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Abstract — When it comes to the COVID-19 pandemic [1], 
various issues and problems arise for institutions and critical 
infrastructures. Institutions such as first responders can be 
affected by COVID-19 by temporary or permanent loss of their 
essential staff and resources and therefore loss of their carrying 
capacity. The gradual and partial loss of carrying capacity in 
combination with increased demand on first responder systems 
can potentially push these system towards their tipping point, and 
thus cause even more loss of capacity to respond to emergency 
situations. In addition to the increased mental and emotional 
pressure burdened on first responders due to the presence and 
dangers of the virus, emergency personnel such as police officers 
can experience increased workload and stress during the 
pandemic as well as exposure to symptomatic or asymptomatic 
individuals affected by COVID-19. By assessing the dynamic 
carrying capacity of the first responder systems and their 
interaction with the general population they provide service to, the 
resiliency of first responder systems can be assessed in face of 
various scenarios. The resiliency of first responder systems can be 
increased by designing extra capacity and preventing the system 
from coming into the proximity of its tipping point, which could 
result in partial or major collapse in performance of the system. 
Therefore, protecting the emergency personnel and these 
indispensable institutions as well as maintaining the capacity to 
respond to the majority of the emergency calls is paramount. 

Since the police force, hospitals, fire departments, and other 
care institutions are structures consisting of a wide range of 
individuals and operate in an ever-changing environment, this 
paper attempts to assess the resilience and capacity of such 
institutions via simulations to find and localize their tipping points. 
To enable such simulations, the model developed by Vierlboeck, 
Nilchiani, and Edwards [2] was extended with further branches to 
allow for simulations of sub-systems and loads thereof. For this 
paper, the police force of New York City (NYC) was chosen as a 
case study. To assess the police force performance, the capabilities 
and capacities of the sub-system were evaluated by testing its 
function under different circumstances and with different 
influencing factors such as fatigue [3] and the influence of the 
Yerkes-Dodsen Law [4]. This way, it was possible to assess the 
performance of the emergency personnel and provide information 
that could potentially be used for regulatory measures and 
decisions. 

The conducted evaluations and simulations studied the existing 
system’s resiliency and its proximity to the system tipping point as 
the reduction of a number of emergency personnel is inevitable 
due to sickness caused by COVID-19. The baseline simulations 
showed performance drops under high loads which leaves the 
system in a more delicate state and vulnerable, with a higher 
tendency to collapse. Testing different scenarios, it was found that 
overall the system can tolerate a certain degree of changes in 
temporary demand. However, extended stress and increased 
demand on the emergency infrastructure systems can push them 
towards their tipping point and therefore cause irreversible 
damage. 
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I. INTRODUCTION, SITUATION, AND PROBLEM

Small changes in dynamic and complex systems can have 
effects and outcomes that are far disproportionate to their 
influence. When a system is pushed towards its operational 
limits, it is possible that the whole system experiences a change 
of state and transitions to another state in an irreversible fashion. 
The definition of such phenomena has been described as tipping 
point and in order to define this phenomenon in a general way, 
Milkoreit et al. [5] conducted an extensive and interdisciplinary 
literature review. The tipping point is defined as “… a threshold 
at which small quantitative changes in the system trigger a non-
linear change process that is driven by system-internal feedback 
mechanisms and inevitably leads to a qualitatively different state 
of the system, which is often irreversible” [5]. Tipping points are 
phenomena that can have detrimental outcomes for a system or 
structure if, for example, the function of the system would be 
impaired or completely obliterated. In healthcare systems and 
emergency response systems such a loss of function could cost 
lives, cause medical supply shortages, or even health care 
systems collapses. Thus, it is essential to understand, assess, and 
where possible, anticipate such tipping points.  

The pandemic caused by COVID-19 has been spreading 
continuously around the globe since it was discovered on 
December 31, 2019 [1][6][7]. Currently, over 27 million people 
globally have been confirmed infected and more than 889,000 
deaths have been recorded. In the United States, over 6.2 million 
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people have been confirmed infected with 189,000 fatalities [8]. 
With such high numbers, the management of the pandemic has 
been paramount. The situation created by COVID-19 is 
especially difficult for people who provide essential and 
emergency services. Due to the critical and essential nature of 
the emergency services, these systems have exposure to general 
population that are affected by COVID-19 by default. The police 
officers, fire fighters, and EMT are crucial and indispensable 
services for public and domestic order. 

Unfortunately, the police, fire fighters, and EMT are also 
affected by the virus and over time, a number of them have 
contracted the virus. In New York City for example, at times, 
about 20% of the police force were out sick due to the pandemic 
[9]. Such circumstances can be detrimental if institutions such 
as the police, medical personnel, or EMT temporarily or 
permanently lose a considerable number of personnel and thus 
cannot cope with the dynamic demand anymore. In case of the 
police force, this could mean that not all service calls can be 
attended to. For nurses and doctors, such situations can lead to 
care shortages and lower nurse-to-patient ratios. This increases 
the workload for the remaining medical personnel and states 
waiving the limits and requirements of the nurse-to-patient 
ratios during the pandemic have already been reported [10]. 

The above described shortages and lack of personnel will 
increase the load of these systems and could induce their partial 
collapse. For example, with extreme shortages in personnel due 
to COVID-19, the police would only be able to respond to the 
most important calls, leaving smaller crimes unattended for the 
time being. This lack of attendance could cause a downward 
spiral and increase of those crimes if people notice that they are 
not being pursued. Such developments would put the entire 
social system under more stress as the effects are hard to predict 
and could quickly turn into a vicious cycle.  

This predicament is what the research in this paper set out to 
address. The authors’ previous paper described a simulation and 
system model for the spread of the COVID-19 pandemic in the 
general population. With this approach an increase in infections 
as a results of increased contacts over the celebratory events of 
Easter and Passover in NYC was predicted [2]. The prediction 
later was confirmed by the reported numbers, which showed a 
notable increase after the incubation period following Easter and 
Passover [11]. The paper at hand addresses the behavior of two 
connected systems/structures: the emergency personnel systems 
in dynamic interaction with general population. The authors 
expanded and modified the existing simulation to allow for the 
assessment of additional sub-systems besides the general public 
and were thus able to evaluate how the emergency personnel and 
forces react under load and pressure. 

The current research studies the effects of the pandemic on 
the emergency personnel utilizing the example of the police 
force in NYC, as the data for this institution was publicly 
available and accessible. It has to be noted that this choice is by 
no means a definite restriction of the model as it can be easily 
adapted and fed with different numbers to fit various other 
locations, areas, and scenarios. The model and methodology are 
described in Section II, starting with a summary of previous 
work cited [2], followed by the extensions and modifications, 
and finally the methodology applied in this paper. Subsequently, 
the assumptions as well as the chosen parameter are discussed. 

Section IV and V outline and discuss various scenarios with 
different parameters and behaviors to show the possible 
outcomes also in relation to potential tipping points of the 
systems. Finally, Section VI summarizes the outcomes and 
observed phenomena, provides a discussion of the results, and 
describes an outlook regarding future research and possibilities. 

II. MODEL AND METHODOLOGY 
The existing dynamic simulation model designed with the 

software Vensim [12] was derived from a standard SIR model. 
SIR stands for “susceptible–infective-removed” and was first 
proposed by Kermack and McKendrick in 1927 [13]. Instead of 
relying on a transmission factor presented by traditional SIR 
models though, the designed simulation uses the contact rate 
between individuals in conjunction with the infectivity of the 
virus to define the infection rate directly. This allows for 
mimicking and depiction of circumstances such as regulatory 
measures instead of relying merely on the virus transmission and 
its reproduction as a result. Furthermore, the model was 
designed to include various time delays due to incubation, 
recovery, and duration of hospital stays. The time steps and 
calculations were computed in one day intervals over a period 
of 180 days. A modified and simplified flowchart of the model 
and simulation from the previous publication is depicted in 
Figure 1. 

