are indicated by color codes in this paper. The codes that
this paper will use are given in Table 1.

While the NFR Framework gives a qualitative
framework to compare architectures and choose the better
one, in this paper we will show the use of this qualitative
framework to develop quantitative numbers for the NFRs,
especially that of adaptability. In order to illustrate the
POMSAA concepts, we will be focusing our attention on
a particular type of software system - that of the VES
[14], a sub-system of RCA, a brief description of which is
given below.

2.3 Vocabulary Evolution System

The VES will operate in the environment shown in
Figure 1.

The
which
charact
be any
Purpos
etc. Th

 Strongly Positive Satisficing
 Positive Satisficing

 Negative Satisficing
 Strongly Negative Satisficing

 Vocabulary
 Evolution
 System

 Commands

m

 PC
 Responses

.

Figure 1: Vocabulary Evolution Syste
Table 1: Color Codes for Satisficing Degrees
 VES receives commands from an external source,
is usually a PC, in the form of strings of ASCII
ers. The link between the VES and the PC could
 physical medium such as Ethernet, General

e Interface Bus (GPIB), Radio Frequency (RF),
e VES parses the commands and processes them; if

3

a command requires a response, the VES sends the
responses to the PC over the link. The PC may change the
syntax/grammar of the commands it sends to the VES and
the VES is expected to adapt itself to this change of
environment. Several techniques for this adaptation are
discussed in [14]. Usually, VES is part of a much bigger
system. In this paper, we will consider VES as embedded
in the RCA. This will let us develop adaptability metrics
and validate them using the RCA.

2.3.1 Motivation for Using VES

VES is a real component of several systems used in the
telecommunication and data-acquisition industry [14,15].
One of the problems in an instrument like the RCA is the
evolution of the vocabulary used to communicate with the
instrument – this evolution may be due to the
development of a more advanced product in the same
family of products, a change in the standard used for the
syntax, such as SCPI [16], addition of new features to an
existing instrument and the like. In this paper we have

developed a better architecture for a VES system using
POMSAA. An example of vocabulary evolution is given
in Table 2 from the current CDMA system to the
advanced WCDMA system.

2.3.2 Scenarios for a VES System

Scenarios [4, 17] can be used to reason the suitability of
an architecture for a system. The scenarios applicable to a
V

4,-4
Adaptation[RCA]

4,-4

Syntactic
Adaptation
[RCA]

2,-2

Semantic
Adaptation
[RCA]

2,-2

Contextual
Adaptation
[RCA]

2,-2

Quality
Adaptation
[RCA]

E

4,-4

2,-2 4,-4

2,-2

2,-2

Exten
Synta
Adapt
[Pars

4,-4,-42,-2 !

Syntactic
Adaptation
[RCA,
VES]

Syntactic
Adaptation
[Receive Inputs]

Syntactic
Adaptation
[Parse Inputs]

Syntactic
Adaptation
[Ethernet]

Env.
Change
Detection
[Parser]

Syntactic
Adaptation
[GPIB Driver]

4,-4 4,-4! !
System
Change
Recognition
[Parser]

System
Change
[Parser]

2,-2 2,-2 2,-2

Env.
Change
Detection
[GPIB Driver]

System
Change
Recognition
[GPIB Driver]

System
Change
[GPIB Driver]

Syntactic
Adaptation
[GPIB]

Function CDMA System WCDMA System

1.Set
Address

ADDR 5 ADDR: ETHERNET 5
ADDR: GPIB 5

2.Display
Output

OUTPUT “OK” OUTPUT: LCD “OK”
OUTPUT: SPEAKER “OK”

3.Set Time TIME “12:00:00” TIME: MAINCPU “12:00:00”
TIME: SUBCPU “12:00:00”

Table 2: Example of Vocabulary Evolution.
ES are given in Table 3.
 Table 3. Some Scenarios for a VES
4,-4 4,-4
xtensibility[RCA] Speed[RCA]

2,-2

4,-4
sibility of
ctic
ation
er]

Speed of
Syntactic
Adaptation
[Parser]

4 !!

Syntactic
Adaptation
[Process
 Inputs]

4,-4
Size [RCA]

4,-4

Size for
Syntactic
Adaptation
[Parser]

!

2,-2

Implementability
[RCA]

2,-2

Implement-
ability
of
Syntactic
Adaptation
[Parser]

2,-2 2,-2 2,-2

Env.
Change
Detection
[Process
 Inputs]

System
Change
Recognition
[Process
 Inputs]

System
Change
[Process
 Inputs]

Scenario 1:
 PC : sends strings from CDMA System column of
 Table 2 to VES.
VES: accepts all legal strings belonging to CDMA
 System column received from PC.
 PC: starts sending strings from WCDMA
 System column of Table 2 to VES.
VES: accepts all legal strings belonging to WCDMA
 System column received from PC.

Scenario 2:
 PC: sends strings from one of the columns of Table 2
 to VES.
VES: accepts all legal strings belonging to one of the
 columns of Table 2.
 PC: sends a legal string belonging to another
 generation of vocabulary not in Table 2.
VES: rejects the string from PC declaring error.

