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Non-volatility is emerging as an essential on-chip memory characteristic across a wide 
range of application domains, from edge nodes for the Internet of Things (IoT) to large 
computing clusters. On-chip non-volatile memory (NVM) is critical for low-energy operation, 
real-time responses, privacy and security, operation in unpredictable environments, and 
fault-tolerance [1]. Existing on-chip NVMs (e.g., Flash, FRAM, EEPROM) suffer from high 
read/write energy/latency, density, and integration challenges [1]. For example, an ideal 
IoT edge system would employ fine-grained temporal power gating (i.e., shutdown) 
between active modes. However, existing on-chip Flash can have long latencies (> 23ms 
latency for erase followed by write) while inter-sample arrival times can be short (e.g., 2ms 
in [2]). 
 
Our chip monolithically integrates two heterogeneous technologies: 18KBytes of on-chip 
Resistive RAM (emerging on-chip NVM, technology details in Fig. 14.3.1) on top of 
commercial 130nm silicon CMOS (16-bit general-purpose microcontroller core with 
8Kbytes of SRAM). For various applications (in machine learning, control, and 
cryptography), we demonstrate active mode average energy of 43pJ/cycle (up to 5.7X 
lower vs. similar chips at similar speeds / technology nodes using on-chip Flash and FRAM), 
fine-grained temporal power gating (0.25µW during shutdown) with up to 8µs (average 
4.7µs) transition from active to shutdown mode (up to 5,878X quicker vs. on-chip Flash), 
and 2-clock cycle (200ns) transition from shutdown to active mode. We also demonstrate, 
for the first time, a complete chip that stores multiple bits per on-chip RRAM cell (5 
resistance values, i.e., 2.3 bits per cell) and processes stored information correctly (vs. 
previous demonstrations using standalone RRAM cells or few cells in standalone RRAM 
array). Such multi-bit storage improves the accuracy of neural network inference (2.3X for 
MNIST) on same hardware (vs. 1 bit per cell).  
 
RRAM (like other emerging NVMs such as phase change memory) exhibits write failures 
[1]. We overcome these challenges through the critical combination of two resilience 
techniques: 1. dynamic address remapping, which overcomes write failures during system 
operation with 0.5% active-mode energy increase and negligible execution time impact; 2. 
periodic ENDUrance REsiliency using random Remapping (ENDURER – Fig. 14.3.5) [3], a 
new technique implemented here for the first time. This combination enables our chip to 
achieve a 10-year functional lifetime when running MNIST inference continuously. 
 
To demonstrate fine-grained temporal power gating enabled by on-chip RRAM, our chip 
operates as follows (Fig. 14.3.1). During active mode, instructions are read from the on-
chip 12KByte instruction RRAM and executed by the microcontroller core (MSP430 
instruction set). During this time, data is accessed from peripheral ports (e.g., off-chip 
sensors), on-chip 4KByte data RRAM, or on-chip 8KByte scratchpad SRAM (loop counters, 
temporary variables with repeated writes: memory-mapped using compiler). After the data 
is processed, to transition to shutdown mode, results are written back to the 4KByte on-
chip data RRAM (consuming 168pJ over 5 clock cycles per 16-bit word, Fig. 14.3.2) and 
the hardware scheduler unit power-gates (i.e. turns off power) the core, memory controllers, 
and memory. Our chip performs this transition 5,878X quicker than those with on-chip Flash 
due to the low write latency of RRAM (500ns vs 23ms for Flash). The chip returns to active 
mode upon data arrival (e.g., from sensors). 
 
We run 5 applications representing machine learning (logistic regression, support vector 
machine, convolutional neural network), control (Kalman filter) and cryptography (SHA256 
hash) to demonstrate the effectiveness of our chip (Fig. 14.3.2). To put our results into 
perspective, we select a similar clock rate for our chip (10MHz, vs. industry chips with 
existing on-chip NVM such as FRAM and Flash) that is sufficient for fine-grained temporal 
power-gating while avoiding excessive energy consumption. The active mode power of our 
chip varies between 407µW to 477µW (average active mode energy: 43pJ/cycle). We 
achieve average 4.7µs/1.6nJ transition from active to shutdown mode and a 200ns/152pJ 
transition from shutdown to active mode (Fig. 14.3.2). Although the industry chips might be 

engineered to include additional margins, the overall benefits demonstrated by our chip are 
expected to stay significant even after margins are taken into consideration. 
 