 
Fig. 1. Simulation Flowchart (* marks delay impacts) [2] 

As part of the recent research, the existing model was 
extended to allow for the inclusion of sub-groups, such as the 
police or hospital personnel. To accomplish this, the sub-groups 
were given their own separate branch and therefore could be 
assessed separately in their own small sub-system. Since the two 
branches, the general population and the police force, are not 
isolated and share reciprocating influences, the interactions and 
causal links between the two systems were also included. This 
connection was modeled by splitting the police contact rate into 
two separate rates which eventually defines the police infection 
rate. The first contact rate was based on the contact rates 
between the police force and the general population during their 
services and duties at work, for example when an officer is 
dispatched. The other rate was based on the contacts that police 
officers have with each other while at work. These two rates, in 
addition to the already existing general contact rate, form the 
overall contact rate of the police force and therefore drive their 
infections. The sub-systems are depicted in Figure 2 and the 
equations are listed below. 

Susceptible Infected Recovered

HospitalizedDeceased *

* *

*



The model is based on the same differential system that 
determines the behavior of the three levels S, I, and R for each 
of the two sub-systems with the additions described in the 
previous paper [2]. The infection/recovery of the two sub-
systems is defined by similar equations separately. The 
equations were extended to fit the two sub-systems as described 
below [14]. 

 
Fig. 2. Simulation Flowchart with police force sub-system  

 (* marks delay impacts) 

Equations for both sub-systems (x substitutes general 
population (g) and police force (p)): 

(I) Susceptible General Population: 
  with  
(II) Infectious General Population: 
   with  
(III) Removed General Population (delayed): 
  with  
(IV) Hospitalized General Population (delayed): 
  with  
(V) Deceased General Population (delayed): 
  with  
 so that   
 and   

Table I below shows the definition of the variables used and 
depicted in Figure 3 above, which will also be explained further 
in the assumptions section starting on the next page. 

TABLE I.  VARIBALES FOR FIGURE 2 

 Susceptible Stock  Infection Rate 
 Infected Stock  Recovery Rate (direct) 
 Recovered Stock  Hospitalization Rate 
 Hospitalized Stock  Recovery Rate (Hospital) 
 Deceased Stock  Death Rate 

 
With these equations, it was possible to model the progress of 

the pandemic with the above mentioned contact rates. These 
rates define the parameters  and . The assumptions behind 
these parameters will be outlined in the next section (III). 

The last remaining part of the simulation was the 
performance of the police force. Simulating this factor was 
achieved by including the capacity of the police in the model. 
Herein, the number of available officers at a given time was 
calculated based on the susceptible and recovered individuals. 
With this number, the daily capacity for service calls was 
deduced. Combined with the amount of daily service calls, the 
capacity could be compared to the demand and thus, the actual 
completion of calls was simulated. In case calls were not 
completed, they were queued and a part of the queued calls were 
dropped due to expiration. Figure 3 shows the stocks: 

 
Fig. 3. Police Performance Flowchart 

Table I below shows the definition of the variables used and 
depicted in Figure 3 above, which will also be explained further 
in the assumptions: 

TABLE II.  VARIBALES FOR FIGURE 3 

 Queued Demand/Calls  Incoming Demand Rate 
 Completed Calls  Drop Rate 
 Dropped Calls  Compeletion Rate 

 
As depicted in Figure 3 above, the calls for the police arrive 

at a constant rate  and are added to the queued calls . From 
the queue then, the calls are either completed at the rate  if the 
capacity is sufficient, or, if the capacity is insufficient, due to too 
many officers being out sick, are dropped at a rate , which is 
defined as a percentage of the calls that were not attended to. 
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The performance of the police force is initially simulated over 
time. Then, based on the resulting performance and assumptions 
described in the next section (III), the load level was calculated, 
which allowed for the implementations of fatigue [3] and the 
Yerkes-Dodsen Law [4] (YD Law). These factors have a 
potential negative impact on the system and influence the 
completion rate . Therefore, the system develops another time 
dependent dynamic, which can possibly cause further 
complication. The exact assumptions behind the fatigue and the 
YD Law will be described below. 

With this model setup, the research methodology outlined 
and described by Maria [15] for simulations was applied. 
Herein, after the definition and design of the model, the 
parameters were tested to yield an outcome that was verifiable. 
For the given case, the verification was conducted by comparing 
the results of the simulation with the real reported numbers 
regarding the pandemic. It has to be noted that, since the 
reported numbers might not include/represent a certain amount 
of unknown cases, that the fatality count was utilized to verify 
the model as this number is the only one tested comprehensively. 

After verifying the model and setting parameters (see next 
section), various scenarios were simulated and assessed based 
on the chosen conditions. The scenarios and their results will be 
described in the fourth and fifth section. Regarding the results, 
the different scenarios were compared as well as analyzed 
separately, to determine their different behaviors and deduce 
potential anomalies or noteworthy behavior, such as system 
function failure. The main focus of the evaluation was the 
assessment of the behavior of the system under increased load 
and stress. The objective was to research how the police force, 
and thus in a transferable way the emergency services in general, 
can behave under load, and how, and to what extent the system 
can be pushed until it collapses. The results of these evaluations 
shed light on the system resilience and knowledge about 
potential threats and dangers.  

The subsequent section will describe all assumptions 
included in the model in order to allow for simulation results as 
realistic as possible. 

III. ASSUMPTIONS AND PARAMETER 
Since the above described model was derived from a 

previously published paper [2], the factors of the core model and 
the underlying assumptions will only be summarized here, and 
afterwards, the new additions will be described in detail. The 
core model for the general population and situation of the model 
was not changed and the simulation was also based on New York 
City (NYC) in 2020, with a population of 8,398,748 people [16]. 
The data for the NYC police force was obtained from publicly 
available records [17] for the year 2018. These numbers allow 
for a verifiable and realistic application of the model.  

The following sections outline the different parameters and 
additions/extension to the model. It has to be noted that, while 
some of the parameters were assumed, their impact is linear and 
correction later on would not change the system behavior nor the 
observed phenomena, only the data points at which the behavior 
emerges. 

A. The Parameters  and  - the Infection Rates 
The previously used infection rate (now ) of the model, 

which describes at what rate the susceptible general population 
is infected was unchanged. The added infection rate for the 
police was developed to fit the system and follows the following 
equation: 

 
The infection rate of the police force depends on the contact 

rate of the police officers with the general population ( ), and 
the contacts of the police personnel with each other during work 
hours ( ). The contact rate of the police officers with the 
general population was assumed to be the contact rate of the 
general population plus the number of police operations each 
officer conducts per day multiplied by the number of contacts 
per service call. 

The other parameters, namely the infectivity ( ) and base 
contact rate (c) for NYC, were left unchanged [18, 19-21]. 

B. The Parameters γ and λ - Recovery & Hospitalization Rate 
For the general population, the recovery and hospitalization 

rate (0.73 and 0.27 respectively) were kept unchanged based on 
the previous sources [22]. For the police force on the other hand, 
both rates were adjusted since the police personnel was assumed 
to not employ any field officers under the age of 20 nor over the 
age of 65. Therefore, based on the hospitalization/recovery 
fraction per age group, the parameters were adjusted, yielding a 
police recovery and hospitalization rate of 0.784 and 0.216. 

C. The Parameters α and δ - Hospital Recovery & Mortality 
As in the last sub-section, the parameters for the hospital 

recovery (0.777) and death rate (0.223) were unchanged for the 
general population, just adjusted for the group age difference, 
which yielded a Police Hospital Recovery Rate of 0.9710 and a 
Police Mortality Rate of 0.02899. 