.
Figure 2: SIG with NFR Decomposition for VES

4

3. POMSAA Metrics for Adaptability

3.1 The POMSAA Framework

The POMSAA Framework consists of six major
components: a set of softgoals for representing NFRs,
design components and claims, a set of contribution types
for relating softgoals to other softgoals, a set of methods
for refining softgoals into other softgoals, a set of
correlation rules for inferring potential interactions among
softgoals, a labeling procedure which determines the
degree to which a design component satisfices a softgoal,
and a set of metrification schemes to map labels to
numbers.

1. Softgoals can be of several types – the NFR softgoals
(depicted by a cloud), the design softgoal (depicted by a
dark cloud), and the claim softgoal (depicted by a dotted
cloud). The design softgoal represents a design
component, while a claim softgoal represents a claim (for
any item of the Framework).
2. Contribution types connect various softgoals – the links
may connect several softgoals to one softgoal in an AND-
decomposition (depicted by single arc) or in an OR-
decomposition (depicted by double arc).
3. Methods are ways to refine or decompose one softgoal
into offspring softgoals for purposes of clarity and
achievement of better designs.
4. Correlation rules help determine the interactions
between different NFRs for a design component.
5. Labels indicate the degree to which their associated
softgoal (or links) are satisficed – the various satisificing
degrees are mentioned in Table 1.
6. Metrification schemes map qualitative labels into
quantitative scores for a given architectural design. Labels
of NFR softgoals, design softgoals, claim softgoals and
links, in some combination (either only one of these, any
two of these, any three of these or all of these), may be
converted to numbers. There are several different
metrification schemes, including: 6a) Max and Min
Values: In this scheme the max and min values are
computed for the labels; 6b) Single Values: Here one
value is computed for the labels; 6c) Range of Values:
Here a range of values is computed for the labels. In this
paper, for the metrification scheme, we compute max and
min values for NFR softgoals only and also compute
single values for NFR softgoals only (in order to illustrate
the ideas). Once the metrics for labels are computed, either
an automatic algorithm or a semi-automatic algorithm is
used to propagate numbers up the SIG to the NFR whose
metric is to be computed.

The NFR softgoals that we consider in this paper are
adaptability related; the design softgoals that are
considered are also adaptability related. We need to
capture the knowledge of decomposition and satisficing in
the methods and the knowledge of correlations in the
correlation rules.

3.2 Application of the POMSAA Framework

As mentioned earlier, the NFR Framework requires
decompositions for the NFRs of interest. Figure 2 shows
the decomposition for the VES that will be used in this
paper. Adaptation of RCA can be along several
dimensions – syntactic, semantic, contextual or quality
adaptation. Each cloud is a softgoal in the NFR
Framework. Each softgoal has a name following the
convention

 Type[Topic1, Topic2, …],

where Type is a non-functional aspect (e.g., adaptability)
and Topic is a system to which the Type applies (e.g.,
VES), and the refinement can take place along the Type or
the Topic. Hence the original softgoal Adaptation[RCA] is
OR-decomposed (shown by the double arc) into the four
softgoals – Syntactic Adaptation[RCA], Semantic
Adaptation[RCA], Contextual Adaptation[RCA] and
Quality Adaptation[RCA]. Since we are interested in a
VES, which is syntactically adaptable, Syntactic
Adaptation is further refined into Syntactic
Adaptation[RCA, VES] which indicates that we are
interested in the VES sub-system of RCA. The syntactic
adaptation of VES can occur in one of three ways – due to
the input receiving component, the input parsing
component or the input processing component. This
translates into an OR-decomposition of the softgoal
Syntactic Adaptation[RCA, VES] into the three softgoals
Syntactic Adaptation[Receive Inputs], Syntactic
Adaptation[Parse Inputs] and Syntactic
Adaptation[Process Inputs]. The inputs may be received
over ethernet or GPIB and so the softgoal Syntactic
Adaptation[Receive Inputs] is OR-decomposed into
Syntactic Adaptation[Ethernet] and Syntactic
Adaptation[GPIB]. Since we assume that RCA
communicates with PC using GPIB, the softgoal Syntactic
Adaptation[GPIB] is further refined into Syntactic
Adaptation[GPIB Driver], since the adaptation of the input
port GPIB depends on the adaptation of its driver. Finally
the definition of adaptation from Section 2.1 is applied to
get the three adaptation characteristics as leaf softgoals for
the GPIB Driver, viz., Environment Change
Detection[GPIB Driver], System Change
Recognition[GPIB Driver] and System Change[GPIB
Driver] (in Figure 2, “Env.” has been used instead of
“Environment”), and since the GPIB Driver has to satisfy
all these tasks in order to be adaptable, it is AND-
decomposed (indicated by the single arc) into these three
sub-softgoals.

