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Abstract—In this paper key design issues and considerations of
a low-cost 3-D Cu-TSYV technology are investigated. The impact of
TSV on BEOL interconnect reliability is limited, no failures have
been observed. The impact of TSV stress on MOS devices causes
Vth shifts, further analysis is required to understand their impor-
tance. Thermal hot spots in 3-D chip stacks cause temperature in-
creases three times higher than in 2-D chips, necessitating a careful
thermal floorplanning to avoid thermal failures. We have moni-
tored for ESD during 3-D processing and have found no events take
place, however careful further monitoring is required. The noise
coupling between two tiers in a 3-D chip-stack is 20 dB lower than
in a 2-D SoC, opening opportunities for increased mixed signal
system performance. The impact on digital circuit performance of
TSVs is accurately modeled with the presented RC model and dig-
ital gates can directly drive signals through TSVs at high speed and
low power. Experimental results of a 3-D Network-on-Chip imple-
mentation demonstrate that the NoC concept can be extended from
2-D SoC to 3-D SoCs at low area (0.018 mm?) and power (3%)
overhead.

Index Terms—3-D, CU TSV, ESD, mechanical stress, net-
work-on-chip, noise coupling, thermal behavior.
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1. INTRODUCTION

HROUGH Silicon Vias (TSVs) are an essential tech-
T nology towards higher and more heterogeneous system
integration. 3-D TSV (through silicon via) technologies
promise increased system integration at lower cost and reduced
footprint [1], as well as performance improvement such as
increased bandwidth and easier reuse by mixing and matching
existing silicon. Variants of 3-D technologies have recently
been introduced in application areas such as DRAM stacking
[2], imagers [3], [4], SSDs (Solid-StateDrives) [5].

In Fig. 1 the different proposed 3-D integration schemes are
categorized by their most important feature, via diameter/pitch
and via aspect ratio. Three categories are distinguished. The
large size 3-D-WLP (Wafer Level Packaging) TSVs have diam-
eters larger than 10 ym and serve as bondpad I/O interconnect
in systems. They are typically manufactured post-foundry
and are compatible with both wafer-to-wafer and die-to-wafer
stacking schemes. Because of their rather large size (diameter)
small aspect ratios around one or two enable integration in
wafers with thickness of 70 um or more, greatly easing wafer
and die handling. The medium size 3-D-SIC (3-D Stacked
IC) TSVs have diameters between 2 and 10 pym and serve as
global interconnect. They are manufactured at the foundry and
are compatible with wafer-to-wafer and die-to-wafer stacking
schemes. An aspect ratio of 5 or higher leads to wafer thickness
between 25 pum to 70 pm, making wafer and die handling
challenging. The 3-D-SIC TSVs are an emerging technology
and are expected to appear in applications in the coming years.
The smallest size 3-D-IC TSVs with diameter size of 2 pym
and smaller target intermediate level interconnect. Even with
aspect ratio above 20 they require extremely thinned dies. Their
stacking scheme is typically wafer-to-wafer to avoid complex
and difficult thin die handling. The 3-D-SIC intermediate level
interconnect TSVs are considered risk technology at this time.
In this paper, we focus on the emerging Cu 3-D SIC TSV
technology, as it is well balanced between cost and application
flexibility. It is attractive from cost perspective as it leverages
existing CMOS process equipment and it supports die-to-wafer
stacking. The latter creates the possibility to stack dies of
different sizes, and thus not add unnecessary constraints during
system partitioning and floorplanning, which may limit die
utilization.

0018-9200/$26.00 © 2010 IEEE
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Fig. 1. Overview of 3-D TSV technologies as function of TSV diameter and aspect ratio and classification in 3 categories, 3-D-SIC intermediate and global and

3-D WLP Bondpad with their key attributes.