D. The police performance and capacity 
The police performance flow shown in Figure 3 was assumed 

to have a steady inflow based on the report of the NYPD for the 
year 2018 [17]. According to this report, the NYPD responded 
to more than 6,100,000 service calls that year. This yields 16,712 
calls per day as inflow .  

Also according to the report, the NYPD employed on average 
36,484 uniformed members. Assuming a three shift routine, 24/7 
availability of the police force, 5 workdays per officer, and 1.5 
police officers on average per call, a permanent availability of 
23.79% was calculated. With 1.5 officers per call, this would 
yield on average 2.88 service calls per officer per day at 100% 
completion rate and therefore a  matching . This is the base 
case. As for the capacity, it was assumed that each service call, 
with documentation and transportation, takes on average 2 
hours. Therefore, one officer could complete 4 calls each day 
during an eight hour shift. This was not implemented as a hard 
limit, but as a possibility for expedition exists and thus, the 
maximum capacity of each officers was set to 6 calls per shift 
(emergency capacity). This limit increase comes at the cost of 
increasing fatigue nevertheless (see next sub-section). 

γ

βg βp

βg

βp ⋅ Sp = Sp(t ) ⋅ (cg|p ⋅
Ig(t )

Ng − Dg(t ) + cp|p ⋅
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i

α
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E. Yerkes-Dodsen Influence and Fatigue 
The two stress factors of the YD Law and fatigue were 

implemented as explained above as direct influences for the 
completion rate. The fatigue was implemented as a direct factor 
that starts accumulating when the capacity limit of the police is 
met as described in the last sub-section. Once the completion 
rate/demand falls under the capacity limit again, recuperation at 
the same rate as the fatigue increase before was enabled, 
allowing the police force to decrease the accumulated fatigue. 
As for the influencing factor, the performance changes measured 
by Arnedt et al. [23] were utilized and a factor of 0.00357 
performance loss per fatigue point was applied.  

As for the influence of the Yerkes-Dodsen Law, it was 
discovered that a flat curve had to be applied as otherwise the 
influence would have been disproportionately large and resulted 
in dropped calls at 30% load, for example. Thus, the curve was 
adjusted to negatively impact the performance in the higher load 
zones with a decline starting from 100% performance at 60% 
load down to 95% performance at 100% load (inverted for loads 
under 40%). Since the model could depict and simulate loads 
higher than 100% capacity, the Yerkes-Dodsen Law was 
implemented as a constant depreciation parameter (see Section 
V and VI) for loads over 100% in addition to the time-dependent 
factor above said threshold regulated by the implemented 
fatigue as described above. 

With these parameters, the scenarios for the simulation could 
be run and assessed. In the first verification runs (Section IV), 
the model was validated and verified given the officially 
reported numbers [8] and the behavior observed. In the first 
scenario (Section V), the contact rate for the police force was 
increased to simulate a higher loss in capacity. In the second 
scenario and assessment (Section VI), the incoming calls were 
increased variably in order to test the resilience of the system 
and assess how far it can bounce back from such impacts under 
various conditions. 

IV. BASELINE SCENARIOS AND GENERAL EFFECTS 
With all the parameters described above, a base scenario was 

simulated with the average call rate unchanged and the core 
model of the general population verified as of May 13, 2020 for 
which the simulation showed 20,756 fatalities and the official 
numbers reported 20,406 deaths. Figure 4 below shows the 
fatalities of the simulation for the time from February 2nd 
through May 31st: 

 
Fig. 4. Base Scenario General Population Fatalities NYC 

As for the police force, with a contact rate of 2.8 contacts per 
service call, the fit for action personnel followed the graph 
depicted in Figure 5, which aligns with the official reports 
stating that at the worst time of the pandemic so far, up to 20% 
of the police force were out sick [9]. The below depicted graph 
shows a simulation for 180 days also starting February 2nd. 

 
Fig. 5. Base Scenario Fit Police Force over time for the NYPD 

The behavior and performance of the police force show that 
in this scenario, which closely mimics the real progress of the 
pandemic for those 180 days, the police force as operating 
within its capacity limits at all times. To measure this, the load, 
depicted in Figure 6, for each time step was calculated by 
dividing the number of received calls currently queued by the 
normal capacity of the police force depending on the number of 
currently fit and available officers. 

 
Fig. 6. Base Scenario Load based on capacity over time 

Therefore, it can be concluded that during the pandemic until 
May 31st, the police force was at all times capable of dealing 
with the incoming calls. This has also been compared and 
verified by looking for reports that indicate the opposite during 
the current wave of the pandemic, which yielded no results as of 
May 31st and therefore no reports of capacity prolonged 
exceedance can be deduced. 

The next section will describe the results from the simulations 
that pushed the system further and above its capacity limit to 
assess the possible behavior above those limits.  

Figure 4 - Base Scenario General Population Fatalities NYC 

As for the police force, with a contact rate of 2.8 contacts 
per service call, the fit for action personnel followed the graph 
depicted in Figure 5 below, which aligns with the official 
reports stating that at the worst time of the pandemic until 
today, up to 20% of the police force were out sick [9]. The 
below depicted graph shows a simulation for 180 days starting 
February 22nd as well. 

 
Figure 5 - Base Scenario Fit Police Force Over Time NYPD 

The behavior and performance of the police force show that 
in this scenario, which closely mimics the real progress of the 
pandemic so far, the police force as operating within its 
capacity limits at all times. To measure this, the load, depicted 
in Figure 6, for each time step was calculated by dividing the 
number of received calls currently queued by the normal 
capacity of the police force depending on the number of 
currently fit officers. 

 
Figure 6 - Base Scenario Load Based on Capacity Over Time 

Therefore, it can be concluded that during the pandemic so 
far, the police force was at all times capable of dealing with the 
incoming calls. This has also been checked by looking for 
reports that indicate the opposite during the current pandemic, 
which yielded no results as of May 24th. The next section will 
describe the results from the simulations that pushed the 
system further and above its capacity limit. 

V. SCENARIO A AND B: MODULATED INFECTION NUMBERS 
Since the baseline scenario showed that the police was 

operating within its capacity limits during the realistic case, the 
system was pushed in order to observe its behavior under more 
load and stress. To achieve this, the contact rate of the police 
force with the population was increased. It was discovered that 
up to a contact rate of around 7, above which the system first 
hits the 100% load mark, it behaves as expected. Above this 
value, the behavior changes. It has to be considered that while 
the modulated parameter for this was the contact rate, this can 
also be caused by higher infection rates of the general 
population for example. The YD Law factor over 100% load 
was set to be declining by 0.0167% per day. Figure 7 shows the 
impact for the fit police force over time for the different 
contact rates and Figure 8 the load. 

 
Figure 7 - Scenario A: Fit Police Force Over Time 

 
Figure 8 - Scenario A: Load Over Time  

Once the system hits 100% load, it changes its behavior and 
the fatigue as well as the lower YD Law factor unfold their 
influences. Despite all these influences, the system still shows 
its capabilities to bounce back and always regain its full 
function, albeit with more losses for dthe higher scenarios. For 
example, the amount of dropped calls for the 50 scenario 
totaled at 19,628.7. Moreover, the peak fatigue was highest for 
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Figure 4 - Base Scenario General Population Fatalities NYC 

As for the police force, with a contact rate of 2.8 contacts 
per service call, the fit for action personnel followed the graph 
depicted in Figure 5 below, which aligns with the official 
reports stating that at the worst time of the pandemic until 
today, up to 20% of the police force were out sick [9]. The 
below depicted graph shows a simulation for 180 days starting 
February 22nd as well. 