Likewise, the softgoal Syntactic Adaptation[Parse
Inputs] is further refined into the three adaptation
softgoals applied to the parser; in addition it has softgoals
derived from a combination of two NFRs-the
extensibility, speed, size and the implementability of the
parser. However, since the softgoal Syntactic
Adaptation[Parse Inputs] requires all its subgoals to be

5

adaptable in order for itself to be adaptable and since the
parsing is done by a parser, it is AND-decomposed
(indicated by the single arc) into the five sub-softgoals of
Env. Change Detection[Parser], System Change
Recognition[Parser], System Change[Parser], Extensibility
of Syntactic Adaptation[Parser], Speed of Syntactic
Adaptation[Parser], Size for Syntactic Adaptation[Parser]
and the Implementability of Syntactic Adaptation[Parser].
Lastly the softgoal Syntactic Adaptation[Process Inputs] is
decomposed along the three components of adaptation,
like for the GPIB Driver.

In Figure 2 we also show additional symbols such as ‘!’
– these are used to indicate the priority of the softgoals.
Since we are considering the VES part of the RCA, the
critical softgoals are those related to parsing and
adaptation, which are all marked with ‘!’. However,
implementability of the parser is not considered a priority
item, as the parser by itself is not a complex software item
to implement – though some parsers are more easily
implemented than others. Severely critical softgoals are
marked with ‘!!’.

The values for metrics that we will be coming up with
will be just one of the many possible schemes for
translating from SIG to numbers. What is unique to
POMSAA is the justification for the numbers and the
ability to change the design to come up with better design
and hence corresponding numbers. POMSAA lets users
trace metrics to requirements and develop different
architectures to better suit the requirements; else refine
requirements to clarify anything unclear. This also permits
historical record-keeping for later reference. The particular
number scheme that we will be using in this paper is given
in Table 4.

Figure 2 also gives the maximum and minimum values
(the numbers inside the clouds) for the metrics of different
softgoals based on the values in Table 4. The

procedure for calculating the maximum and minimum
values is given in Appendix B, which is an interactive
algorithm. This algorithm and the one in Appendix A
(which is also interactive) are just two of the numerous
schemes (either algorithms or semi-automatic procedures)
possible for propagating numbers up the SIG hierarchy.
There could be chains of arguments (claims) and
computation of the metrics for contribution links (from left
to right or from right to left) will work similarly to the
bottom-up propagation followed by the algorithms in the
Appendices.

3.3 Calculating Metrics for an Architecture

In this section we will illustrate the use of POMSAA to
calculate the metrics for an architecture. The architecture
is for the VES part of the RCA. The only RCA component
used is the LCD Display, which throws up the input
command string on the LCD. The architecture A1
considered is given in Figure 3.

GPIB Device Driver

Command Processor

Output ManagerParser

LCD Display Controller

Buffer Controller

GPIB Interrupt Handler

Transmit String Receive String

Syntax Checker

Input String Parser Set GPIB Registers

String Formatter

Pre-Processor

Actual Processor

Post Processor

.

 Strongly Positive Satisficing +2
 Positive Satisficing +1
 Neutral 0
 Negative Satisficing -1
 Strongly Negative Satisficing -2

Table 4: Numerical Values for Satisficing Degrees.
Figure 3: A Candidate Architecture (A1) for VES
In architecture A1, the LCD Display Controller
component controls the displays on the LCD of the RCA.
The Command Processor component processes the
commands and its sub-components are the Pre-Processor,
Actual Processor and the Post Processor. The Pre-
Processor component takes any action prior (such as
current state checking) to the actual processing by the
Actual Processor component, while the Post Processor
takes actions after the processing (such as performing
dependent actions). The Parser Component consists of the
Syntax Checker (to check for illegal characters) and the
actual parser – the Input String Parser. The Output
Manager is used for sending responses to the external PC
and consists of two components – Set GPIB Registers,
which sets the registers of the GPIB, and the String
Formatter, which formats the strings so that it is suitable
for output as per the GPIB standard. The GPIB Device
Driver contains the components of Transmit String (which
sends the string received from the PC to the Parser),
Receive String (which receives the strings from the Output
Manager), the Buffer Controller (which controls the input
and output buffers) and the Interrupt Handler.

The metrics that the POMSAA calculates for the
various NFRs for the architecture A1 are given in Figure
4. In this figure, it should be observed that those softgoals

to which no line is con
dissatisfied (i.e., the arch
those softgoals).
 Another point to be ob
that architectural compo
indicated by the dar
softgoals are decompos
decomposition of the N
architecture A1 (Figure 3
LCD Display Controlle
Output Manager and the
components are included
a softgoal and are con
softgoal by AND-decom
arc). The softgoal name
AND-decomposed into
Actual Processor and
design softgoals have b
architecture A1.

 The justification for
Parser softgoal and the
the claims softgoals, show

-4
Adaptation[RCA]

-4

Syntactic
Adaptation
[RCA]

0

Semantic
Adaptation
[RCA]

0

Contextual
Adaptation
[RCA]

0

Quality
Adaptation
[RCA]

4 -4
Extensibility[RCA] Speed[RCA]

-4

0
0

-4

0

0
-4

Extensibility
of
Syntactic
Adaptation
[Parser]

Speed of
Syntactic
Adaptation
[Parser]

4
-40

!
!

