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Abstract—The paper evaluates the error performance of three
random finite set based multi-object trackers in the context of
pedestrian video tracking. The evaluation is carried out using
a publicly available video dataset of 4500 frames (town centre
street) for which the ground truth is available. The input to
all pedestrian tracking algorithms is an identical set of head
and body detections, obtained using the Histogram of Oriented
Gradients (HOG) detector. The tracking error is measured using
the recently proposed OSPA metric for tracks, adopted as the
only known mathematically rigorous metric for measuring the
distance between two sets of tracks. A comparative analysis is
presented under various conditions.

I. INTRODUCTION

Random set theory has recently been proposed as a math-
ematically elegant framework for Bayesian multi-object fil-
tering [1]. Research within this theoretical framework has
resulted in new multi-object filtering algorithms, such as the
probability density hypothesis (PHD) filter [2], Cardinalised
PHD filter [3], and Multi-Bernoulli filter [1], [4]. The main
feature of multi-object filters is that they estimate sequentially
the number of objects in the surveillance volume of interest
(the so-called cardinality) and their states in the state space.
Formulation of multi-object trackers from random-set based
multi-object filters has attracted a lot of interest recently, see
e.g. [5], [6], [7], [8]. The output of a tracker is a set of
tracks, that is, labeled temporal sequences of state estimates
associated with the same object.

In this paper we adopt the “tracking-by-detection” approach
to pedestrian tracking, which has become very popular in com-
puter vision due to its applicability to moving un-calibrated
cameras [9], [10]. Typically pedestrian detections are obtained
using the Histogram of Oriented Gradients (HOG) detector
[11], trained using either head images (for head detections) or
body images (for body detections). An example of head and
body detections is shown in Fig.1.(a). Head and body detec-
tions are unreliable in the sense that: (1) not all pedestrians are
detected in every frame; (2) the chance of false detections is
quite real, with the spatial density of false detections typically
non-uniform. This is evident in Fig.1.(a).

If the state vector of each object (pedestrian) contains the
position (e.g. the head centroid), but not the size of the
object, then both the head and body detections are instances
of imprecise measurements: they represent rectangular regions

(two-dimensional intervals) within which the true object is
possibly located. As such, they can be modelled as random
closed sets (rather than random variables). The first tracking
algorithm considered in the paper is designed specifically for
imprecise measurements: it represents a multi-object tracker
built from the Bernoulli filter described in [12]. We will refer
to this tracker as Algorithm 1.

An imprecise measurement (e.g. an interval in the measure-
ment space) can always be converted to a precise but random
measurement (e.g. a point in the measurement space which
is affected by additive noise). The two remaining algorithms
considered in the paper assume precise random detections
of heads/bodies for pedestrian tracking. Algorithm 2 is the
same as Algorithm 1, but using the precise random (Gaussian)
measurements model. Algorithm 3 is based on the Cardinalised
PHD filter with data association [13].

Evaluation of multi-object tracking performance has been
one of the main stumbling blocks in advancing the scientific
field of target tracking. A large number of evaluation measures
have been proposed, both in the general context (e.g. [14],
[15]) and specifically for video surveillance (e.g. [16], [17],
[18], [19]). At present there is no consensus in sight on the
preferred common approach. In this paper tracking error will
be measured using the recently formulated Optimal sub-pattern
assignment (OSPA) metric for tracks (or OSPA-T) [20]. The
OSPA-T metric has an important advantage over all above
mentioned performance metrics: it is a mathematically rigor-
ous metric (it satisfies the axioms of a metric) for measuring
the distance between two sets of tracks (i.e. between the
ground truth and the tracker output). OSPA-T is also consistent
with intuition, as discussed in [21].

The remainder of the paper is organised as follows. Sec-
tion II describes the performance evaluation framework: the
video dataset, the method of pre-processing detections and the
OSPA-T metric. Section III reviews the three random-set based
tracking algorithms. Section IV presents the experimental
results under various conditions, while the conclusions of this
study are drawn in Section V.
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(a)

.

(b)

Fig. 1. Frame 320 from the dataset used in performance evaluation: (a) Head and body detections (yellow and cyan rectangles, respectively); (b) tracker
output (the result of recursive processing of 79 previous frames and the current frame); track trajectories indicated by white lines; red lines are velocity
vectors; squares indicate the heads of pedestrians

II. PERFORMANCE EVALUATION FRAMEWORK

A. Video dataset and detections

The video dataset and the (hand labelled) ground truth are
downloaded from the website [22]. The dataset is a video of
an occasionally busy town centre street (the average number of
pedestrians visible at any time is 16). The video was recorded
in high definition (1920 × 1080 pixels at 25 fps). Only the
first 4500 frames of the video are used in the performance
evaluation. Frame number 320 of the dataset is shown in Fig.1.