In this work we investigate in detail the design issues and
solutions of a low cost 3-D TSV Stacked-IC technology [16].
The technology we propose offers a 10 ym TSV pitch that en-
ables applications such as logic-on-logic, DRAM-on-logic and
RF-on-logic. We present experimental data on key issues such as
impact of TSV on MOS devices and back-end-of-line (BEOL),
reliability, thermal hot spots, ESD, signal integrity and circuit
performance. We point out where changes in current design
practices are required to realize the low-cost potential of the
technology. We also demonstrate a key circuit for the deploy-
ment of the Cu TSV technology: a 3-D Network-on-Chip (3-D-
NoC). The 3-D-NoC will serve as the back-bone communica-
tion IP for future 3-D-SoC, as it does today in many 2-D SoCs.
We show that the NoC concept can easily be extended to 3-D at
low area and power overhead.

This paper is structured as follows. In Section II we intro-
duce the low-cost 3-D Cu TSV technology used in this paper
and we review the main characteristics of the Cu TSVs. In
Section III the mechanical issues of the 3-D technology are
discussed, these are the impact of TSVs on the reliability of the
BEOL interconnect and TSV stress impact on MOS devices. In
Section IV the thermal behavior of 3-D chip-stacks is discussed
and a thermal-aware design approach is proposed to avoid hot
spots. In Section V the following electrical issues are reviewed:
ESD in 3-D chip-stacks, noise coupling level in 3-D compared
to 2-D, and digital signaling through TSV in ring oscillators.
In Section VI we present a 3-D-NoC demonstrator circuit that
shows the 2-D NoC concept used in SoC is compatible with
3-D technology. In Section VII the main results of the paper
are summarized.

II. Low CosT 3-D CU TSV TECHNOLOGY

In this section we briefly describe the 3-D technology and
test vehicle that was used in the experiments reported in this
paper. Next we review the main characteristics of the Cu TSVs,
resistance, capacitance, leakage and yield.

A. Technology Description

The proposed 3-D stacked IC (3-D-SIC) approach leverages
existing IC foundry infrastructure to fabricate TSVs after the
FEOL processing and prior to BEOL processing [6]. In a 200
mm/130 nm FEOL CMOS technology with Cu/SiO2 BEOL,
TS Vs are fabricated with 5 ym diameter and a minimum pitch of
10 pm. After the TSV is etched, an isolation layer is deposited
followed by the Cu metallization of the TSV, Fig. 2. The wafers
then go through the standard BEOL process. To enable intercon-
nections using TSVs, the wafer is thinned down to ~ 25 pym and
next TSVs are exposed to a height of ~ 700 nm. The thinned
wafers are then diced and the resulting dies are stacked face-up
on the regular thickness landing wafer with a collective hybrid
bonding process in a die-to-wafer approach [17]. This approach
reduces the cycle time by the parallel processing of the relatively
long Cu-Cu thermo-compression step and the die-to-wafer con-
figuration allows the selection of Known Good Die prior to
stacking, both reducing overall cost of the 3-D processing.

Using this technology we have built a test vehicle as is shown
in Fig. 3. The thinned die is stacked face-up on top of the landing
wafer (SEM picture of the stack in Fig. 3). A cross section
through a TSV array shows the 25 pym high, 5 pm diameter Cu
TSVs at a minimum pitch of 10 pgm. The electrical and mechan-
ical Cu-Cu bonding is visible at the bottom of the picture, the
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Fig. 2. Process flow of low-cost 3-D Cu TSV technology, Cu TSV are processed after FEOL and before BEOL, next wafers are thinned and dies singulated.
Stacking is performed die to wafer with simultaneous Cu-Cu thermo-compression to create mechanical and electrical connections simultaneously.

Top tier TSV Dielectric Layer
| Bottom tier | Back-end-of-line

e Bottom Tier :

Bottom tier

Cu-Cu bonding

TSV diameter 5um|
Min. TSV pitch 10um
Top tier die thickness 25um|
TSV Isolation layer

thickness ! 120y
Dielectric layer thickness | 0.7um

Fig. 3. SEM picture of test vehicle with FIB cross section inset (left); summary of dimensions in table (right).

TSV lands on the top metal of the lower tier. The TSV isolation
(liner) is 120 nm thick and the dielectric layer isolating the two
tiers is 700 nm thick. These geometric parameters are summa-
rized in the table in Fig. 3.