!

Syntactic
Adaptation
[RCA,
VES]

Syntactic
Adaptation
[Receive Inputs]

Syntactic
Adaptation
[Parse Inputs]

Syntactic
Adaptation
[Process
 Inputs]

Syntactic
Adaptation
[Ethernet]

Env.
Change
Detection
[Parser]

Syntactic
Adaptation
[GPIB Driver]

4
Size [RCA]

4

Size for
Syntactic
Adaptation
[Parser]

!

4

Implementability
[RCA]

2

Implement-
ability
of
Syntactic
Adaptation
[Parser]

-4 -4! !

System
Change
Recognition
[Parser]

System
Change
[Parser]

0

0

0

Env.
Change
Detection
[Process
 Inputs] System

Change
Recognition
[Process
 Inputs]

System
Change
[Process
 Inputs]

0 0 0

Env.
Change
Detection
[GPIB Driver]

System
Change
Recognition
[GPIB
Driver]

System
Change
[GPIB
 Driver]

Syntactic
Adaptation
[GPIB]

Architecture
A1

GPIB
Device
Driver

 Parser
Output

Manager Command
Processor

LCD
Display

Controller

Pre
Processor

Actual
Processor

Post
Processor

Set GPIB
Registers String

Formatter

 Syntax
Checker Input

String
Parser

 Transmit
String

 Rcv.
String

Buffer
Controller

 Interrupt
Handler

*1 *2
*4 *5*3

.
Figure 4: SIG with POMSAA Metrics for Architecture A1
6

nected are neither satisficed nor
itecture is neutral with respect to

served in the SIG of Figure 4 is
nents (or design softgoals) are

k-bordered clouds. The design
ed in a manner similar to the
FR softgoals (Section 3.2). The
) has five basic components – the
r, Command Processor, Parser,
 GPIB Device Driver. All these
 in A1 and hence they each form
nected to the Architecture A1
position (indicated by the single
d Command Processor is further

the softgoals Post Processor,
Pre-Processor. Likewise other

een AND-decomposed based on

 the colors for the lines from the
Input String softgoal is given by

n in Figure 4 by dotted clouds,

and the claims they represent (some of which result from
reasoning about scenarios given in Table 3) are given in
Table 5. The algorithm for computing the metrics is given
in Appendix A and uses values from Table 4. The curly
double headed arrow in Figure 4 connecting the design
softgoal “Architecture A1” to the NFR softgoal
“Syntactic Adaptation [RCA,VES]” indicates that
architecture A1 is designed to satisfice the NFR softgoal
Syntactic Adaptation[RCA,VES].

3.4 Using POMSAA to Improve Metrics

From Figure 4, it can be seen that Syntactic Adaptation
[RCA,VES] has a metric of –4, which is the minimum
score that Syntactic Adaptation can get (from Figure 2).
We now illustrate how POMSAA fulfills some of the
claims made earlier.

1. Detect Architectural Weaknesses:
It is easy to see that the main cause for this low value of
metric for Syntactic Adaptation is the weak satisficing of

7

the high priority softgoals by the parser component of
architecture A1.

2. Understand reasons for the weaknesses:
 The reason for the weaknesses, in the example, is that
the Input String Parser component does not have the
intelligence to detect environment change, recognise need
for system change, and perform system change, and the
Parser component as a whole is slow to adapt.

3. How to change architecture to increase its adaptability:
 One one of the ways in which to improve the metric will
be using a parser component that is capable of strongly
satisficing some of the high priority softgoals. We would
like to have a parser that strongly satisfices all

the softgoals; however, as we know from software
engineering, such a parser does not exist. We will
therefore develop a parser that satisfices all the high
priority softgoals; however, the price that will be paid is
that not all softgoals will be satisficed strongly. Some will
be satisficing positively; while some, strongly. The
architecture A2 that we develop based on the feedback
from Figure 4 is shown in Figure 5.

In Figure 5, the Parser component is enhanced with two
new components – the Parser Selector and N parsers for
different generations of vocabulary. The Parser Selector is
further composed of two components – the Vocabulary
Generation Detector (detects the generation of vocabulary
of the received string) and a component to decide the
parser for that generation of vocabulary (called Select
Parser for the Generation of Vocabulary). If the input
command string belongs to one of the N generations
(corresponding to the N parsers) of vocabulary that the
VES can handle, then it can parse that input string and
process it.

The SIG for this architecture A2 is given in Figure 6. In
this figure, some of the design components of architecture
A2 (the dark clouds) have not been shown due to lack of
space and they are same as in Figure 4. The design
softgoals have been decomposed in the same manner as
for Figure 4. The algorithm for propagating values up the
SIG is given in Appendix A. In Figure 6, the dotted clouds
are claims for the color of the lines they point to. The

claims are given in Table 6 (some of these claims result
from reasoning about scenarios in Table 3). As can be
seen from Figure 6, the NFR Syntactic
Adaptation[RCA,VES] now has a value of +2, which is an
improvement from the previous architecture.