 
Figure 5 - Base Scenario Fit Police Force Over Time NYPD 

The behavior and performance of the police force show that 
in this scenario, which closely mimics the real progress of the 
pandemic so far, the police force as operating within its 
capacity limits at all times. To measure this, the load, depicted 
in Figure 6, for each time step was calculated by dividing the 
number of received calls currently queued by the normal 
capacity of the police force depending on the number of 
currently fit officers. 

 
Figure 6 - Base Scenario Load Based on Capacity Over Time 

Therefore, it can be concluded that during the pandemic so 
far, the police force was at all times capable of dealing with the 
incoming calls. This has also been checked by looking for 
reports that indicate the opposite during the current pandemic, 
which yielded no results as of May 24th. The next section will 
describe the results from the simulations that pushed the 
system further and above its capacity limit. 

V. SCENARIO A AND B: MODULATED INFECTION NUMBERS 
Since the baseline scenario showed that the police was 

operating within its capacity limits during the realistic case, the 
system was pushed in order to observe its behavior under more 
load and stress. To achieve this, the contact rate of the police 
force with the population was increased. It was discovered that 
up to a contact rate of around 7, above which the system first 
hits the 100% load mark, it behaves as expected. Above this 
value, the behavior changes. It has to be considered that while 
the modulated parameter for this was the contact rate, this can 
also be caused by higher infection rates of the general 
population for example. The YD Law factor over 100% load 
was set to be declining by 0.0167% per day. Figure 7 shows the 
impact for the fit police force over time for the different 
contact rates and Figure 8 the load. 

 
Figure 7 - Scenario A: Fit Police Force Over Time 

 
Figure 8 - Scenario A: Load Over Time  

Once the system hits 100% load, it changes its behavior and 
the fatigue as well as the lower YD Law factor unfold their 
influences. Despite all these influences, the system still shows 
its capabilities to bounce back and always regain its full 
function, albeit with more losses for dthe higher scenarios. For 
example, the amount of dropped calls for the 50 scenario 
totaled at 19,628.7. Moreover, the peak fatigue was highest for 
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Figure 4 - Base Scenario General Population Fatalities NYC 

As for the police force, with a contact rate of 2.8 contacts 
per service call, the fit for action personnel followed the graph 
depicted in Figure 5 below, which aligns with the official 
reports stating that at the worst time of the pandemic until 
today, up to 20% of the police force were out sick [9]. The 
below depicted graph shows a simulation for 180 days starting 
February 22nd as well. 

 
Figure 5 - Base Scenario Fit Police Force Over Time NYPD 

The behavior and performance of the police force show that 
in this scenario, which closely mimics the real progress of the 
pandemic so far, the police force as operating within its 
capacity limits at all times. To measure this, the load, depicted 
in Figure 6, for each time step was calculated by dividing the 
number of received calls currently queued by the normal 
capacity of the police force depending on the number of 
currently fit officers. 

 
Figure 6 - Base Scenario Load Based on Capacity Over Time 

Therefore, it can be concluded that during the pandemic so 
far, the police force was at all times capable of dealing with the 
incoming calls. This has also been checked by looking for 
reports that indicate the opposite during the current pandemic, 
which yielded no results as of May 24th. The next section will 
describe the results from the simulations that pushed the 
system further and above its capacity limit. 

V. SCENARIO A AND B: MODULATED INFECTION NUMBERS 
Since the baseline scenario showed that the police was 

operating within its capacity limits during the realistic case, the 
system was pushed in order to observe its behavior under more 
load and stress. To achieve this, the contact rate of the police 
force with the population was increased. It was discovered that 
up to a contact rate of around 7, above which the system first 
hits the 100% load mark, it behaves as expected. Above this 
value, the behavior changes. It has to be considered that while 
the modulated parameter for this was the contact rate, this can 
also be caused by higher infection rates of the general 
population for example. The YD Law factor over 100% load 
was set to be declining by 0.0167% per day. Figure 7 shows the 
impact for the fit police force over time for the different 
contact rates and Figure 8 the load. 

 
Figure 7 - Scenario A: Fit Police Force Over Time 

 
Figure 8 - Scenario A: Load Over Time  

Once the system hits 100% load, it changes its behavior and 
the fatigue as well as the lower YD Law factor unfold their 
influences. Despite all these influences, the system still shows 
its capabilities to bounce back and always regain its full 
function, albeit with more losses for dthe higher scenarios. For 
example, the amount of dropped calls for the 50 scenario 
totaled at 19,628.7. Moreover, the peak fatigue was highest for 
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V. SCENARIO A AND B: MODULATED INFECTION NUMBERS 
Since the baseline scenario showed that the police was 

operating within its capacity limits during the realistic case and 
the first wave, the system was pushed in order to observe its 
behavior under more load and stress. To achieve this, the contact 
rate of the police force with the population was increased. It was 
discovered that up to a contact rate of around 7, above which the 
system first hits the 100% load mark, it behaves as expected. 
Above this value, the behavior changes. It has to be considered 
that while the modulated parameter for this was the contact rate, 
this can also be caused by higher infection rates of the general 
population for example. The YD Law factor over 100% load was 
set to be declining by 0.0167% per load point.  

Figure 7 shows the impact for the fit police force over time 
for the different contact rates and Figure 8 the respective load. 

 
Fig. 7. Scenario A: Fit Police Force over time 

 
Fig. 8. Scenario A: Load over time 

Once the system hits 100% load, it changes its behavior and 
the fatigue as well as the lower YD Law unfold their impact. 
Despite all these influences, the system still shows its 
capabilities to bounce back and always regain its full function, 
albeit with more losses for the higher scenarios. For example, 
the amount of dropped calls for the 50 scenario totaled at 
19,628.7 calls. Moreover, the impact of fatigue was highest for 
the 20 and 10 scenarios. This is due to the fact that in the 50 
scenario, an extreme amount of personnel left sick within a short 
time span before day 40, but the recovered portion of these 
infected people also returned early in the simulation, which 
resulted in less prolonged load for the system and therefore less 
fatigue in total. 

For the second scenario (B), the same parameters were 
applied with a different Yerkes-Dodsen Factor above 100% 
load: this time a step down to 80% at 100% load and 
successively the previously stated constant depreciation. With 
these parameters, the system was not capable of bouncing back 
to its previous function after it hit 100% load. Even the scenarios 
that previously seemed like they could handle the impact 
without load spikes now turned into constant depreciation. 
Figure 9 and 10 show the load and completion rate over time. 
Once the system reaches its maximum capacity, the load 
increases at first before the available number of officers 
increases again, which spreads the demand and reduces the 
strain on the system. Unfortunately, despite the return to full 
personnel (minus the deceased staff), the effect of the fatigue 
cannot be mitigated and the capacity keeps declining over time. 
Once the emergency capacity per officer is reached, an even 
steeper decline can be observed and the system degradation 
increases even more. 

 
Fig. 9. Scenario B: Load over time  

 
Fig. 10. Scenario B: Completion Rate over time 

Figures 11 and 12 show that there are circumstances under 
which the model is not capable of dealing with and absorbing 
overload. This is a critical observation as it puts the resilience 
seen in Scenario A into perspective. A performance drop above 
100% capacity/load has also been described by other researchers 
who examined this behavior [24]. Therefore, while such limits 
might be shaped by the parameters set in the model, they 
nevertheless pose a threshold that has to be accounted for.  

 
Figure 4 - Base Scenario General Population Fatalities NYC 

As for the police force, with a contact rate of 2.8 contacts 
per service call, the fit for action personnel followed the graph 
depicted in Figure 5 below, which aligns with the official 
reports stating that at the worst time of the pandemic until 
today, up to 20% of the police force were out sick [9]. The 
below depicted graph shows a simulation for 180 days starting 
February 22nd as well. 

