
An Energy-Efficient Configurable Lattice Cryptography

Processor for the Quantum-Secure Internet of Things

Utsav Banerjee1, Abhishek Pathak2, Anantha P. Chandrakasan1
1Massachusetts Institute of Technology, Cambridge, MA
2Indian Institute of Technology Delhi, New Delhi, India

Modern public key protocols, such as RSA and elliptic curve cryptography (ECC), will be

rendered insecure by Shor’s algorithm [1] when large-scale quantum computers are built.

Therefore, cryptographers are working on quantum-resistant algorithms, and lattice-based

cryptography has emerged as a prime candidate [1]. However, high computational complexity

of these algorithms makes it challenging to implement lattice-based protocols on resource-

constrained IoT devices which need to secure data against both present and future adversaries.

To address this challenge, we present a lattice cryptography processor with configurable

parameters which enables up to two orders of magnitude energy savings and 124k-gate

reduction in system area through architectural optimizations. This is also the first ASIC

implementation which demonstrates multiple lattice-based protocols proposed in Round 1 of

the NIST post-quantum standardization process.

Fig. 1: Quantum-resistant security for IoT networks – lattice-based cryptography,

challenges and proposed hardware solutions.

Fig. 1 provides an overview of the “Learning with Errors” (LWE) problem which forms the

basis of several lattice-based schemes. The LWE hardness assumption states that it is

computationally difficult to determine the secret vector s, given the matrix A and the vector b

= As + e, where all arithmetic is modulo a small integer q, and s and e are short vectors sampled

from a discrete distribution. This hardness is preserved even in the presence of quantum

adversaries. The two most commonly used variants of LWE are Ring-LWE and Module-LWE,

which operate on polynomials instead of vectors for efficiency, both of which can be

accelerated using our processor.

Fig. 2: System diagram along with overview of a typical Ring-LWE computation.

Fig. 2 shows the system block diagram, along with details of a typical Ring-LWE computation.

A 24KB LWE Cache interfaces with a modular arithmetic unit to perform polynomial

operations including the number theoretic transform (NTT). An energy-efficient Keccak-

f[1600] core, used for hashing and pseudo-random number generation (PRNG), drives the

discrete distribution sampler. The LWE cache, the Keccak core and the sampler have dedicated

clock gates which can be independently configured for fine-grained power savings. The

processor is equipped with a 1KB instruction memory which can be programmed with custom

instructions to implement various lattice-based algorithms. Two most important computations

required in all protocols are sampling and convolution. The polynomials are generated, or

“sampled”, either uniformly through rejection sampling or from a discrete distribution,

typically binomial, with a carefully chosen standard deviation. Computing convolution of two

polynomials involves transforming to the NTT domain followed by coefficient-wise

multiplication and an inverse transform.

Fig. 3: Architecture of discrete distribution sampler with efficient PRNG and sampling.

The hardness of the LWE problem is directly related to the statistical properties of the sampled

polynomials. This makes an accurate and efficient sampler a critical component of any lattice

crypto implementation. Sampling accounts for about 70% of the computational overhead in

software implementations of lattice-based protocols [2]. Fig. 3 describes an energy-efficient

discrete distribution sampler which reduces this overhead and provides up to two orders of

magnitude energy savings over assembly-optimized software. Samplers post-process pseudo-

random bit strings to generate numbers from a specified distribution, thus making an efficient

PRNG a key requirement for energy savings. Hardware implementations of three standard

PRNGs with full data-path architectures were profiled on our test chip, and SHA-3 (SHAKE)

was observed to be 2x and 3x more energy-efficient than ChaCha20 and AES respectively.

Therefore, our PRNG consists of a 24-cycle 34k-gate Keccak-f[1600] core which can be

configured in different SHA-3 modes and consumes 0.89 nJ per round. Our Keccak core

processes its 1600-bit state in parallel, thus avoiding expensive register shifts and multiplexing

required in serial architectures. The associated area overhead is very small, since the PRNG

accounts for only 9% of the total processor area. Rejection sampling for primes with high

rejection probability can be a bottleneck in LWE-based protocols. For faster rejection

sampling, the rejection bound is set as a multiple of the prime modulus q [3] followed by Barrett

reduction, providing up to 43% energy savings compared to conventional rejection. Our

binomial sampler takes two k-bit chunks (k ≤ 32, configurable) from the PRNG and computes

the difference of their Hamming weights (HW) to generate a sample with standard deviation σ

= √(k/2). This method is 16x more energy-efficient than the conventional Knuth-Yao (KY)

sampler [1, 4], and is also constant-time, thus eliminating potential timing side-channels.

Fig. 4: Proposed single-port RAM-based area-efficient NTT architecture

with processor area breakdown and NTT energy profiling.