In order to better understand the differences between
the two architectures, the relevant information from
Figures 4 and 6 have been put in one figure, Figure C1 of
Appendix C. In that figure, all the unshaded clouds refer to
softgoals of Figure 4, while the shaded clouds refer to
softgoals of Figure 6.

4. Initial Experience with POMSAA Metrics

POMSAA has been used in developing the next version
of the RCA, which is a test and measuring instrument used
for testing cell phones of several current and future cell
phone standards. As a ground-breaking step, we used the
POMSA to implement a better VES for the RCA.

The architectures A1 and A2 were both implemented –
one in the current system and one in the evolved system.
The link between the PC and the VES was the GPIB. The
VES sent the correct commands to the LCD Display of the
RCA; for incorrect commands it displayed an error on the
LCD Display. For each implementation, some important
parameters were measured.

GPIB Device Driver

Parser

 Parser
 Selector

Gen1
Parser

Gen2
Parser

Gen N
Parser

LCD Display Controller

Select Parser for the
Generation of Vocabulary

Vocabulary Generation
Detector

Command Processor

Output
 Manager

 Buffer Controller

 GPIB Interrupt Handler

Transmit String Receive String

 Set GPIB
 Registers

 String
 Formatter

 Pre-Processor

 Processor

 Post Processor

 Syntax Checker

…

*1: No adaptation ability exists; hence no ability to detect
 environment change, recognize need for system change or
 make the system change exists.
*2: This parser has unlimited extensibility; for each generation
 of vocabulary a new parser is built and used.
*3: Since no syntactic adaptation exists, for any evolution in
 vocabulary the new parser should be built and reloaded into
 the system; this takes a long time – in the order of minutes
 (this was measured during implementation – Section 4.1).
*4: Parsers that are changed for any change of vocabulary are
 optimized for that generation of vocabulary and are usually
 small in size (about 10000 bytes – discussed in Section 4.1).
 *5: Such parsers have little complexity as knowledge of only
 one vocabulary generation is required.

.

Figure 5: Improved Architecture (A2) for VES.
Table 5: Claims for SIG of Figure 4

2
Adaptation[RCA]

2

Syntactic
Adaptation
[RCA]

0

Semantic
Adaptation
[RCA]

0

Contextual
Adaptation
[RCA]

0

Quality
Adaptation
[RCA]

2 4

Extensibility[RCA] Speed[RCA]

2

0
0

2

0

0
4

Extensibility of
Syntactic
Adaptation
[Parser]

Speed of
Syntactic
Adaptation
[Parser]

220
!

!
!

Syntactic
Adaptation
[RCA,
VES]

Syntactic
Adaptation
[Receive Inputs]

Syntactic
Adaptation
[Parse Inputs]

Syntactic
Adaptation
[Process
 Inputs]

Syntactic
Adaptation
[Ethernet]

Env.
Change
Detection
[Parser]

Syntactic
Adaptation
[GPIB Driver]

2

Size [RCA]

2

Size for
Syntactic
Adaptation
[Parser]

!

1

Implementability
[RCA]

1

Implement-
ability
of
Syntactic
Adaptation
[Parser]

2 4!
!

System
Change
Recognition
[Parser]

System
Change
[Parser]

0

0

0

Env.
Change
Detection
[Process
 Inputs] System

Change
Recognition
[Process
 Inputs]

System
Change
[Process
 Inputs]

0

0
0

Env.
Change
Detection
[GPIB Driver]

System
Change
Recognition
[GPIB Driver]

System
Change
[GPIB
 Driver]

Syntactic
Adaptation
[GPIB]

Architecture
A2

GPIB
Device
Driver

Vocabulary
Generation
Detector

Output
Manager

Command
Processor

*1

*2

*3

*5

*4

Select Parser
for the Gen.

of Vocabulary

Gen1
Parser

Gen N
Parser

 Parser

...
LCD

Display
Controller

Parser
Selector

4.1 Implementation of Arc

For architecture A1, a par
generation of commands w
change of the generation, the p
new code re-compiled and loa
RCA had to be re-started. Th
to the new generation. Some o
were: parser size 10000 bytes
(the size of the system was ab
adaptation was in the order of
characteristics were exhibited.

4.2 Implementation of Arc

Here N was fixed to 2. T
generations was the presence
generations of commands, as
detector used the colon to dec
to use. Some of the measurem
two parsers 20000 bytes (appro
Figure 6: SIG with POMSAA Metrics for Architecture A2.
8

hitecture A1

ser that can parse a given
as implemented. For any
arser had to be changed, the
ded into the RCA, and the

e RCA was then responsive
f the measurements we took
 for a 750 string vocabulary
out 750000 bytes), time for
 minutes, and no adaptation

hitecture A2

he difference between the
of a colon ‘:’ in one of the
in Table 2. The generation

ide which of the two parsers
ents were: total size of the
x.) for 750 string

vocabulary each, time for adaptation was about 100 ms,
and if the input string belonged to one of the available
generations it was parsed correctly (provided the string
was legal in that generation).