B. Electrical TSV Characteristics and Yield

DC Resistance and low frequency capacitance are fun-
damental electrical parameters of TSVs. Measure of TSV
resistance between the top of the TSV and the landing pad
provides information on the quality of the vertical electrical
connection established by the bonding of the staked dies. With
the proposed TSV dimensions, TSV resistance is expected
to be in the order of few tens of milliohms in good TSVs.
Therefore, the resistance test structure consists of a single
TSV in a 4-point or Kelvin configuration. The Kelvin TSV is
placed the four corners and in the center of each stacked die.
The measured values show Rpgy~20mS(2; the spread over
different die locations and over 17 dies is limited (Fig. 4(a)),
thus indicating a good quality of 3-D stacking and bonding.

Dense clusters of TSVs, consisting of arrays of 6 x 6 TSV
where each TSV is measured in a 2 point configuration for as-
sessing the 3-D connectivity only, show an evident pitch depen-
dency of the TSV yield. In particular, TSVs in the array pe-
riphery do not provide good electrical connections at 15 pm
pitch. On the other hand, overall good yield is obtained for
20 pm pitch Fig. 4(c).

TSV capacitance is an essential parameter for 3-D circuit
design. Since the TSV forms a cylindrical MIS (Metal-Insu-
lator-Semiconductor) capacitor with the substrate, it is expected
that this capacitance is non-linear and depends on the biasing of
the TSV with respect to the substrate. TSV capacitance values
are expected to be in the order of ~ 100 fF. These are too low
for the accuracy of a standard LCR meter; therefore, arrays of
32 TSVs connected in parallel are used to measure a larger value
of capacitance, which is then averaged over the number of TSVs
in the parallel array. De-embedding structures are also charac-
terized to reduce the impact of parasitics on the measurements.
C-V plots of TSV capacitance @ 1 MHz (Fig. 4(b)), show a
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Fig. 4. Summary of TSV characteristics: (a) cumulative distribution of TSV resistance for different locations on the die, (b) TSV capacitance (C-V) as function
of bias voltage shows 90 fF in accumulation and 35 fF in depletion mode, (c) TSV leakage as function of bias voltage is well below 1 pA and (d) TSV yield (1.00
is 100% yield) as function of location of TSV in a 6 X 6 TSV array with varying pitches, TSVs at the edge of the matrix have lower yield than at center especially

at 15 pm pitch.

Crsy ~ 37 {F in depletion and a Crgy ~ 92 fF in accumu-
lation mode. TSV leakage, measured in the same array used to
measure capacitance, is below 1 pA in depletion and accumula-
tion modes (Fig. 4(d)).

Both Rrgy and Crgy match well with Raphael™ and Sde-
vice™ simulations, respectively, performed by using expected
TSV dimensions after processing, with the same methodology
proposed in [18].

III. MECHANICAL ISSUES AND CONSIDERATIONS
IN 3-D TSV TECHNOLOGY

Due to the difference in thermal expansion coefficient of
Cu and Si, the TSV induces stress on its surroundings [19],
potentially leading to reliability problems. To detect reliability
problems, back-end-of-line structures such as vias and serpen-
tine wires have been added next to and on top of TSVs. After
stacking the test vehicle these structures were characterized
and showed no failures. Next, these test structures have been
subjected to thermal cycling. After 1000 cycles of 30 min
between —55° and 125°C no failures have been observed on

17 samples. This is a first level of reliability testing of 3-D
TSV technology, further reliability tests are needed to confirm
these findings, as well as package level reliability tests to assess
lifetimes of systems.