Head detection and pedestrian body detection algorithms

were applied to each frame in the video sequence. The
fastHOG GPU implementation [23] of the Histogram of Ori-
ented Gradients (HOG) detection algorithm [11] was used for
both detectors. The HOG detector applies a sliding window
to the image at a regular grid of locations and scales, and
classifies each sub-window as containing or not containing an
object (head or pedestrian). Classification is performed using a
pre-trained linear Support Vector Machine, the input to which
is a set of block-wise histograms of image gradient orientation.
A classification threshold of 0.75 was used for both detectors.



Sliding window detectors tend to give multiple detections for
one object due to their tolerance to shift and scale, so a post-
processing step groups overlapping detections.

The head and pedestrian (whole body) detections have some
complementary characteristics. The detector is only partially
tolerant to occlusions, so the head detector tends to have
a higher probability of detection since heads are generally
more visible than whole bodies in surveillance video. However
pedestrian textures are more distinctive than head textures,
so the head detector tends to have a higher false alarm rate,
picking up on round-ish background objects such as clocks and
signs. The pedestrian detector is more able to detect people at
a distance where the head becomes too small in the image.

Head and body detections are treated as if they are indepen-
dent. Each tracker can then be regarded as a centralised multi-
source fusion node, where one source of detections is the head
detector while the other is the body detector. The rectangles
corresponding to body detections are converted to head-like
detections as follows. Suppose a body detection rectangle is
specified by its upper-left corner (χb, ηb), width wb and height
hb. Then for its corresponding head-like detection, the upper-
left corner coordinates are computed as: χ′h = χb + 0.325wb
and η′h = ηb + 0.09hb, while the width and height are
w′h = 0.35wb and h′h = 0.19hb, respectively.

B. OSPA-T metric

Traditional multi-object tracking performance measures de-
scribe various aspects of tracking performance, such as time-
liness (e.g. track initiation delay, track overshoot), track accu-
racy (e.g. position, heading, velocity error), track continuity
(e.g. track fragmentation, track labelling swaps) and false
tracks (their count and duration). These measures are based
on heuristic, and it is unclear how to combine them into a
single score because they are correlated.

OSPA-T [20] is defined as a theoretically rigorous distance
measure on the space of finite sets of tracks, and it has been
proven that it satisfies the axioms of a metric. The computation
of OSPA-T is described in Table I. Suppose we are given two
sets of tracks, the ground truth tracks {X(1), . . . , X(L)} and
estimated tracks {Y (1), . . . , Y (R)}. A track X(l), l = 1, . . . , L,
is defined as a temporal sequence X(l) = (X

(l)
1 , . . . , X

(l)
K )

where each X
(l)
k , k = 1, . . . ,K, is either an empty set (if

track does not exist at time k) or a singleton whose element
is (l,xk). Here l ∈ N is the track label and xk is its state at
time k. The labels of ground truth tracks are by convention
adopted to be 1, 2, . . . , L.

The first step in the computation of OSPA-T is to label
the estimated tracks (steps 3,4 and 5 in Table I). This first
involves finding the best assignment λ∗ of R estimated tracks
to L ground truth tracks. An assignment is a mapping λ∗(`) ∈
∅ ∪ {1, . . . , R}, for ` = 1, . . . , L. This is typically carried out
using a two-dimensional assignment algorithm, such as the
auction or Munkres algorithm [24]. If for an estimated track
r = 1, . . . , R exists a true track ` such that λ∗(`) = r, then
track r is assigned label `. Estimated tracks which remain

unassigned according to λ∗ are given labels different from all
true track labels (i.e. integers greater than L).

Then, for each time step k = 1, . . . ,K, the OSPA distance
between the two labeled sets:

Xk = {(l1,xk,1), . . . , (lm,xk,m)} (1)
Yk = {(s1,yk,1), . . . , (sn,yk,n)} (2)

is computed. The set Xk represents the set of existing ground
truth labeled track states at time k; similarly Yk is the set of
existing estimated labeled track states at time k. The OSPA
distance between these two labeled sets is computed as [20]:

D(Xk,Yk) =[
1

n

(
min
π∈Πn

m∑
i=1

(
dc
(
x̃k,i, ỹk,π(i)

))p
+ (n−m) · cp

)]1/p

(3)

where x̃k,i ≡ (li,xk,i), ỹk,π(i) ≡ (sπ(i),yk,π(i)) and
• dc(x̃, ỹ) = min(c, d(x̃, ỹ)) is the cut-off distance be-

tween two tracks at tk, with c > 0 being the cut-off
parameter;

• d(x̃, ỹ) is the base distance between two tracks at tk;
• Πn represents the set of permutations of length m with

elements taken from {1, 2, . . . , n};
• p ∈ [1,∞) is the OSPA metric order parameter.