4.3 Observations

The project in which one of the authors was involved,
had to do with the development of an evolved syntax for
an advanced member of a product family. The newer
product supported the latest 3G cell-phone standard. That
author was also the main engineer for developing the VES
for the advanced product. The project lasted 3 months, and
included 4 people, of which the author was one. In the
experience of that author, POMSAA will be extremely
useful to develop newer designs for a system. Also from
the feedback that was received from the colleagues of one
of the authors, POMSAA promises to be an effective
framework to determine systems’ adaptability. One of the

observations that was made was that detection of system
change is perhaps one of the hardest tasks for any software
system – POMSAA makes this process easier by

provid
letting
Anoth
Gauss
POMS
includ

5. Co

In
framew
adapta
attribu
help o
main a

1. intu
2. trac
3. calc
4. abil
 stre
5. abil
 com
6. hist

In
vocabu
decom
analyz
archite
for th
degree
indeed
real s

were able to confirm that the resulting system indeed met
the requirements. We received positive feedback on the
utility of this framework and the variety of metrification
schemes (that could be automatic algorithms or semi-
automatic procedures) that were possible including the use

*1: Li
 po
 be
*2: Li
 ca
 an
*3: Li
 vo
 the
 ge
*4: Si
 the
 ge
 *5: Im
 pr
 pa
 ge
Table 6: Claims for SIG of Figure 6.
9

ing a historical record of design decisions and
 the designer make appropriate system changes.
er feedback that we received was the usage of
ian distribution as a metrification scheme –
AA permits use of any metrification scheme
ing statistical ones.

nclusion

this paper we have introduced a process-oriented
ork, POMSAA, for calculating the metrics for

bility. Adaptability is emerging as an important
te for software systems and its numerical value will
rganizations keep track of this NFR’s content. The
dvantages of POMSAA are:

itive calculation of metrics
eability of metrics to requirements
ulation of metrics at the architectural level
ity to analyze reasons for weaknesses/strategic
ngths in the metrics
ity to visualize the effect of architectural
ponent changes on the metrics

orical record keeping for later reference

this paper we developed an architecture for a
lary evolution system, computed its metric for a
position of adaptation using the NFR Framework,
ed reasons for its low metric value, improved its
cture based on this analysis, computed the metrics

is improved architecture and verified to a certain
 that the metrics for the improved architecture is
 better. We also implemented the architectures in a
ystem, the Radio Communication Analyzer, and

of different distribution curves.
 Furthermore, we considered, for brevity, application of
POMSAA on the components of an architecture only.
However, POMSAA applies equally well to other
constituents of an architecture such as connections,
constraints, etc.

There is a lot of work still to be done – the extension of
POMSAA technique to other NFRs, using customer
feedback to improve the quality of architectures for better
metrics, guidelines for developing metrics for design
softgoals, and applying POMSAA to other software
systems. Although much work still remains to be done, it
is our opinion that our preliminary studies show that the
POMSAA framework will be of much help to software
development organizations in practice.

Acknowledgements

The authors wish to thank Mr. John Freasier, Project
Leader, Anritsu Company, for reviewing the paper and
providing insightful suggestions. We also wish to thank
the anonymous referees of Requirements Engineering
Symposium, 2001, who reviewed the original version of
this paper and gave detailed comments.

References

[1] L. Rosenberg, T. Hammer, J. Shaw, “Software Metrics and
Reliability”, 9th International Symposium on Software Reliability,
Germany, Nov. 1998.

[2] L. Rosenberg, T. F. Hammer, L. L. Huffman, “Requirements,
Testing, and Metrics”, 15th Annual Pacific Northwest Software
Quality Conference, Utah, Oct., 1998.

[3] G. Koutsoukos, J. Gouveia, L. Andrade, J. L. Fiadeiro,
“Managing Evolution in Telecommunication Systems”, from the
web-site of Dr. J.L.Fiadeiro.

[4] J. Ryser, M. Glinz, “A Practical Approach to Validating and
Testing Software Systems Using Scenarios”, QWE ’99, 3rd

International Software Quality Week Europe, Brussels, Nov.
1999.

[5] J. C. Duenas, W. L. de Oliveira, J. A. de la Puente, “A
Software Architecture Evaluation Model”, Lecture Notes in
Computer Science (1429), “Development and Evolution of
Software Architectures for Product Families”, Proceedings of
Second International ESPIRIT ARES Workshop, Las Palmas de
Gran Canaria, Spain, Fee., 1998, pp. 148 – 157.

[6] N. E. Fenton, “Software Metrics – A Rigorous Approach”,
Chapman & Hall, London, 1991.

mited environment change recognition is
ssible; can automatically detect differences
tween N generations of vocabulary.
mited system change recognition is possible;
n detect which of the available parsers to use
d this recognition can be done automatically.
mited extensibility is possible; the evolution of
cabulary is possible to the extent that parsers for
 evolved vocabulary are available (upto N

nerations of vocabulary evolution are possible).
ze of the parser component will be more than
 previous case as different parsers for different

nerations of vocabulary will have to be present.
plementability is slightly more difficult than the

evious case, as the knowledge of the different
rsers will have to be tied to the different
nerations of vocabulary.