Polynomial operations, such as NTT and convolution, account for about 30% of the

computations. However, the associated memory and logic together occupy more than 75% of

the total hardware area. Hardware architectures for NTT, first proposed in [1], consist of SRAM

banks for storing polynomials along with a modular arithmetic unit to perform the butterfly

computations. These memories are typically implemented using two-port [1] or four-port [4]

RAMs, which can pose large area overheads in resource-constrained devices. To reduce this

area, we implement the constant geometry NTT [5] and split each polynomial among 4 single-

port RAMs, as shown in Fig. 4. Regular memory access patterns of the constant geometry NTT

allow butterfly inputs and outputs to ping-pong between these single-port RAMs without any

read or write hazards. This NTT architecture provides ~124k-gate area savings compared to

the traditional approach, while still having enough memory to accommodate multiple

polynomials required in lattice-based algorithms. The constant factors ω and ψ used in NTT-

based negative-wrapped convolution are related as ω = ψ2 and ω-i = ωN-i, which is used to

compress pre-computed tables stored in the NTT Constants RAM by 38%. The butterfly, with

a 24-bit data-path and configurable modulus q, is implemented as a unified Cooley-Tukey (CT)

+ Gentleman-Sande (GS) structure, which eliminates the need for expensive bit reversals. The

multiplier and adder/subtractor in the butterfly are re-used for coefficient-wise modular

operations on polynomials.

Fig. 5: Configurability of the lattice cryptography processor along with

NIST Round 1 post-quantum protocol benchmarks.

Fig. 5 demonstrates the configurability of our processor by benchmarking NIST Round 1 post-

quantum protocols such as Kyber [6], NewHope [7], R-EMBLEM [8] and LIMA [9]. Our

hardware can be configured for polynomials of length (N) 64 to 2048, modulus q up to 24 bits,

and discrete distributions with varying standard deviations, thus allowing the processor to tune

the security level to provide energy scalability. When executing the Kyber-768 and NewHope-

1024 key exchange schemes, our design is respectively 28x and 37x more energy-efficient than

Cortex-M4 software, after accounting for voltage scaling. Moreover, post-quantum key

exchange using our processor is 30x more energy-efficient than state-of-the-art pre-quantum

ECC-based key exchange [10] at the same pre-quantum security level.

Fig. 6: Comparison with Cortex-M4 software and hardware lattice cryptography accelerators.

Fig. 6 compares this work with software implementation on ARM Cortex-M4 as well as

previous work in custom hardware design for lattice-based cryptography. The proposed single-

port RAM-based NTT architecture makes our design more area-efficient than [4]. Although

the use of multiple parallel butterflies can reduce NTT energy [4], we have used a single

butterfly since NTT is only a small fraction of the total computation. An energy-efficient SHA-

3 core along with our fast sampling architecture provides 28x energy savings in binomial

sampling compared to [4]. This work also demonstrates complete lattice-based protocols, while

achieving more than an order of magnitude improvement in energy-efficiency over software.

Fig. 7: Chip micrograph and performance summary.

The chip was fabricated in a 40nm LP CMOS process and supports voltage scaling from 1.1V

down to 0.68V. All hardware measurements are reported at 12MHz and 0.68V. Our lattice

cryptography processor occupies 106k NAND Gate Equivalents (GE) and uses 40.25KB of

SRAM. It has an average power of 516 µW when performing the NewHope post-quantum key

exchange. Through architectural and algorithmic optimizations, this work demonstrates

practical hardware-accelerated quantum-resistant lattice-based cryptographic protocols that

can be used to secure resource-constrained IoT devices of the near future.

Acknowledgements:

The authors would like to thank Texas Instruments for funding this work, and the TSMC

University Shuttle Program for chip fabrication support.

References:

[1] I. Verbauwhede et al., “Circuit Challenges from Cryptography,” IEEE ISSCC, pp. 428-

429, 2015.

[2] T. Oder et al., “Practical CCA2-Secure and Masked Ring-LWE Implementation,” IACR

Transactions on CHES, pp. 142-174, 2018.

[3] S. Gueron et al., “Speeding up R-LWE Post-Quantum Key Exchange,” IACR Cryptology

ePrint Archive, Report 2016/467, 2016.

[4] S. Song et al., “LEIA: A 2.05mm2 140mW Lattice Encryption Instruction Accelerator in

40nm CMOS,” IEEE CICC, pp. 1-4, 2018.

[5] M. C. Pease, “An Adaptation of the Fast Fourier Transform for Parallel Processing,”

Journal of the ACM, pp. 252-264, 1968.

[6] J. Bos et al., “CRYSTALS – Kyber: A CCA-Secure Module-Lattice-Based KEM,” IEEE

EuroS&P, pp. 353-367, 2018.

[7] E. Alkim et al., “Post-Quantum Key Exchange – a New Hope,” USENIX Security, pp.

327–343, 2016.

[8] M. Seo et al., “EMBLEM – Error-blocked Multi-Bit LWE-based Encapsulation

Mechanism,” NIST PQC Round 1, 2018.

[9] N. Smart et al., “LIMA – A PQC Encryption Scheme,” NIST PQC Round 1, 2018.

[10] U. Banerjee et al., “An Energy-Efficient Reconfigurable DTLS Cryptographic Engine

for End-to-End Security in IoT Applications,” IEEE ISSCC, pp. 42-44, 2018.

A revised version of this paper was published in 2019 IEEE International Solid-State Circuits

Conference (ISSCC) - DOI: 10.1109/ISSCC.2019.8662528

https://doi.org/10.1109/ISSCC.2019.8662528
https://doi.org/10.1109/ISSCC.2019.8662528