For the case m > n, the definition is Dp,c(X,Y) =
Dp,c(Yk,Xk). If both Xk and Yk are empty sets (i.e. m =
n = 0), the distance is zero.

TABLE I
COMPUTATION STEPS OF OSPA-T METRIC

1: function OSPA-T({X(1), . . . , X(L)}, {Y (1), . . . , Y (R)})
2: % Label the estimated tracks
3: For j = 1, . . . , R, Label[Y (j)] = I (where I > L)
4: Find λ∗, the globally best assignment of tracks

{X(1), . . . , X(L)} to {Y (1), . . . , Y (R)}
5: For i = 1, . . . , L, Label[Y (λ∗(i))] = Label[X(i)]
6: % Compute the distance
7: For k = 1, . . . ,K
8: Form the labeled sets at tk:
9: -Ground truth: Xk = {(l1,xk,1), . . . , (lm,xk,m)}

10: -Estimated: Yk = {(s1,yk,1), . . . , (sn,yk,n)}
11: Compute the OSPA distance between Xk and Yk

12: end function

The base distance d(x̃, ỹ) is defined as:

d(x̃, ỹ) =
(
d`(x,y)p

′
+ dα(l, s)p

′
)1/p′

, (4)

where: p′ ∈ [1,∞) is the base distance order parameter;
d`(x,y) is the localisation base distance, typically adopted as
the p′-norm: d`(x,y) = ‖x − y‖p′ ; dα(l, s) is the labeling
error, adopted as: dα(s, t) = α δ̄[s, t], where δ̄[i, j] is the
complement of the Kroneker delta, that is δ̄[i, j] = 0 if i = j,
and δ̄[i, j] = 1 otherwise. Parameter α ∈ [0, c] here controls
the penalty assigned to the labeling error d(s, t) interpreted



relative to the localisation distance d`(x,y). The case α = 0
assigns no penalty, and α = c assigns the maximum penalty.

Since in this paper we consider a sequence of a large number
of frames (K = 4500), the OSPA-T is applied over non-
overlapping segments (blocks) of frames1.

C. Base distance is a metric

The base distance d(x̃, ỹ), defined in (4), satisfies the three
axioms of a metric: identity, symmetry and triangle inequality.
To prove identity and symmetry is trivial. The proof of triangle
inequality, presented in [20, Sec.III.A], is wrong and this
section presents the correct proof.

Let x̃ = (l,x), ỹ = (s,y), z̃ = (u, z). The following proof
for the triangle inequality is given in [20, Sec III.A]

d (x̃, ỹ)
p ≤ d (x̃, z̃)

p
+ d (z̃, ỹ)

p (5)

where in Sec.II-B and [20] notation p′ was used instead of p.
Equation (5) is wrong and this can be seen for example by
adopting: p = 2, x̃ = (1, 0), ỹ = (1, 5), z̃ = (1, 4.99). Then
d (x̃, ỹ)

p
= 25 and d (x̃, z̃)

p
+ d (z̃, ỹ)

p ≈ 24.90. Moreover,
(5) does not prove the triangle inequality.

We want to prove that

d (x̃, ỹ) ≤ d (x̃, z̃) + d (z̃, ỹ) (6)

where according to (4)

d (x̃, ỹ)
p

= d` (x,y)
p

+ αpδ [l, s] . (7)

As d` (·, ·) is a metric, it meets the triangle inequality

d` (x,y) ≤ d` (x, z) + d` (z,y) (8)

As both sides of the inequality are positive numbers and p ≥ 1

d` (x,y)
p ≤ (d` (x, z) + d` (z,y))

p (9)

We also have that

αδ [l, s] ≤ αδ [l, u] + αδ [u, s] (10)

As both sides of inequality (10) are positive and p ≥ 1(
αδ [l, s]

)p ≤ (αδ [l, u] + αδ [u, s]
)p

(11)

Using (9) and (11)

d` (x,y)
p

+
(
αδ [l, s]

)p ≤(
d` (x, z) + db (z,y)

)p
+

(
αδ [l, u] + αδ [u, s]

)p
(12)

that is

p

√
d` (x,y)

p
+
(
αδ [l, s]

)p ≤
p

√
(d` (x, z) + d` (z,y))

p
+
(
αδ [l, u] + αδ [u, s]

)p
(13)

1The MATLAB source code for computation of OSPA-T metric, including
the head and body detections for running and comparing different tracking
algorithms, can be obtained upon request from the first author.

