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ADC-based CDRs take digital samples of the received signal to recover the clock
and data. Digital representation of the signal allows for extensive channel equal-
ization in the digital domain. Recently-reported ADC-based CDRs sample the sig-
nal at 1× or 2× the baud rate. The 1× CDR aligns the sampling clock with the sig-
nal using a phase-tracking feedback loop [1-2], which requires a voltage-con-
trolled oscillator or phase interpolator, both analog circuits, to adjust the phase
of the sampling clock. To eliminate these analog circuits (and their phase con-
trol) in favor of an all-digital implementation, a blind-sampling ADC-based CDR
(top of Fig. 8.6.1) samples the received signal at 2× without phase locking to the
signal. The CDR then interpolates between the blind samples to obtain a new set
of samples in order to recover the phase and data [3-4]. The doubling of the
sampling rate, however, increases the ADC power consumption or, equivalently,
reduces the maximum baud rate due to the conversion-rate limitations of ADCs.

This paper presents a new fractional-sampling-rate (FSR) CDR architecture,
shown in Fig. 8.6.1, that samples the received signal blindly at a fractional rate
of 1.45×, hence reducing the ADC power per Gb/s of data rate by 27.3% com-
pared to the 2× architecture. This architecture uses a digital phase detector (PD)
that estimates the data phase directly from the blind digital samples, thus elim-
inating the need for interpolation. This PD enables data recovery in a feed-for-
ward path, further simplifying the CDR architecture. Measurements of a test-chip
fabricated in 65nm CMOS confirm that the FSR CDR successfully recovers data
with BER<10-13 at 6.875Gb/s from samples taken at 10GS/s.

A block-diagram of the CDR architecture is shown in Fig. 8.6.2. We blindly sam-
ple a 6.875Gb/s signal with four time-interleaved 2.5GS/s 5-bit flash ADCs for a
total sampling rate of 10GS/s, corresponding to 1.45 samples per unit interval
(UI). This sampling rate makes the sampling interval (SI) equal to 11/16 UIs,
which causes the sampling instances to span the full duration of a UI. A 4:16
DeMUX then feeds 16 samples at a time, corresponding to 11 UIs, to the digital
CDR. The PD estimates the instantaneous zero-crossing phase, φX[1:16], for
every UI, using a scheme we describe later. We use φX to recover the average
zero-crossing phase, φAVG, in two steps. First, the phase subtractor generates the
phase error, φERR, with a modulo-subtraction of φAVG from φX, bounding φERR

within [-0.5; 0.5) UI. Then, φERR is fed into a third-order low-pass filter to recov-
er φAVG. The filter consists of three discrete-time integrators with programmable
gains, K1, K2, and K3, that control the CDR’s jitter-tracking bandwidth. The data
decision block picks one sliced sample per UI as the recovered data by compar-
ing φX[n] and φAVG, and marks duplicate samples, present in some UIs due to the
FSR, as invalid samples. We remove these invalid samples from the data-deci-
sion vector, Ŝ[1:16], with a vector compactor (described later), which outputs 11
data bits, D[1:11]. For measurement purposes, we retime the recovered data
from the blind-sampling clock domain to the baud-rate clock domain, fB/16,
using a FIFO. 

The PD, shown in Fig. 8.6.3, consists of an average-transition-slope calculator
and a data-phase calculator. From the 16 samples at its input, the PD linearly
estimates φX for every pair of adjacent samples with opposite polarities. This lin-
ear phase estimation proves sufficient when there is enough ISI in the channel.
Otherwise, an anti-aliasing filter needs to precede the sampling ADC. The PD
uses the transition slope between the samples to estimate the phase. As shown
in Fig. 8.6.3, due to the FSR some slopes lead to small errors in φX, while others
lead to larger errors. To calculate a running average of slopes, we select only
those slopes that lead to low φX error. When two transitions occur around one
sample (top waveform in Fig. 8.6.3) only the transition with the higher slope con-
tributes to the average (S[n] to S[n+1]). When such comparison is impossible
(bottom waveform in Fig. 8.6.3), a slope contributes to the average only if both
its samples exceed a threshold level, VTH, that is extracted from sample magni-
tudes. Since the time between adjacent samples is constant, finding the slope
simplifies to a sum of sample magnitudes; the slope calculator thus outputs
(|S[n]|+|S[n+1]|)AVG. The phase calculator, shown in Fig. 8.6.3, estimates the
zero-crossing time, φZC[n] (in units of SI), as the ratio |S[n]|/(|S[n]|+|S[n+1]|).
To maintain low circuit complexity, the accuracy of φZC[n] is limited to 2 bits. For
transitions with low-error slopes, we use an instantaneous sum in the 2-bit

φZC[n] calculation, while for transitions with high-error slopes we use the aver-
age sum. We then convert φZC[n] from SI to UI using φX[n]=TS[n]+SI·φZC[n],
where TS[n] is the time stamp – the sample’s position in UI. Our choice of sam-
pling rate causes TS[n] to repeat every 16 samples. Since φZC[n] is only 2-bit
accurate, we convert φZC[n] to φX[n] using a selector with constant inputs, as
shown in Fig. 8.6.3.