The stress generated by TSV potentially impacts the active
device electrical performance, to avoid this proximity effect de-
vices can be spaced away from TSV (keep-out-zone, KoZ) at the
expense of increased overall area and cost. The TVS proximity
influence on active devices has been investigated for a wide
range of physical gate lengths. We observed that the transistors
figures of merits like the current factor, the saturation voltage
and the drive current are slightly affected by the presence of
a TSV in the vicinity of the transistors (Fig. 5). The cumula-
tive probability plot of saturation threshold voltage for a short
(0.13 um) and large (1 m) physical gate length of n-type device
measured on thinned (25 pm) and stacked dies. The threshold
voltage shows a slight increase for the longer devices (Fig. 5(b)).
This variation has also been measured for the current factor,
drive current of n-type devices and also for p-type devices. Fur-
ther modeling and characterization of the stress impact on MOS
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Fig. 5. Impact of TSV proximity on short channel and long channel devices in
a 130 nm technology: no Vth shift is visible on 130 nm length device (a), about
10 mV Vth shift is observed on 1 pm length device (b).

devices is needed to gain a better insight and asses the severity
of this issue. To avoid large keep out areas (areas in which no
devices are placed) and increase cost of the use of 3-D TSV tech-
nology, models and tools to design for TSV impact on devices
are recommended [20].

IV. THERMAL ISSUES AND CONSIDERATIONS
IN 3-D TSV TECHNOLOGY

Unless the power dissipation is carefully managed across the
tiers in a 3-D stack, hot spots may occur. The reduced thermal
spreading in the thinned dies and the poorly thermally con-
ductive adhesives used for the vertical integration, lead to high
thermal resistances. The same power dissipation in a stacked die
package will lead to higher temperatures and a more pronounced
temperature spreading compared to a single die package. To
study the thermal impact of hot spot size and power density on
3-D stack design, thermal finite element simulations were per-
formed. Two simulation setups have been used. The fine grain
simulation of [21] takes into account the complete BEOL and
layout structure whereas in the FEM simulation of [22] sim-
plified models are using volume-averaged material properties.
These finite element simulations have been calibrated with a test
structure that consists of heaters integrated with thermal sen-
sors (diodes). Heaters with a size of 50 x 50 zm? and 100 x 100
pum? are located in the metal 2 layer of the BEOL in the top tier
of the 3-D chip-stack, as well as in a 2-D reference die. Both

3D Temp. 10
" Heater Sensors power density
Top die _ 2 i2wimme
Os © 3D 100x100 - EXP
27 — 3D 100x100 - model
4
s : 2D 100x100 - EXP
‘ Bottom tier | 56 1o
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g . ° 3D 50x50 - EXP
% / '\ 3D 50x50 - model
a3 © 2D 50x50 - EXP
Temp. [‘E 2 e / o N e —2D 50x50 - model
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— o o T
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Bottom tier | 200 -150 -100 -50 0 50 100 150 200
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Fig. 6. Temperature increase on the top die in a 3-D chip-stack caused by a
100 x 100 p2m hot spot is approximately three times higher (red curve) than the
temperature increase in a 2-D SoC chip (blue curve).

in the top and the bottom die of the stack, a set of five diodes
at different distances from the hot spot centre are added are in-
tegrated below the heater. This configuration of diodes allows
capturing the local temperature peak due to the hot spot power
dissipation. The simulation results and experimental validation
[23] (Fig. 6) indicate that power dissipation in a 3-D stacked
structure approximately has a ~ 3 times higher maximum tem-
perature increase compared to the 2-D reference case, requiring
thermal-aware floor-planning to avoid thermal problems in the
stack.

To implement the thermal-aware floor-planning in 3-D stacks,
a thermal compact model has been developed [24]. With this
model, the temperature distribution is calculated in each die,
using the power maps of the heat generation in each tier as input.
This compact model allows studying the thermal interaction of
heat sources in the 3-D stack, both on the same die as well as
on other levels of the stack. Furthermore, the compact model al-
lows thermal optimization of the placement of the heat sources
as a function of the geometrical and material properties of the
interface and interconnects structures. Fig. 7 shows the graph-
ical interface of this thermal compact model.