As p ≥ 1, using the Minkowski inequality [25] on the right
hand side of (13)

p

√
(d` (x, z) + d` (z,y))

p
+
(
αδ [l, u] + αδ [u, s]

)p ≤
p

√
d` (x, z)

p
+ αpδ [l, u] +

p

√
d` (z,y)

p
+ αpδ [u, s] (14)

Finally, using (13) and (14), we get

p

√
d` (x,y)

p
+ αpδ [l, s] ≤

p

√
d` (x, z)

p
+ αpδ [l, u] +

p

√
d` (z,y)

p
+ αpδ [u, s] (15)

The proof is finished using (7):

d (x̃, ỹ) ≤ d (x̃, z̃) + d (z̃, ỹ) . (16)

III. DESCRIPTION OF ALGORITHMS

The state vector of a single object is adopted for all algo-
rithms as x =

[
x ẋ y ẏ

]ᵀ
, where (x, y) is the position (in

pixels) of the pedestrian head centroid and (ẋ, ẏ) is its velocity
vector (in pixels/s). The number of objects from frame to frame
varies. The random finite set of head detections at frame k is
denoted Z(1)

k . Accordingly, the random set of head-like body
detections (see the explanation in the last sentence of Sec.II-A)
is Z(2)

k .
Algorithms 1 and 2 are based on the multi-sensor Bernoulli

filter [26], where the “sensors” are the two types of pedestrian
head detections. Separate and independent Bernoulli filters are
run for each target. Target interactions are taken care of by
the appropriately increased clutter intensity, as in [27]. This
multi-object tracking algorithm has been described in some
detail in [28]. The difference between Algorithms 1 and 2
is in the model of the single-object likelihood function. Let
ζ ∈ Z(i)

k , for i = 1, 2, be a detection resulting from an object
(i.e. a pedestrian head) in the state x. A head detection is a
rectangle, thus ζ is specified by a tuple (χ, η, w, h), where
(χ, η) determines its upper-left corner, while w and h are the
width and height, respectively.

The single-object likelihood function used in Algorithm 1
treats the detection ζ as an imprecise measurement and is
defined as in [12]:

g
(i)
k (ζ|x) = ϕ(Hx; ζ,Σ(i))− ϕ(Hx; ζ,Σ(i)) (17)

where ϕ(z;µ,Σ(i)) is the Gaussian cumulative distri-
bution function with mean µ and covariance Σ(i) =

diag[σ
(i)
x

2
, σ

(i)
y

2
]; ζ and ζ are the lower and upper bound

of the rectangle, and H =

[
1 0 0 0
0 0 1 0

]
. If σ(i)

x = σ
(i)
y = 0,

then (17) simply states that g(i)
k (ζ|x) = 1 if (x, y) is inside

the rectangle ζ, and zero otherwise. The algorithm is applied
to the video dataset using σ(1)

x = 1 and σ(2)
x = 25.

Algorithms 2 and 3 first convert the rectangular detection
ζ into a point measurement z = [χ+ w/2, η + h/2]

ᵀ, with
the associated covariance matrix R = diag[(w/6)2, (h/6)2].
Then the single-object likelihood function of z is adopted as:

g
(i)
k (z|x) = N (z; Hx,R) (18)



where N (m;µ,P) is the Gaussian probability density func-
tion with mean µ and covariance P.

Algorithm 3 is based on the Cardinalised PHD (CPHD)
filter [3], but with additional logic to deal with track labeling.
The key idea of [13] is to form the clusters of targets, and
to apply the CPHD filter update to each cluster separately.
The update uses every available detection (measurement) to
calculate the weight of the track-to-measurement association.
The weight of no-measurement association is also computed.
Finally these weights are used to form an association matrix
which is solved using a two-dimensional assignment algorithm
(e.g. auction, Munkres). At last each predicted track is updated
with the measurement which has been assigned to it by the
assignment algorithm. Since we have at our disposal two types
of detections (Z(1)

k are head detections, and Z(2)
k are head-like

body detections), the update step in Algorithm 3 is applied
twice, first using Z(1)

k and then using Z(2)
k . Although this is not

an optimal approach [29], it has been suggested as a reasonable
approximation.

TABLE II
A SUMMARY OF THE CONTESTING TRACKING ALGORITHMS

Alg. Likelihood function Method
1. Eq.(17) Multi-Bernoulli Tracker of [28]
2. Eq.(18) Multi-Bernoulli Tracker of [28]
3. Eq.(18) CPHD based tracker [13]

All three algorithms used the same clutter maps (one map
for heads, the other for body detections). The probability of
detection was set to P

(1)
D = 0.58 and P

(2)
D = 0.52. A short

summary of algorithms is given in Table II.