 
Figure 5 - Base Scenario Fit Police Force Over Time NYPD 

The behavior and performance of the police force show that 
in this scenario, which closely mimics the real progress of the 
pandemic so far, the police force as operating within its 
capacity limits at all times. To measure this, the load, depicted 
in Figure 6, for each time step was calculated by dividing the 
number of received calls currently queued by the normal 
capacity of the police force depending on the number of 
currently fit officers. 

 
Figure 6 - Base Scenario Load Based on Capacity Over Time 

Therefore, it can be concluded that during the pandemic so 
far, the police force was at all times capable of dealing with the 
incoming calls. This has also been checked by looking for 
reports that indicate the opposite during the current pandemic, 
which yielded no results as of May 24th. The next section will 
describe the results from the simulations that pushed the 
system further and above its capacity limit. 

V. SCENARIO A AND B: MODULATED INFECTION NUMBERS 
Since the baseline scenario showed that the police was 

operating within its capacity limits during the realistic case, the 
system was pushed in order to observe its behavior under more 
load and stress. To achieve this, the contact rate of the police 
force with the population was increased. It was discovered that 
up to a contact rate of around 7, above which the system first 
hits the 100% load mark, it behaves as expected. Above this 
value, the behavior changes. It has to be considered that while 
the modulated parameter for this was the contact rate, this can 
also be caused by higher infection rates of the general 
population for example. The YD Law factor over 100% load 
was set to be declining by 0.0167% per day. Figure 7 shows the 
impact for the fit police force over time for the different 
contact rates and Figure 8 the load. 

 
Figure 7 - Scenario A: Fit Police Force Over Time 

 
Figure 8 - Scenario A: Load Over Time  

Once the system hits 100% load, it changes its behavior and 
the fatigue as well as the lower YD Law factor unfold their 
influences. Despite all these influences, the system still shows 
its capabilities to bounce back and always regain its full 
function, albeit with more losses for dthe higher scenarios. For 
example, the amount of dropped calls for the 50 scenario 
totaled at 19,628.7. Moreover, the peak fatigue was highest for 
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Figure 4 - Base Scenario General Population Fatalities NYC 

As for the police force, with a contact rate of 2.8 contacts 
per service call, the fit for action personnel followed the graph 
depicted in Figure 5 below, which aligns with the official 
reports stating that at the worst time of the pandemic until 
today, up to 20% of the police force were out sick [9]. The 
below depicted graph shows a simulation for 180 days starting 
February 22nd as well. 

 
Figure 5 - Base Scenario Fit Police Force Over Time NYPD 

The behavior and performance of the police force show that 
in this scenario, which closely mimics the real progress of the 
pandemic so far, the police force as operating within its 
capacity limits at all times. To measure this, the load, depicted 
in Figure 6, for each time step was calculated by dividing the 
number of received calls currently queued by the normal 
capacity of the police force depending on the number of 
currently fit officers. 

 
Figure 6 - Base Scenario Load Based on Capacity Over Time 

Therefore, it can be concluded that during the pandemic so 
far, the police force was at all times capable of dealing with the 
incoming calls. This has also been checked by looking for 
reports that indicate the opposite during the current pandemic, 
which yielded no results as of May 24th. The next section will 
describe the results from the simulations that pushed the 
system further and above its capacity limit. 

V. SCENARIO A AND B: MODULATED INFECTION NUMBERS 
Since the baseline scenario showed that the police was 

operating within its capacity limits during the realistic case, the 
system was pushed in order to observe its behavior under more 
load and stress. To achieve this, the contact rate of the police 
force with the population was increased. It was discovered that 
up to a contact rate of around 7, above which the system first 
hits the 100% load mark, it behaves as expected. Above this 
value, the behavior changes. It has to be considered that while 
the modulated parameter for this was the contact rate, this can 
also be caused by higher infection rates of the general 
population for example. The YD Law factor over 100% load 
was set to be declining by 0.0167% per day. Figure 7 shows the 
impact for the fit police force over time for the different 
contact rates and Figure 8 the load. 

 
Figure 7 - Scenario A: Fit Police Force Over Time 

 
Figure 8 - Scenario A: Load Over Time  

Once the system hits 100% load, it changes its behavior and 
the fatigue as well as the lower YD Law factor unfold their 
influences. Despite all these influences, the system still shows 
its capabilities to bounce back and always regain its full 
function, albeit with more losses for dthe higher scenarios. For 
example, the amount of dropped calls for the 50 scenario 
totaled at 19,628.7. Moreover, the peak fatigue was highest for 
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the 20 and 10 scenarios, since the impact of the 50 scenario 
was characterized by an extreme first peak which, over time, 
did not leave the same duration to accumulate fatigue. 

For the second scenario, the same parameters were applied 
with a different Yerkes-Dodsen Factor above 100% load: this 
time a step down to 80% at 100% load and successively the 
previously stated constant depreciation. With these parameters, 
the system was not capable to bounce back to its previous 
function after it hit 100% load. Even the scenarios that 
previously seemed like they could handle the impact without 
load spikes, now turned into a constant depreciation. Figure 9 
and 10 show the load and completion rate over time. The load 
shows that once the system reaches its capacity maximum, it 
increases at first before the available number of officers 
increases again. Unfortunately, despite this return, the effect of 
the fatigue cannot be mitigated and the system keeps declining. 
Once the emergency capacity of more calls per officer is 
reached, we see an even steeper decline and the system 
degradation increases even more. 

 
Figure 9 - Scenario B: Load Over Time 

 
Figure 10 - Scenario B: Completion Rate 

While most of these observed phenomena are connect to 
certain thresholds that the model implements, they albeit show 
that there are circumstances under which the model is not 
capable of dealing with and absorbing overload. This is the 
important first observation as it puts the resilience seen in 
Scenario A into perspective. A performance drop above 100% 
capacity/load has been described by other researchers who 
examined this behavior [see 24]. Therefore, while such limits 

might be shaped by the parameters set in the model, they 
nevertheless pose a threshold that has to be accounted for.  

The next and second simulation scenario assesses the 
behavior of the system under variable inputs/parameters. 

V. SCENARIO C AND D: MODULATED INPUTS 
Since the last scenarios showed that the system is resilient 

over time and has the capability to return to its function even 
after significant impacts, the last two simulated scenarios were 
to evaluate the capability of the system to absorb singular and 
not constant input parameters. Therefore, the base scenario was 
utilized as a reference and then, the incoming calls were 
changed for each scenario. 

First, Scenario C evaluated different heights of impacts  in 
percent as well as wave forms. Scenario D evaluated singular 
and irregular increases. Figure 11 and 12 show the results of 
Scenario C and will be evaluated hereinafter. 

 
Figure 11 - Scenario C: Load Over Time 

 
Figure 12 - Scenario C: Completion Rate 

The figures show that the system is capable of handling 
increased loads, but only up to its capacity limits. Once the 
normal capacity limit is reached, the system has no means to 
absorb the increase and slowly degrades until it reaches its total 
emergency capacity limit. At this point, the system turns to a 
steady and constant decline, which will further exacerbate until 
the input changes or the system reaches a steady rate of 
minimal performance. 

Since such scenarios of constantly increased rates are 
extreme, the next and last scenario looked at modulated and 
time dependent input increases/decreases. For the last scenario, 
we utilized inconsistent inputs such as spikes in intervals or 
wave form patterns. These patterns are described and discussed 
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the 20 and 10 scenarios, since the impact of the 50 scenario 
was characterized by an extreme first peak which, over time, 
did not leave the same duration to accumulate fatigue. 