We store multiple resistance levels (up to 5 in our chip) inside on-chip RRAM cells (e.g., 
neural network model weights, only read during inference) by special algorithms that 
change wordline voltage (VWL) and bitline voltage (VBL) in addition to modifying the pulse 
width (Fig. 14.3.3) and allocating larger resistance windows for levels with higher resistance 
values. With greater effective memory capacity (2.3 bits vs. 1 bit per RRAM cell) on the 
same hardware, higher-precision weights (e.g., 4-bit vs 8-bit) or larger neural network 
models (e.g., 6,490 vs. 9,402 weights) can be used (Fig. 14.3.3). Despite errors (cells with 
resistance values outside its intended resistance window) in 5 levels-per-cell storage, we 
achieve a 2.3X improvement in inference accuracy (i.e., 2.3X decrease in inference error) 
for neural networks (on the MNIST dataset, Fig. 14.3.3) when the weights are encoded as 
follows: two 5-level cells for magnitude and one 2-level cell for sign bit.  
 
RRAM is subject to temporary write failures (TWFs) and permanent write failures (PWFs, 
resulting in limited endurance: maximum number of successful writes to a cell) [4] that 
degrade application accuracy over time (Fig. 14.3.4). Cell-level parameter adjustment to 
improve write failures isn’t sufficient [4]. To address TWFs, we employ a write-verify 
scheme with retries [4]. If a write to an RRAM address is unsuccessful after 4 retries, we 
map that address (during runtime) to another location in a separate backup RRAM array 
using dynamic address remapping (Figs. 14.3.1, 14.3.4). Our chip contains a backup 
RRAM array (256 16-bit words) for every 4KBytes of RRAM; 128 words of that backup array 
are used for this mapping. The mapping information is stored in a 128-entry volatile look up 
table (volatile LUT, implemented using flip-flops, Fig. 14.3.1). During transition from active 
to shutdown mode, the contents of each volatile LUT are stored in the remaining 128 words 
of the corresponding backup array (non-volatile LUT). A write failure to a non-volatile LUT 
entry results in that entry marked invalid (majority vote over 5 RRAM bits decides entry 
validity).  When the chip boots, the contents of the volatile LUTs are loaded from the 
corresponding non-volatile LUT. We use dynamic address remapping for our data RRAM, 
incurring 0.5% energy and negligible (0.005%) execution time costs; our data RRAM 
tolerates TWFs and PWFs in 17.3% and 2% words, respectively (Fig. 14.3.4). We use 
stronger programming conditions (higher voltage, more retries) to mitigate TWFs and insert 
dummy instructions to avoid PWFs in instruction memory (as writes occur only during 
programming).  
 
Despite limited write endurance of the 4 Kbyte data RRAM, we achieve 10-year lifetime 
using ENDURER (Fig. 14.3.5, software on FPGA + our chip) combined with dynamic 
address remapping, when running our neural network application (MNIST dataset) 
continuously (Fig. 14.3.6). We accelerate our tests to account for 10 years of running an 
application by first obtaining a sequence of all writes to RRAM (which account for 258 out 
of 617,669 total memory operations for a single inference) for the application. Then, we 
repeatedly perform the sequence of writes, through the ENDURER module on the FPGA, 
on the RRAM (skipping any read operations, writes to non-RRAM, and computation to save 
time). In our implementation of ENDURER, remapping is performed every 30 minutes and 
we use an SRAM buffer of 8 16-bit words.  
 
On-chip RRAM NVM enables significantly lower energy during active mode (vs. existing 
on-chip NVM such as Flash and FRAM), fine-grained temporal power gating, and multiple 
bits per RRAM cell. Correct computation using multi-bit RRAM cells in a complete chip, 
demonstrated for the first time, successfully improves neural network inference accuracy. 
Effective resilience techniques enable chips with on-chip RRAM to achieve 10-year lifetime 
(for neural network inference applications) despite write failures in the underlying RRAM. 
Our results can be further enhanced through domain-specific accelerators, bit-cost scalable 
3D Vertical RRAM [5], and monolithic 3D integration of multiple RRAM layers [5]. The 



presented techniques (fine-grained temporal power gating, resilience) may be used for 
other emerging on-chip NVM (e.g., phase change) technologies as well. 
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Figure 14.3.1: Block diagram of our chip. 

 
Figure 14.3.2: Benefits of using our chip with on-chip RRAM. 

 
Figure 14.3.3: Using 2.3 bits per RRAM cell for convolutional neural network 
applications. 

 
Figure 14.3.4: Dynamic address remapping with write-verify loop. 

 
Figure 14.3.5: ENDURER test setup and remapping, read, and write algorithms. 

 
Figure 14.3.6: ENDURER and Dynamic Address Remapping improves chip 
lifetime to 10 years. 
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Figure 14.3.7: Die micrograph 
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