IV. NUMERICAL RESULTS

The localisation base distance of the OSPA-T error
d(x,y) = ‖x − y‖p′ only takes into account the positional
error (i.e. neglecting the velocity error). Fig.2 shows the
resulting OSPA-T error for the three random-set based tracking
algorithms. The parameters of the OSPA-T metric used in
evaluation: p = p′ = 1, c = 100 and α = 75. Identical
head detections and body-to-head converted detections, from
every frame, have been used by all three algorithms. Fig.2
also shows, as a guideline, the OSPA-T error of the Benfold-
Reid (BR) algorithm [10], whose tracking results are available
online [22]. We point out that the comparison between the BR
algorithm and the three random-set based trackers is not fair
because the BR algorithm is a smoother (operates as a batch
algorithm over a sliding window of image frames) and does
not use body/head detections in every frame. From Fig.2 one
can observe that ranking of the algorithms according to OSPA-
T varies with time. For example, from frame number 800 to
1100, the BR algorithm is far superior than the random-set
based trackers, but the opposite is true from frame 1400 to
1600. In order to obtain an overall ranking, the time averaged
OSPA-T error has be computed: its value for Algorithms 1, 2, 3
and the BR algorithm is 45.2, 42.8, 40.7 and 40.4, respectively.

The conclusion is that the most accurate of the three random-
set tracking algorithms is Algorithm 3. Furthermore, it appears
that the imprecise measurement model is not justified in the
adopted context: the transformation of head and body-to-head
rectangles (imprecise detections) into random precise mea-
surement points provides better tracking results. This can be
explained by the nature of head and body-to-head rectangular
detections; it has been observed that if a detection is not false,
then its rectangular centre is a very accurate estimate of the
centre of a pedestrian head. Thus the likelihood (17), which
is based on the interpretation that the true head centroid is
somewhere inside the rectangle, appears to be too cautious
and consequently does not use the full information content of
a measurement.

We repeated the OSPA-T error computations for α = 0
(no penalty for the labeling error). This case corresponds
to the original OSPA error proposed in [21]. The obtained
time averaged OSPA-T error for Algorithms 1, 2, 3 and the
Benfold-Reid algorithm in this case were 34.1, 29.5, 27.4,
and 30.2, respectively. Again Algorithm 3 performs the best
among the random-set based trackers, and even outperforms
the Benfold-Reid algorithm. This result reveals that the major
problem with Algorithm 3 is the lack of track consistency
(too many broken tracks), which by adopting α = 0 is not
penalised. Track consistency can be improved by smoothing
over multiple image frames (to be considered in the future
work).

Head and body detection algorithms are very computation-
ally intensive and consequently in real-time applications it may
not be possible to provide them at every image frame. Next
we compare the OSPA-T error performance of Algorithm 3
for the situations where head and body detections are available
for: (1) every frame, (2) every 2nd frame, (3) every 4th frame
and (4) every 8th frame. The results are shown in Fig.3. We
note that the error performance does not change dramatically
with the reduced frequency of head and body detections. The
time averaged OSPA-T error for the four cases are: 40.7,
37.9, 39.2, and 42.7. Somewhat surprisingly, using body/head
detections every 2nd and every 4th frame, reduces the number
of false tracks and overall improves the accuracy. Only when
body/head detections become available only every 8th frame,
some of the true tracks start to be missing occasionally and
consequently the OSPA-T error performance deteriorates.

V. CONCLUSIONS

The paper presented a framework for performance evalua-
tion of multi-object trackers. The framework is illustrated in
the context of video tracking by comparison of three random-
set based pedestrian tracking algorithms, using a video data
set of a busy town centre. The multi-object tracking error
was evaluated using the “OSPA for tracks” (OSPA-T) metric.
The OSPA-T metric has an important property that it satisfies
the axioms of a metric. The mathematical proof the triangle
inequality axiom is presented in the paper.

The results of performance evaluation indicate that the
CPHD based tracker of [13] performs the best. Although
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Fig. 2. Comparison of tracking algorithms: OSPA-T error for the sequence of 4500 frames; OSPA-T metric parameters: p = p′ = 1, c = 100 and α = 75

this is a single-frame recursive algorithm, its performance is
comparable to that of [10] (which operates over a sliding
window of frames). Future work will consider a smoothing
version of the algorithm in [13] since a delay by a few frames
in reporting the tracks is tolerable and has the potential to
further improve the tracking accuracy.
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