For the second scenario, the same parameters were applied 
with a different Yerkes-Dodsen Factor above 100% load: this 
time a step down to 80% at 100% load and successively the 
previously stated constant depreciation. With these parameters, 
the system was not capable to bounce back to its previous 
function after it hit 100% load. Even the scenarios that 
previously seemed like they could handle the impact without 
load spikes, now turned into a constant depreciation. Figure 9 
and 10 show the load and completion rate over time. The load 
shows that once the system reaches its capacity maximum, it 
increases at first before the available number of officers 
increases again. Unfortunately, despite this return, the effect of 
the fatigue cannot be mitigated and the system keeps declining. 
Once the emergency capacity of more calls per officer is 
reached, we see an even steeper decline and the system 
degradation increases even more. 

 
Figure 9 - Scenario B: Load Over Time 

 
Figure 10 - Scenario B: Completion Rate 

While most of these observed phenomena are connect to 
certain thresholds that the model implements, they albeit show 
that there are circumstances under which the model is not 
capable of dealing with and absorbing overload. This is the 
important first observation as it puts the resilience seen in 
Scenario A into perspective. A performance drop above 100% 
capacity/load has been described by other researchers who 
examined this behavior [see 24]. Therefore, while such limits 

might be shaped by the parameters set in the model, they 
nevertheless pose a threshold that has to be accounted for.  

The next and second simulation scenario assesses the 
behavior of the system under variable inputs/parameters. 

V. SCENARIO C AND D: MODULATED INPUTS 
Since the last scenarios showed that the system is resilient 

over time and has the capability to return to its function even 
after significant impacts, the last two simulated scenarios were 
to evaluate the capability of the system to absorb singular and 
not constant input parameters. Therefore, the base scenario was 
utilized as a reference and then, the incoming calls were 
changed for each scenario. 

First, Scenario C evaluated different heights of impacts  in 
percent as well as wave forms. Scenario D evaluated singular 
and irregular increases. Figure 11 and 12 show the results of 
Scenario C and will be evaluated hereinafter. 

 
Figure 11 - Scenario C: Load Over Time 

 
Figure 12 - Scenario C: Completion Rate 

The figures show that the system is capable of handling 
increased loads, but only up to its capacity limits. Once the 
normal capacity limit is reached, the system has no means to 
absorb the increase and slowly degrades until it reaches its total 
emergency capacity limit. At this point, the system turns to a 
steady and constant decline, which will further exacerbate until 
the input changes or the system reaches a steady rate of 
minimal performance. 

Since such scenarios of constantly increased rates are 
extreme, the next and last scenario looked at modulated and 
time dependent input increases/decreases. For the last scenario, 
we utilized inconsistent inputs such as spikes in intervals or 
wave form patterns. These patterns are described and discussed 
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VI. SCEANRIO C AND D: MODULATED INPUTS 
Since the last scenarios showed that the system is resilient 

over time and has the capability to return to its function even 
after significant impacts, the last two scenarios were to evaluate 
the capability of the system to absorb varying input parameters. 
Therefore, the base scenario was utilized as a reference and the 
incoming calls were changed for each scenario. 

First, Scenario C evaluated different constant increases in 
demand in percent compared to the baseline above. Scenario D 
evaluated changing increases in various forms, such as wave 
patterns for example. This allowed for the assessment of the 
system under changing and varying influences to see what 
behavior would emerge in a fluctuating environment. 

Figure 11 and 12 show the results of Scenario C and will be 
evaluated hereinafter. 

 
Fig. 11. Scenario C: Load over time 

 
Fig. 12. Scenario C: Completion Rate over time 

Figures 11 and 12 show that the system is capable of 
handling increased loads up to its capacity limits. Once the 
normal capacity limit is reached, the system has no means to 
absorb the increase and slowly degrades until it reaches its total 
emergency capacity limit. At this point, the system turns to a 
constant decline, which further worsens until the system reaches 
a steady rate of minimal performance. 

Since such scenarios of constantly increased rates are 
extreme, the next, and last scenario looked at modulated and 
time dependent input increases/decreases. For the last scenario, 
inconsistent inputs such as spikes in intervals or wave form 
patterns were utilized. These patterns are described and 
discussed in the figures below. The results show that wave forms 

increase the resilience of the system by giving it room to 
recuperate during the spikes. For a utilized sinus wave in Figure 
13 for example, the system maintains its function longer and the 
effect of the increases can be absorbed. This becomes more and 
more difficult once the waves get longer or increase their 
amplitude. As shown in Figure 13, doubling the wavelength 
leads to the obliteration of fatigue recovery and sent the system 
into a downward spiral. The depicted sinus waves describe an 
amplitude of 40% around the value stated in the legends. 

With these influences, the system showed the capability to 
handle more temporary fluctuations as it would without the 
oscillating inputs. Yet, this only is true up until a certain point as 
well. Once the system enters a state at which the regeneration 
periods are not sufficient anymore, it again enters a degrading 
path and degenerates with the incoming waves. Herein, the 
length of the waves has a major impact as longer waves yield 
earlier consequences but cause a lower average slope in the long 
run. Thus, the system is better suited for short waves and can 
operate better under more predictable input deviations. 

Figure 13 and 14 show the results of the different 
modulations for Scenario D. 

 
Fig. 13. Scenario D: Completion Rate over time 

 
Fig. 14. Scenario D: Completion Rate over time 

The final section will evaluate the results and discuss their 
meaning as a holistic assessment as well as comparison. 

the 20 and 10 scenarios, since the impact of the 50 scenario 
was characterized by an extreme first peak which, over time, 
did not leave the same duration to accumulate fatigue. 

For the second scenario, the same parameters were applied 
with a different Yerkes-Dodsen Factor above 100% load: this 
time a step down to 80% at 100% load and successively the 
previously stated constant depreciation. With these parameters, 
the system was not capable to bounce back to its previous 
function after it hit 100% load. Even the scenarios that 
previously seemed like they could handle the impact without 
load spikes, now turned into a constant depreciation. Figure 9 
and 10 show the load and completion rate over time. The load 
shows that once the system reaches its capacity maximum, it 
increases at first before the available number of officers 
increases again. Unfortunately, despite this return, the effect of 
the fatigue cannot be mitigated and the system keeps declining. 
Once the emergency capacity of more calls per officer is 
reached, we see an even steeper decline and the system 
degradation increases even more. 

 
Figure 9 - Scenario B: Load Over Time 

 
Figure 10 - Scenario B: Completion Rate 

While most of these observed phenomena are connect to 
certain thresholds that the model implements, they albeit show 
that there are circumstances under which the model is not 
capable of dealing with and absorbing overload. This is the 
important first observation as it puts the resilience seen in 
Scenario A into perspective. A performance drop above 100% 
capacity/load has been described by other researchers who 
examined this behavior [see 24]. Therefore, while such limits 

might be shaped by the parameters set in the model, they 
nevertheless pose a threshold that has to be accounted for.  

The next and second simulation scenario assesses the 
behavior of the system under variable inputs/parameters. 

V. SCENARIO C AND D: MODULATED INPUTS 
Since the last scenarios showed that the system is resilient 

over time and has the capability to return to its function even 
after significant impacts, the last two simulated scenarios were 
to evaluate the capability of the system to absorb singular and 
not constant input parameters. Therefore, the base scenario was 
utilized as a reference and then, the incoming calls were 
changed for each scenario. 

First, Scenario C evaluated different heights of impacts  in 
percent as well as wave forms. Scenario D evaluated singular 
and irregular increases. Figure 11 and 12 show the results of 
Scenario C and will be evaluated hereinafter. 

 
Figure 11 - Scenario C: Load Over Time 

 
Figure 12 - Scenario C: Completion Rate 

The figures show that the system is capable of handling 
increased loads, but only up to its capacity limits. Once the 
normal capacity limit is reached, the system has no means to 
absorb the increase and slowly degrades until it reaches its total 
emergency capacity limit. At this point, the system turns to a 
steady and constant decline, which will further exacerbate until 
the input changes or the system reaches a steady rate of 
minimal performance. 