10

[7] T. Gilb, “Principles of Software Engineering Management”,
Addison Wesley, England, 1988.

[8] L. Chung, B. A. Nixon, E. Yu, and J. Mylopoulos, “Non-
Functional Requirements in Software Engineering”, Kluwer
Academic Publishers, Boston, 2000.

[9] J. Mylopoulos, L. Chung, S. S. Y. Liao, H. Wang and E. Yu,
“Exploring Alternatives During Requirements Analysis”, IEEE
Software, January/February 2001, pp. 1- 6.

[10] IEEE Std 610.12-1990, IEEE Standard Glossary of Software
Engineering Terminology.

[11] P. Oreizy, M. M. Gorlick, R. N. Taylor, D.Heimbigner, G.
Johnson, N. Medvidovic, A. Quilici, D. S. Rosenblum and A. L.
Wolf, “An Architecture-Based Approach to Self-Adaptive
Software”, IEEE Intelligent Systems, May/June 1999, pp. 54 –
62.

[12] Report on Adaptability in Object-Oriented Software
Development Workshop, July 8, 1996, 10th European
Conference on Object Oriented Programming, July 8-12, 1996,
Linz, Austria.

[13] Report on the Workshop on Adaptable & Adaptive
Software, 10th Annual Conference on Object-Oriented
Programming Systems, Languages, and Applications, Oct., 1995,
Austin, Texas.

[14] N. Subramanian and L. Chung, “Architecture-Driven
Embedded Systems Adaptation for Supporting Vocabulary
Evolution”, Proc. ISPSE 2000, IEEE Computer Society,
November, 2000, Kanazawa, Japan.

[15] S. Zanetti, “Using Software to Manage Your Networked
Measurements”, AutomationView, Vol. 5, No. 4, Fourth Quarter
2000, pp. 1-5.

[16] Standard Commands for Programmable Instruments
(SCPI), Version 1999, May 1999.

[17] A. Anton, M. McCracken and C. Potts, “Scenarios and
Goals in Business Process Reengineering”, 6th Conference on
Advanced Information Systems Engineering, Utrecht,
Netherlands, May, 1994.

Appendix A: Algorithm Used for the
Propagation of Metrics Up a SIG

Let Mn denote the metric of softgoal n.

For each leaf softgoal n in the SIG:
1. Mn = 0, if there is no line connected to it.
2. if one colored line is connected to n, then
 Mn = +2, for green line,
 Mn = +1, for blue line,
 Mn = -1, for orange line,
 Mn = -2, for red line.
3. if more than one colored line is connected n, then
 Mn = minimum value of all lines connected to it.
4. if n is critical (marked with ‘!’), then

 Mn = Mn * 2

5. if n is severely critical (marked with ‘!!’),
 Mn = Mn * 4

End For;

For each parent softgoal p in the SIG:
1. if p has only one child n, then
 Mp = Mn
2. if p has several children n1,…,nk, and
 Mn1 = Mn2 = … = Mnk = 0, then Mp = 0.
3. if p has several children n1,…,nk, and
not all Mni (k ≥ i ≥1) = 0, and the children are
connected by AND, and all children are of same
criticality, then Mp = min (Mj1,…,Mjq) such that
k ≥ j1,…,jq ≥1 and Mjr ≠ 0 for all r, q≥r≥1.
4. if p has several children n1,…,nk, and not all Mni

(k ≥ i ≥1) = 0, and the children are connected by OR, and
all children are of same criticality, then Mp =
max(Mj1,…,Mjq) such that k ≥ j1,…,jq ≥1 and Mjr ≠ 0 for
all r, q≥r≥1.
5. if p has several children n1,…,nk, and not all Mni

(k ≥ i ≥1) = 0, and all children are not of same
criticality, then
a. if the highest level of criticality in all children
 is ‘!’, then for each non-critical child softgoal x,
 compute, M’x = Mx * 2, and for each critical child
 softgoal y, M’y = My.
b. if the highest level of criticality in all children is
 ‘!!’, then for each non-critical child softgoal x, compute,
 M’x = Mx * 4, and for each critical child softgoal
 y (marked with ‘!’), M’y = My * 2, and for each
 severely critical child softgoal z (marked with ‘!!’),
 M’z = Mz.
c. Apply step 3 or 4 using the above M’ values
 instead of the M values.
End For;

Appendix B: Algorithm Used for Calculating
the Max and Min Value of Metrics in a SIG

Let MAX(n) and MIN(n) denote max and min values of
softgoal n.