V. ELECTRICAL ISSUES AND DESIGN CONSIDERATIONS
IN 3-D TSV TECHNOLOGY

A. ESD

During the die to wafer stacking process, the top die can dis-
charge through the TSV’s into the bottom wafer, resulting in a
Charged Device Model (CDM)-like event. The potential need
to protect each TSV for ESD may increase the footprint of 3-D
connections and hence increase cost of using 3-D technology.
Experimental results in the presented technology indicate
that no ESD protection is needed and that standard ESD
safe-guarding during 3-D process steps is all that is required.
Unprotected transistor gates were chosen as monitor since they
are most sensitive to ESD events in advanced CMOS tech-
nologies. These are connected to TSV’s in various connection
schemes (Fig. 8). Statistical DC measurements of the leakage
current of all ESD monitor variations were collected across
the full wafer with stacked dies. The gate-leakage is observed
to monitor ESD events, no increase is found (Fig. 8). In total
420 devices were measured over 2 lots and 2.6% abnormalities
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Fig. 7. Graphical interface of the thermal compact model for 3-D stacked structures.
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Fig. 8. The leakage currents of ESD monitors (GMON_TOP reference, GMON_TOP_TSV and GMON_BOT) have been measured after stacking: monitors
connected through TSVs see no failures (gate shorts) and no significant change versus reference structure GMON_TOP (without TSV).

were detected. These abnormalities resulted consistently in a
leakage decrease which excludes gate oxide damage by ESD
as a root cause. However, continuous monitoring of future
process lots needs to be performed consistently in order to
detect possible future ESD occurrences when 3-D technology
evolves.

B. Noise Coupling

Experimental results indicate that substrate noise isolation
between stacked tiers is 20 dB superior compared to 2-D, cre-
ating significant opportunities for mixed-signal and RF applica-
tions. A 60 GHz voltage controlled oscillator (VCO) circuit has
been implemented both in 2-D and on the top tier in a 3-D stack
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Fig. 9. 2-D SoC and 3-D chip-stack mmWave VCO implementation and
schematic: 20 dB reduction of noise coupling in 3-D versus 2-D is observed.

(Fig. 9) to verify the isolation of 3-D versus 2-D. The VCO per-
formance (center frequency, phase noise) is unaffected by the
stacking operation. Both on the 2-D chip and the bottom tier of
the 3-D stack a controlled “substrate noise” signal is injected to
measure noise coupling as in [25]. This substrate noise signal
emulates the switching activity of a digital circuit. The emu-
lating waveform is a sine-wave with a frequency that is varied
from 1 MHz to 1 GHz, which in practice extracts the coupling in
the frequency domain. Due to coupling into the VCO the noise
signal appears as unwanted spurs at the output of the VCO at
an offset equal to its frequency. The level of the spur power is a
measure for the noise coupling, or in other words a lower spur
power shows that the isolation is better. The 3-D version ex-
hibits a 20 dB lower level of spur power than the 2-D SoC variant
throughout the frequency range of noise from 1 MHz to 30 MHz
beyond which the 3-D spur level drops below noise. This indi-
cates isolation is 20 dB better in the lower frequency range up
to 30 MHz and noise of 2-D-SoC variant exceeds noise in 3-D
up to 300 MHz (Fig. 9). This improved isolation capability of
3-D technology opens up opportunities for high performance
mixed-signal system design.

C. Transmitting Digital Signals Through TSVs

Ring Oscillator (RO) is a standard digital circuit to analyze
a particular technology and it is used to verify the feasibility of
3-D circuits and the impact of TSV on digital signaling and cir-
cuit operation. 2-D and 3-D RO circuits with varying number of
stages and inverter sizes are compared. 21 and 41-stage 3-D ring
oscillators with 1 TSV/stage and without TSVs are implemented
as shown in Fig. 10. All RO configurations have their output
connected to 8 stage frequency divider (divide by 256) to enable
reliable frequency measurements (0.1-200 MHz). To predict the
performance of a 3-D circuit, calibrated device models for the
transistors along with lumped “T” RC model of the TSV [18]
with measured Rrsv and Ctgy values are used. Simulation re-
sults of power-delay characteristics of the functional RO imple-
mentation are well in agreement with measurements suggesting
that the model with extracted values can also be extended for

predicting the performance of more complex 3-D circuits. It can
be also seen that because of smaller inverter sizes the delay ex-
hibited by 21 stage 3-D RO is larger when compared to the delay
caused by 41 stage 3-D RO. Hence, in real circuit applications,
strong driver elements are necessary to limit the delay caused
by TSV in 3-D circuits.

