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Non-volatility is emerging as an essential on-chip memory characteristic across a wide
range of application domains, from edge nodes for the Internet of Things (loT) to large
computing clusters. On-chip non-volatile memory (NVM) is critical for low-energy operation,
real-time responses, privacy and security, operation in unpredictable environments, and
fault-tolerance [1]. Existing on-chip NVMs (e.g., Flash, FRAM, EEPROM) suffer from high
read/write energy/latency, density, and integration challenges [1]. For example, an ideal
loT edge system would employ fine-grained temporal power gating (i.e., shutdown)
between active modes. However, existing on-chip Flash can have long latencies (> 23ms
latency for erase followed by write) while inter-sample arrival times can be short (e.g., 2ms
in [2]).

Our chip monolithically integrates two heterogeneous technologies: 18KBytes of on-chip
Resistive RAM (emerging on-chip NVM, technology details in Fig. 14.3.1) on top of
commercial 130nm silicon CMOS (16-bit general-purpose microcontroller core with
8Kbytes of SRAM). For various applications (in machine learning, control, and
cryptography), we demonstrate active mode average energy of 43pJicycle (up to 5.7X
lower vs. similar chips at similar speeds / technology nodes using on-chip Flash and FRAM),
fine-grained temporal power gating (0.25uW during shutdown) with up to 8us (average
4.Tus) transition from active to shutdown mode (up to 5,878X quicker vs. on-chip Flash),
and 2-clock cycle (200ns) transition from shutdown to active mode. We also demonstrate,
for the first time, a complete chip that stores multiple bits per on-chip RRAM cell (5
resistance values, i.e., 2.3 bits per cell) and processes stored information correctly (vs.
previous demonstrations using standalone RRAM cells or few cells in standalone RRAM
array). Such multi-bit storage improves the accuracy of neural network inference (2.3X for
MNIST) on same hardware (vs. 1 bit per cell).

RRAM (like other emerging NVMs such as phase change memory) exhibits write failures
[1]. We overcome these challenges through the critical combination of two resilience
techniques: 1. dynamic address remapping, which overcomes write failures during system
operation with 0.5% active-mode energy increase and negligible execution time impact; 2.
periodic ENDUrance REsiliency using random Remapping (ENDURER - Fig. 14.3.5) [3], a
new technique implemented here for the first time. This combination enables our chip to
achieve a 10-year functional lifetime when running MNIST inference continuously.

To demonstrate fine-grained temporal power gating enabled by on-chip RRAM, our chip
operates as follows (Fig. 14.3.1). During active mode, instructions are read from the on-
chip 12KByte instruction RRAM and executed by the microcontroller core (MSP430
instruction set). During this time, data is accessed from peripheral ports (e.g., off-chip
sensors), on-chip 4KByte data RRAM, or on-chip 8KByte scratchpad SRAM (loop counters,
temporary variables with repeated writes: memory-mapped using compiler). After the data
is processed, to transition to shutdown mode, results are written back to the 4KByte on-
chip data RRAM (consuming 168pJ over 5 clock cycles per 16-bit word, Fig. 14.3.2) and
the hardware scheduler unit power-gates (i.e. turns off power) the core, memory controllers,
and memory. Our chip performs this transition 5,878X quicker than those with on-chip Flash
due to the low write latency of RRAM (500ns vs 23ms for Flash). The chip returns to active
mode upon data arrival (e.g., from sensors).

We run 5 applications representing machine learning (logistic regression, support vector
machine, convolutional neural network), control (Kalman filter) and cryptography (SHA256
hash) to demonstrate the effectiveness of our chip (Fig. 14.3.2). To put our results into
perspective, we select a similar clock rate for our chip (10MHz, vs. industry chips with
existing on-chip NVM such as FRAM and Flash) that is sufficient for fine-grained temporal
power-gating while avoiding excessive energy consumption. The active mode power of our
chip varies between 407uW to 477uW (average active mode energy: 43pJicycle). We
achieve average 4.7us/1.6nJ transition from active to shutdown mode and a 200ns/152pJ
transition from shutdown to active mode (Fig. 14.3.2). Although the industry chips might be

engineered to include additional margins, the overall benefits demonstrated by our chip are
expected to stay significant even after margins are taken into consideration.