For each leaf softgoal n in the SIG:
1. if n is non-critical, MAX(n) = 2, MIN(n) = -2.
2. if n is critical, MAX(n) = 4, MIN(n) = -4.
3. if n is severely critical, MAX(n) = 8, MIN(n) = -8.
End For;

For each parent softgoal p in the SIG:
1. if p has only one child n, then
 MAX(p) = MAX(n), MIN(p) = MIN(n).
2. if p has several children n1,…,nk, connected by
AND, and all children are of same criticality, then
MAX(p) = MAX(n1), MIN(p) = MIN(n1).
3. if p has several children n1,…,nk, connected by
OR, and all children are of same criticality, then
MAX(p) = max(MAX(n1),…,MAX(nk)),

MIN(p) = min(MIN(n1),…,MIN(nk)).
4. if p has several children n1,…,nk, and not all are of
same criticality,
a. if the highest criticality is ‘!’, then for
 each non-critical child softgoal x,
 MAX’(x) = MAX(x) * 2, and MIN’(x) = MIN(x) * 2,
 and for each critical child softgoal y (marked with ‘!’),
 MAX’(y) = MAX(y), MIN’(y) = MIN(y).
b. if the highest criticality is ‘!!’, then for each non-critical
 child softgoal x, MAX’(x) = MAX(x)*4, MIN’(x) =
 MIN(x)*4, for each critical child softgoal y (marked
 with ‘!’), MAX’(y) = MAX(y)*2, and MIN’(y) =
 MIN(y)*2 and for each severely critical child softgoal z
 (marked with ‘!!’), MAX’(z) = MAX(z) and
 MIN’(z) = MIN(z).
c. Apply step 2 or 3 using MAX’ and MIN’ values instead
 of the MAX and MIN values.
End For;

Appendix C: Combined SIG

Figure 4 and Figure 6 have been combined into one Figure
C1. In Figure C1, the shaded clouds refer to softgoals of
Figure 6 (Architecture A2), while unshaded clouds refer to
softgoals of Figure 4 (Architecture A1). Only the relevant
architectural components have been shown.

-4
Adaptation[RCA]

-4

Syntactic
Adaptation
[RCA]

0

Semantic
Adaptation
[RCA]

0

Contextual
Adaptation
[RCA]

0

Quality
Adaptation
[RCA]

4 -4
Extensibility[RCA] Speed[RCA]

-4

0
0

-4

0

0
-4

Extensibility
of
Syntactic
Adaptation
[Parser]

Speed of
Syntactic
Adaptation
[Parser]

4
-40

!
!

!

Syntactic
Adaptation
[RCA,
VES]

Syntactic
Adaptation
[Receive Inputs]

Syntactic
Adaptation
[Parse Inputs]

Syntactic
Adaptation
[Process
 Inputs]

Syntactic
Adaptation
[Ethernet]

Env.
Change
Detection
[Parser]

Syntactic
Adaptation
[GPIB Driver]

4
Size [RCA]

4

Size for
Syntactic
Adaptation
[Parser]

!

4

Implementability
[RCA]

2

Implement-
ability
of
Syntactic
Adaptation
[Parser]

-4 -4! !

System
Change
Recognition
[Parser]

System
Change
[Parser]

0

0

0

Env.
Change
Detection
[Process
 Inputs] System

Change
Recognition
[Process
 Inputs]

System
Change
[Process
 Inputs]

0 0 0

Env.
Change
Detection
[GPIB Driver]

System
Change
Recognition
[GPIB
Driver]

System
Change
[GPIB
 Driver]

Syntactic
Adaptation
[GPIB]

Architecture
A1

GPIB
Device
Driver

 Parser
Output

Manager

Command
Processor

LCD
Display

Controller

 Syntax
Checker

 Input
String
Parser

Vocabulary
Generation
Detector Select Parser

for the Gen.
of Vocabulary

Gen1
Parser

Gen N
Parser

 Parser

Parser
Selector

2 2 4 2 4 2 1

2

2

2

2 2 4 2 1

Component
of Architecture A2

Complete Architecture
Not Shown (can be
seen in Figure 4).
Figure C1: SIG with POMSAA Metrics for Architectures A1 & A2.
11

	Process-Oriented Metrics for Software Architecture Adaptability
	Abstract
	1. Introduction
	2. Definitions
	2.1 Adaptability
	2.2 The NFR Framework
	2.3 Vocabulary Evolution System
	2.3.1 Motivation for Using VES
	2.3.2 Scenarios for a VES System

	3. POMSAA Metrics for Adaptability
	3.1 The POMSAA Framework
	3.2 Application of the POMSAA Framework
	3.3 Calculating Metrics for an Architecture
	3.4 Using POMSAA to Improve Metrics
	
	1. Detect Architectural Weaknesses:
	2. Understand reasons for the weaknesses:
	3. How to change architecture to increase its adaptability:

	4. Initial Experience with POMSAA Metrics
	4.1 Implementation of Architecture A1
	4.2 Implementation of Architecture A2
	4.3 Observations

	5. Conclusion
	Acknowledgements
	References
	Appendix A: Algorithm Used for the Propagation of Metrics Up a SIG
	Appendix B: Algorithm Used for Calculating the Max and Min Value of Metrics in a SIG
	Appendix C: Combined SIG