VI. 3-D NETWORK ON CHIP DEMONSTRATOR CIRCUIT

The communication architectures of choice in today’s
state-of-the-art designs are structured and scalable Net-
works-on-Chip [26], [27]. The extension of the NoC paradigm
to 3-D integrated circuits is very promising, as modularity and
scalability are even more critical for future three-dimensional
integrated systems [28].

To demonstrate the feasibility of this communication ar-
chitecture, we designed and manufactured a 16-bit 3-D NoC
distributed across two tiers using the iNoCs synthesizable
NoC IP and tool chain, with extensions for supporting vertical
links (Fig. 11). Each tier consists of a traffic generator, a slave
memory, a 3 x 3 switch and a JTAG controller. The traffic
generators mimic logic IP components and can send/receive
data packets at NoC speed to and from the memory on each
tier. A JTAG controller is inserted on each tier to support
Known-Good-Die testing before stacking. It also supports
testing of the 3-D link after stacking. Note that the test pads of
the bottom tier are no longer accessible after stacking. There-
fore, these are replicated on the top tier. The PAD SELECT
MUX connects these replicated pads to the JTAG bottom block
if the top die is present.

A 2.5D design approach was followed to layout the 3-D NOC,
i.e., each tier was independently designed but for the TSVs of
which the position was aligned on both tiers during P&R. In
total 100 TSVs are used to interconnect both tiers: 12 for 2 x 6
for VDD/GND, 2 x (2 x 16) for the 3-D link, 3 x 8 for the test.
Both tiers are manufactured in a the 200 mm/130 nm FEOL
CMOS technology with Cu/SiO2 BEOL and 3-D Cu TSV as
described in Section I.A. The die-to-wafer configuration allows
the selection of KGD prior to stacking, reducing cost of the 3-D
processing.

The NoC switches in each tier are connected through a TSV
link. Each signal line across the 3-D link is implemented with
a standard CMOS buffer (BUFBD2) attached to two TSVs
(Fig. 12). TSV duplication per signal is used to protect the link
against TSV opens, which is the most frequently occurring
fault in our process technology (as described in Section II.B).
No ESD protection is used on the 3-D link, as our experimental
results indicate that sufficient safe-guarding during 3-D process
steps is all that is required (Section V.A).

When activating the NoC, we first enable KGD die testing
by ensuring that each 3-D input signal on each tier is driven
to a logic value. To this end, we have attached a weak pull
down diode to each TSV. The leakage current of the diode in
inversion ensures that the input signal of the receiving tier (the
TSV_SLECT_MUX) is not floating. Second, we have added the
TSV_SLECT_MUX to collect statistics on TSV yield. With this
MUX each TSV can be individually tested at boot time through



300 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 46, NO. 1, JANUARY 2011

0.06 2D/3D RO Power-Delay Characteristics

— 'I |‘ = =RO_T_21 (Spectre)
g) 0.05 | & I. O RO_T_21 (Measured)
[1+] 1
— | - = =RO_T_41 (Spectre)
(]
§ 0.04 [? ' A \I A RO_T_41 (Measured)
E. 0.03 l \‘ \‘ = = RO_Cascaded_21 (Spectre)
° ) T ‘A Py ® RO_Cascaded_21 (Measured)
2 0.02 ‘@O \Q — - RO_Cascaded_41 (Spectre) |
o % A AV A RO_Cascaded_41 (Measured)
2001 | o a e
w. ~ ) T~ e T
0 Lo "—A--n—--—'_.Q='_.—_-—
0 100 200 300
RO Delay [ps/stage]
2D RO on top die (RO_T) 3D RO cascaded (RO_Cascaded)
gJVaRO, . VddrRO,
ENBL— Ny No oo
1 2 Gnd §3  _____
#Stage 41 2t 7~