The data decision block, shown in Fig. 8.6.2, picks one sliced sample per UI by
comparing φX[n], φAVG, and TS[n]. This block also marks the duplicate samples
by setting their valid flags (VF[n]) to ‘0’. To remove these duplicates, whose posi-
tions are unknown a priori, we use the vector compactor presented in Fig. 8.6.4.
It accepts 16 sliced samples, Ŝ[n], with their VF[n] and produces 11 data bits,
D[k], such that every UI corresponds to a single data bit. The compactor con-
sists of an array of conditional data selectors, which pass data bits either from
the left or from top to bottom according to the state of the enable signals. The
rows with VF[n]=‘0’ (shaded) pass the data from top to bottom. As a result, the
output data vector is free of duplicate samples. To reduce area and power, we
eliminate the cells that only pass data from top to bottom. With this, the com-
pactor reduces to only 33 cells instead of a full 176-cell array, resulting in a sin-
gle-cycle compaction.

To experimentally verify the ADC functionality at the FSR, we sampled a
6.875Gb/s 27–1 PRBS signal at 10GS/s and captured the DeMUXed ADC sam-
ples. We then assigned constant TS[n] to every channel of the DeMUX accord-
ing to the channel number, n. Finally, we arranged the samples along the time
axis in the ascending order of their TS[n]. Figure 8.6.5 presents the resulting
measured eye diagram reconstructed from 516800 ADC samples. For every ver-
tical slice of the eye diagram, we annotate the DeMUX channel number and the
corresponding time stamp. An open eye at the ADC output confirms that the ADC
is functional and that error-free data recovery is possible in the FSR CDR.

Figure 8.6.6 presents the simulated and measured jitter tolerances of the FSR
CDR. Both simulations and measurements were performed with a 6.875Gb/s
27–1 PRBS input and a sampling rate of 10GS/s. We used an event-driven model
[5] in Simulink to simulate the CDR. Our simulations show that the CDR toler-
ates up to 0.5UIPP of sinusoidal jitter at high frequencies (simulated for 2×105

UIs, no random jitter at TX and RX). To validate our simulated results, we fabri-
cated and characterized the FSR CDR in 65nm CMOS. The inset in Fig. 8.6.6
presents a measured eye diagram at the receiver input. In addition to the 16ps
(0.11UIPP) of jitter already present because of the setup, we applied sinusoidal
jitter from 50kHz to 8MHz (the range was limited by the available equipment) to
measure the jitter tolerance of the CDR. We generated the receiver input with a
Centellax PRBS board and recorded the jitter tolerance at BER=10-12. Our meas-
urements closely match the simulation results and confirm that the FSR CDR tol-
erates 0.3UIPP of high-frequency sinusoidal jitter. The CDR tolerates up to 49MHz
(0.98%) of frequency offset (with BER<10-12) between the transmitter and receiv-
er beyond the nominal offset due to the FSR. 

Figure 8.6.7 shows a die photo of the test-chip. The ADC, DeMUX and clock
divider are analog custom-designed blocks while the CDR and test-structures
were synthesized. The CDR consists of 75644 gates and consumes 58.8mW
while the ADC consumes 116.4mW. The FSR CDR reduces the ADC power by
27.3%, in comparison with a 2× feed-forward architecture, at the cost of dou-
bling the gate count; however, the power per Gb/s of data rate and the total
receiver area are reduced by 12.5%. The receiver occupies 0.3683mm2.
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Figure 8.6.1: Blind-Sampling ADC-Based CDR Architectures. Figure 8.6.2: Fractional-Sampling-Rate (FSR) CDR Block Diagram.

Figure 8.6.3: Phase-Detector Implementation.

Figure 8.6.5: Measured Eye Diagram at ADC Output (reconstructed from 5x105

ADC samples). Figure 8.6.6: Measured and Simulated Jitter Tolerance.

Figure 8.6.4: Vector-Compactor Implementation.
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Figure 8.6.7: Die Photograph.
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