Since such scenarios of constantly increased rates are 
extreme, the next and last scenario looked at modulated and 
time dependent input increases/decreases. For the last scenario, 
we utilized inconsistent inputs such as spikes in intervals or 
wave form patterns. These patterns are described and discussed 
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the 20 and 10 scenarios, since the impact of the 50 scenario 
was characterized by an extreme first peak which, over time, 
did not leave the same duration to accumulate fatigue. 

For the second scenario, the same parameters were applied 
with a different Yerkes-Dodsen Factor above 100% load: this 
time a step down to 80% at 100% load and successively the 
previously stated constant depreciation. With these parameters, 
the system was not capable to bounce back to its previous 
function after it hit 100% load. Even the scenarios that 
previously seemed like they could handle the impact without 
load spikes, now turned into a constant depreciation. Figure 9 
and 10 show the load and completion rate over time. The load 
shows that once the system reaches its capacity maximum, it 
increases at first before the available number of officers 
increases again. Unfortunately, despite this return, the effect of 
the fatigue cannot be mitigated and the system keeps declining. 
Once the emergency capacity of more calls per officer is 
reached, we see an even steeper decline and the system 
degradation increases even more. 

 
Figure 9 - Scenario B: Load Over Time 

 
Figure 10 - Scenario B: Completion Rate 

While most of these observed phenomena are connect to 
certain thresholds that the model implements, they albeit show 
that there are circumstances under which the model is not 
capable of dealing with and absorbing overload. This is the 
important first observation as it puts the resilience seen in 
Scenario A into perspective. A performance drop above 100% 
capacity/load has been described by other researchers who 
examined this behavior [see 24]. Therefore, while such limits 

might be shaped by the parameters set in the model, they 
nevertheless pose a threshold that has to be accounted for.  

The next and second simulation scenario assesses the 
behavior of the system under variable inputs/parameters. 

V. SCENARIO C AND D: MODULATED INPUTS 
Since the last scenarios showed that the system is resilient 

over time and has the capability to return to its function even 
after significant impacts, the last two simulated scenarios were 
to evaluate the capability of the system to absorb singular and 
not constant input parameters. Therefore, the base scenario was 
utilized as a reference and then, the incoming calls were 
changed for each scenario. 

First, Scenario C evaluated different heights of impacts  in 
percent as well as wave forms. Scenario D evaluated singular 
and irregular increases. Figure 11 and 12 show the results of 
Scenario C and will be evaluated hereinafter. 

 
Figure 11 - Scenario C: Load Over Time 

 
Figure 12 - Scenario C: Completion Rate 

The figures show that the system is capable of handling 
increased loads, but only up to its capacity limits. Once the 
normal capacity limit is reached, the system has no means to 
absorb the increase and slowly degrades until it reaches its total 
emergency capacity limit. At this point, the system turns to a 
steady and constant decline, which will further exacerbate until 
the input changes or the system reaches a steady rate of 
minimal performance. 

Since such scenarios of constantly increased rates are 
extreme, the next and last scenario looked at modulated and 
time dependent input increases/decreases. For the last scenario, 
we utilized inconsistent inputs such as spikes in intervals or 
wave form patterns. These patterns are described and discussed 
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in the figures below. The results show that wave forms increase 
the resilience of the system by giving it room to recuperate 
during the spikes. For a utilized sinus wave in Figure 13 for 
example, the system maintains its function longer and the 
effect of the increases can be absorbed. This becomes more and 
more difficult once the waves get longer or increase their 
amplitude. As shown in Figure 13, doubling the wave length 
lead to the obliteration of fatigue recovery and sent the system 
into a downward spiral. The depicted sinus waves describe an 
amplitude of 40% around the value stated in the legends. 

With these wave function influences, the system showed 
that it can handle more increases as it would without the 
oscillating inputs. Yet, this only is true up until a certain point 
as well. Once the system enters a state at which the 
regeneration periods are not sufficient anymore, it again enters 
a degrading path and degenerates with the incoming waves. 
Herein, the length of the waves has a major impact as longer 
waves yield earlier consequences but cause a lower average 
slope in the long run. Thus, the system is better suited for short 
waves and can better operate under more predictable input 
deviations. 

The final section will evaluate the results and discuss their 
meaning as a holistic assessment as well as comparison. Figure 
13 and 14 show the results of the different modulation for 
Scenario D. 

 
Figure 13 - Scenario D: Load Over Time 

 
Figure 14 - Scenario D: Completion Rate 

VI. CONCLUSION AND OUTLOOK 
The sections described above showed four different 

scenarios that simulated various impacts and conditions for the 
police force as a representative system of the emergency 
services during the current pandemic. The first scenario 
mimicked various degrees of temporary removal of officers 
due to sickness. The second scenario added a performance drop 
at the capacity maximum to the first scenario. The third and 
fourth scenario assessed increased inputs/demand. Herein, the 
third scenario simulated constant increases and the last one 
evaluated the effect of various wave form inputs. 

Overall, the scenarios have shown different effects that the 
pandemic and other influencing factors can have on systems 
such as the emergency personnel, in this case the police force. 
In general, the system is resilient and stable when it comes to 
its capacities and it can even handle temporary overloads, 
albeit with losses regarding its effectivity and efficiency.  

The results from the first scenario were that the system is 
capable of absorbing temporary removal of officers effectively 
and it shows the capability to regain its function after the 
impact. These results were directly implemented into the 
second scenario, which showed that while resilient, the system 
can only handle performance drops above its maximum normal 
capacity until a certain point. Once too many officers are 
removed from the system, it tips into a downward spiral and 
the accumulating fatigue in combination with the YD 
performance impact does not allow for the system to recover. It 
has to be noted that under certain circumstances, the system 
develops an overshooting phenomenon, which could be 
utilized to bring the system back to stability, if the averse 
effects could be mitigated (see spikes above normal completion 
rate level in Figure 10). Unfortunately, the system is not 
capable of utilizing these spikes as compensation just by itself 
without other influences. 

The third scenario revealed that the system even possesses 
some resilience when it comes to constant demand increases. It 
showed that it can absorb the missing officers even with 
increased demand up until a certain point. Once the demand 
was too high, the system steadily and slowly degrades until it 
reaches its emergency capacity and finally collapses. 

The fourth and last scenario demonstrated that erratic or 
inconsistent inputs can be beneficial as well as detrimental for 
the system. Short swings (close to square waves) allow the 
system enough time to recuperate and it thus showed the 
capability to deal with (on average) even higher demand as 
compared to its behavior with a continuous and increased 
input. Longer waves cause the opposite effect and send the 
system into degradation even earlier as it would have with a  
constant input of the same average. This is due to the fact that 
the increases bring the system to its threshold and then tip it at 
which point it cannot handle the demand anymore even after 
the input subsides. The system completely collapses very 
quickly in two of the simulated runs. These insights can be 
very helpful and will be further pursued since the assumed call 
rate input was the calculated average and in reality fluctuates 
according to certain patterns as well. 

Overall, the system has shown some thresholds that can be 
tipping points. Given the initial and overarching goal of our 
research, we see that there are several behaviors worth 
analyzing and evaluating further. We will continue to assess the 
recorded behaviors in order to define their exact circumstances 
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in the figures below. The results show that wave forms increase 
the resilience of the system by giving it room to recuperate 
during the spikes. For a utilized sinus wave in Figure 13 for 
example, the system maintains its function longer and the 
effect of the increases can be absorbed. This becomes more and 
more difficult once the waves get longer or increase their 
amplitude. As shown in Figure 13, doubling the wave length 
lead to the obliteration of fatigue recovery and sent the system 
into a downward spiral. The depicted sinus waves describe an 
amplitude of 40% around the value stated in the legends. 