Wp/lp | 6um/0.13um | 2um/0.13um
Wy, | 3um/0.13um | 1um/0.13um
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the scan-chain. A test pattern is injected into the scan registers
and applied by setting the DATA_SLCT_MUX. After transmit-
ting the data, the receiving register is sampled and scanned in
order to detect faulty TSVs. Based on simulation, the redun-
dant TSV and TSV_SLECT_MUX increase the 3-D link delay
by 1.6 X, and its power consumption by 1.8 x with respect to a
single CMOS buffer (BUFBD2) driving a single TSV. In case of
a TSV process technology where TSV shorts to bulk frequently
occur, the above TSV IO scheme can be adapted by replacing
the buffer driving both TSVs with a DEMUX, controlled by ad-
ditional configuration memories. The DEMUX can then discon-
nect the failing TSVs from the buffers driving them.

The 3-D NoC operation is depicted in Fig. 13(a). After power
on, the design is switched in test mode. First, we program which
32 TSVs out of the total 64 are used for transmitting data on
the data link (step 1). Second, we configure what data patterns
traffic generators should transmit (step 2). Thereafter, the NoC
is switched in operation mode (step 3). In the depicted test-
case, short bursts of 32-bits are transmitted in 96-bit network
packets. The packets are respectively sent in 3-D across the TSV
links from the top(bottom) traffic generator to the bottom(top)
memory or in 2-D from the bottom(top) traffic generator to the
bottom(top) memory. Finally, the data is scanned out again. The
output (tdo) corresponds with the expected output (tdo_exp),
confirming a successful operation of the 3-D NoC. Separately,
we have tested the 3-D link by transmitted alternating patterns
of 0-1/1-0 transitions across the TSV link. So far, we have not
found failing TSV on the 3-D NoC link (Fig. 13(b)).

The additional area penalty for the TSVs in the 3-D stack
is limited to 0.018 mm? (Fig. 14). We have placed the TSV
interconnect in a regular array of two columns with a pitch of
13 pm next to the standard cell core area to optimize yield.
In this way we avoided TSV proximity impact as discussed in
Section III, at the expense of slightly increased overall area.
The power penalty for 3-D data transfers is only 3% with
respect to sending the same continuous stream of 32-bit data
bursts in 2-D, between memory and traffic generator spaced at
less than 0.5 mm on the same tier. For 3-D communication at
50 MHz supply 1.39 mW is consumed from a 1.2 V compared
to 1.34 mW for 2-D. The delay of the 3-D link is 183 ps,
enabling high speed data transfers. The 3-D interconnects in
the NoC can be designed to operate at a much higher speed.
Characterization of ring oscillators driving TSVs shows that
data can be transferred across a TSV in less than 150 ps while
consuming less than 2 pJ/bit energy at 1.2 V (Section V.C).
TSVs thus enable transferring of data between dies at a similar
speed than intra-die data.

In this section, we have demonstrated a testable 3-D NoC
manufactured using a low cost 3-D TSV Stacked-IC technology.
This result indicates that modular integration of scalable sys-
tems with IP components distributed across multiple dies is
feasible.

VII. SUMMARY AND CONCLUSIONS

In this paper key design issues and considerations of a
low-cost 3-D Cu-TSV technology have been investigated.
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Thermal cycling while carefully monitoring the integrity of
BEOL around TSVs has shown 3-D does not compromise re-

liability of BEOL. The impact of TSV stress on MOS devices
causes Vth shifts, to account for this during design further
analysis and modeling is advised. Thermal hot spots in 3-D
chip stacks cause temperature increases three times higher
than in 2-D chips, we have proposed thermal floorplanning to
take this into account during design. We have found no ESD
events during 3-D processing, however careful further moni-
toring is required. The noise coupling between two tiers in a
3-D chip-stack is 20 dB lower than in a 2-D SoC, opening
opportunities for increased mixed signal system performance.
The impact on digital circuit performance of TSVs is accu-
rately modeled with the proposed RC model and ring oscilla-
tors spanning both tiers in the stack show that digital signals
can be driven through TSVs at high speed and low power.
Experimental results of a 3-D Network-on-Chip implementa-
tion demonstrate that the NoC concept can be extended from
2-D to 3-D SoCs at low area (0.018 mm?) and power (3%)
overhead.
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