We store multiple resistance levels (up to 5 in our chip) inside on-chip RRAM cells (e.g.,
neural network model weights, only read during inference) by special algorithms that
change wordline voltage (Vw.) and bitline voltage (VeL) in addition to modifying the pulse
width (Fig. 14.3.3) and allocating larger resistance windows for levels with higher resistance
values. With greater effective memory capacity (2.3 bits vs. 1 bit per RRAM cell) on the
same hardware, higher-precision weights (e.g., 4-bit vs 8-bit) or larger neural network
models (e.g., 6,490 vs. 9,402 weights) can be used (Fig. 14.3.3). Despite errors (cells with
resistance values outside its intended resistance window) in 5 levels-per-cell storage, we
achieve a 2.3X improvement in inference accuracy (i.e., 2.3X decrease in inference error)
for neural networks (on the MNIST dataset, Fig. 14.3.3) when the weights are encoded as
follows: two 5-level cells for magnitude and one 2-level cell for sign bit.

RRAM is subject to temporary write failures (TWFs) and permanent write failures (PWFs,
resulting in limited endurance: maximum number of successful writes to a cell) [4] that
degrade application accuracy over time (Fig. 14.3.4). Cell-level parameter adjustment to
improve write failures isn't sufficient [4]. To address TWFs, we employ a write-verify
scheme with retries [4]. If a write to an RRAM address is unsuccessful after 4 retries, we
map that address (during runtime) to another location in a separate backup RRAM array
using dynamic address remapping (Figs. 14.3.1, 14.3.4). Our chip contains a backup
RRAM array (256 16-bit words) for every 4KBytes of RRAM; 128 words of that backup array
are used for this mapping. The mapping information is stored in a 128-entry volatile look up
table (volatile LUT, implemented using flip-flops, Fig. 14.3.1). During transition from active
to shutdown mode, the contents of each volatile LUT are stored in the remaining 128 words
of the corresponding backup array (non-volatile LUT). A write failure to a non-volatile LUT
entry results in that entry marked invalid (majority vote over 5 RRAM bits decides entry
validity). When the chip boots, the contents of the volatile LUTs are loaded from the
corresponding non-volatile LUT. We use dynamic address remapping for our data RRAM,
incurring 0.5% energy and negligible (0.005%) execution time costs; our data RRAM
tolerates TWFs and PWFs in 17.3% and 2% words, respectively (Fig. 14.3.4). We use
stronger programming conditions (higher voltage, more retries) to mitigate TWFs and insert
dummy instructions to avoid PWFs in instruction memory (as writes occur only during
programming).

Despite limited write endurance of the 4 Kbyte data RRAM, we achieve 10-year lifetime
using ENDURER (Fig. 14.3.5, software on FPGA + our chip) combined with dynamic
address remapping, when running our neural network application (MNIST dataset)
continuously (Fig. 14.3.6). We accelerate our tests to account for 10 years of running an
application by first obtaining a sequence of all writes to RRAM (which account for 258 out
of 617,669 total memory operations for a single inference) for the application. Then, we
repeatedly perform the sequence of writes, through the ENDURER module on the FPGA,
on the RRAM (skipping any read operations, writes to non-RRAM, and computation to save
time). In our implementation of ENDURER, remapping is performed every 30 minutes and
we use an SRAM buffer of 8 16-bit words.

On-chip RRAM NVM enables significantly lower energy during active mode (vs. existing
on-chip NVM such as Flash and FRAM), fine-grained temporal power gating, and multiple
bits per RRAM cell. Correct computation using multi-bit RRAM cells in a complete chip,
demonstrated for the first time, successfully improves neural network inference accuracy.
Effective resilience techniques enable chips with on-chip RRAM to achieve 10-year lifetime
(for neural network inference applications) despite write failures in the underlying RRAM.
Our results can be further enhanced through domain-specific accelerators, bit-cost scalable
3D Vertical RRAM [5], and monolithic 3D integration of multiple RRAM layers [5]. The



presented techniques (fine-grained temporal power gating, resilience) may be used for
other emerging on-chip NVM (e.g., phase change) technologies as well.
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Figure 14.3.7: Die micrograph