With these wave function influences, the system showed 
that it can handle more increases as it would without the 
oscillating inputs. Yet, this only is true up until a certain point 
as well. Once the system enters a state at which the 
regeneration periods are not sufficient anymore, it again enters 
a degrading path and degenerates with the incoming waves. 
Herein, the length of the waves has a major impact as longer 
waves yield earlier consequences but cause a lower average 
slope in the long run. Thus, the system is better suited for short 
waves and can better operate under more predictable input 
deviations. 

The final section will evaluate the results and discuss their 
meaning as a holistic assessment as well as comparison. Figure 
13 and 14 show the results of the different modulation for 
Scenario D. 

 
Figure 13 - Scenario D: Load Over Time 

 
Figure 14 - Scenario D: Completion Rate 

VI. CONCLUSION AND OUTLOOK 
The sections described above showed four different 

scenarios that simulated various impacts and conditions for the 
police force as a representative system of the emergency 
services during the current pandemic. The first scenario 
mimicked various degrees of temporary removal of officers 
due to sickness. The second scenario added a performance drop 
at the capacity maximum to the first scenario. The third and 
fourth scenario assessed increased inputs/demand. Herein, the 
third scenario simulated constant increases and the last one 
evaluated the effect of various wave form inputs. 

Overall, the scenarios have shown different effects that the 
pandemic and other influencing factors can have on systems 
such as the emergency personnel, in this case the police force. 
In general, the system is resilient and stable when it comes to 
its capacities and it can even handle temporary overloads, 
albeit with losses regarding its effectivity and efficiency.  

The results from the first scenario were that the system is 
capable of absorbing temporary removal of officers effectively 
and it shows the capability to regain its function after the 
impact. These results were directly implemented into the 
second scenario, which showed that while resilient, the system 
can only handle performance drops above its maximum normal 
capacity until a certain point. Once too many officers are 
removed from the system, it tips into a downward spiral and 
the accumulating fatigue in combination with the YD 
performance impact does not allow for the system to recover. It 
has to be noted that under certain circumstances, the system 
develops an overshooting phenomenon, which could be 
utilized to bring the system back to stability, if the averse 
effects could be mitigated (see spikes above normal completion 
rate level in Figure 10). Unfortunately, the system is not 
capable of utilizing these spikes as compensation just by itself 
without other influences. 

The third scenario revealed that the system even possesses 
some resilience when it comes to constant demand increases. It 
showed that it can absorb the missing officers even with 
increased demand up until a certain point. Once the demand 
was too high, the system steadily and slowly degrades until it 
reaches its emergency capacity and finally collapses. 

The fourth and last scenario demonstrated that erratic or 
inconsistent inputs can be beneficial as well as detrimental for 
the system. Short swings (close to square waves) allow the 
system enough time to recuperate and it thus showed the 
capability to deal with (on average) even higher demand as 
compared to its behavior with a continuous and increased 
input. Longer waves cause the opposite effect and send the 
system into degradation even earlier as it would have with a  
constant input of the same average. This is due to the fact that 
the increases bring the system to its threshold and then tip it at 
which point it cannot handle the demand anymore even after 
the input subsides. The system completely collapses very 
quickly in two of the simulated runs. These insights can be 
very helpful and will be further pursued since the assumed call 
rate input was the calculated average and in reality fluctuates 
according to certain patterns as well. 

Overall, the system has shown some thresholds that can be 
tipping points. Given the initial and overarching goal of our 
research, we see that there are several behaviors worth 
analyzing and evaluating further. We will continue to assess the 
recorded behaviors in order to define their exact circumstances 
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VII. CONCLUSION AND OUTLOOK 
The previous sections explored four different scenarios that 

simulated various impacts and conditions for the police force as 
a representative system of the emergency services during the 
current pandemic. The first scenario simulated various degrees 
of temporary removal of officers due to sickness. The second 
scenario added a performance drop at the capacity maximum to 
the first scenario due to fatigue and performance under stress. 
The third and fourth scenario assessed increased inputs/demand 
in spikes or fluctuations. Herein, the third scenario simulated 
constant increases and the last scenario evaluated the effect of 
various fluctuating inputs. 

Overall, the scenarios have shown different effects that the 
pandemic and other influencing factors can have on systems 
such as the emergency personnel, in this case the police force. 
In general, the system is resilient and stable when it comes to its 
capacities and it can even handle temporary small overloads, 
albeit with losses regarding its effectivity and efficiency.  

The results from the first scenario show that the system is 
capable of absorbing temporary removal of officers effectively 
and is capable of regaining its function after the impact. These 
results were directly implemented into the second scenario, 
which showed that while resilient, the system can only handle 
performance drops above its maximum normal capacity to a 
certain limit. Once too many officers are removed from the 
system, it tips into a downward spiral and the accumulating 
fatigue, in combination with the YD performance impact, does 
not allow for the system to recover. It has to be noted that under 
certain circumstances, the system develops an overshooting 
phenomenon, which could be utilized to bring the system back 
to stability, if the adverse effects could be mitigated (see spikes 
above normal completion rate in Figure 10). Unfortunately, the 
system is not capable of utilizing these spikes as compensation 
just by itself without other influences.. 

The third scenario revealed that the system even possesses 
some resilience when it comes to constant demand increases. It 
showed that it can absorb/handle the missing officers even with 
increased demand up until a certain point. Once the demand was 
too high, the system steadily and slowly degrades until it reaches 
its emergency capacity, and finally collapses. 

The fourth and last scenario demonstrated that erratic or 
inconsistent inputs can be beneficial as well as detrimental for 
the system. Short swings (close to square waves) allow the 
system enough time to recuperate and it thus showed the 
capability to deal with (on average) even higher demand as 
compared to its behavior with a continuous and increased input. 
Longer waves cause the opposite effect and send the system into 
degradation even earlier as it would have with a  constant input 
of the same average. This is due to the fact that the increase 
brings the system to its threshold and then causes it to tip. At this 
point, the system is unable to handle the demand anymore even 
after the input subsides. The system completely collapses very 
quickly in two of the simulated runs. These insights can be very 
helpful and will be further pursued since the assumed call rate 
input was the calculated average and in reality fluctuates 
according to certain patterns as well. 

Overall, the system has shown some thresholds that can be 
tipping points for the emergency response system during the 
current pandemic. In order to achieve quantification of the 
tipping points, the authors plan on extending this research and  
simulation to probe these phenomena in various systems. 

Regarding current simulation for the real world application, 
some behaviors are observed that could be potentially helpful 
for regulatory decisions, such as the overshooting behavior in 
Scenario B. As aforementioned, this could be utilized to bring 
the system back to stability with the right inputs at the right time. 
The authors are planning to further investigate such singular 
behaviors in order to define a more general interpretation and 
derive suggestions for guidance. 

Future plans also include the expansion of the research to 
add more details such as diversifying the Yerkes-Dodsen 
Influence based on studies and more substantial research as well 
as inclusion of fatigue. 

In addition, the authors are modifying this model to mimic 
other branches of the emergency services, such as hospitals and 
fire fighters, in order to provide more institutions with the 
knowledge and power to increase the resilience of these complex 
systems as well as simulate some critical decisions in times of 
crisis. Lastly, the next steps include adding various factors, such 
as protective gear, their effects, and other regulatory measures 
to the simulation. This also entails the potential consideration 
and addition of re-infection, which would transfer individuals 
from the recovered stock back to the susceptible group. This 
could be possible due to the degeneration of anti-bodies, for 
example, and has not been considered in the initial simulation 
due to the parameters and time frame of less than one year and 
the fact that possible re-infections are more important for longer 
time spans. 
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