Static Estimation of Execution Times for Hardware
Accelerators 1n System-on-Chips

M. Holzer and M. Rupp
Vienna University of Technology
Institute for Communications and RF Engineering
Gusshausstr. 25/389, 1040 Vienna, Austria

Abstract— Early performance estimation of a System-on-Chip
design is a key issue for a successful design methodology. One
of the most important parameters is the run time of a function.
Especially optimization techniques like hw/sw partitioning rely on
those estimations. This paper presents a static analysis method in
order to characterize a hardware acceleration unit regarding its
run time. The performance of the presented method is shown on
several examples from the embedded systems area and compared
to results from high level synthesis.

I. INTRODUCTION

The International Technology Roadmap for Semiconductors
for 2001 (http://www.itrs.net/) has emphasized that
early performance estimation is an essential step in any
System-on-Chip (SoC) design methodology. Especially per-
formance parameters like time, size, and power consumption
can be as important as meeting the functional requirements [1].
Within the refinement process of an algorithm, starting from
a high level description down to an implementation, different
kinds of software properties, usually called metrics, can be
identified (Figure 1). The accuracy of those metrics increases,
the more hw details are known. Early design decisions have
a drastic impact on the final system performance [2]. About
90% of the overall costs are determined in the first stages
of a design, thus early design decisions have a much higher
resulting cost span than design decisions taken at the end of
the development time.

] [[)
algorithm soft metrics
critical path
Gte;ﬂ A < f\> variable life time
H - 12 vocabulary
5 T4 &
S [I =) I
i @ I)
i E JH©
sl BN g | ()
stepn ° hard metrics 5
E 33
o ©
f|> area &3
timing =0
HW/SW power < e
Implementation _/)

Fig. 1. Generation of hard and soft metrics.

As long as the hardware development is performed manually
on the register transfer level (RTL), the required cycle count of

This work has been funded by the Christian Doppler Laboratory for Design
Methodology of Signal Processing Algorithms.

0-7803-9294-9/05/$20.00 ©2005 IEEE

the implementation is already known. With the introduction of
high level synthesis tools [3] and thus the exploitation of po-
tential parallelism, re-timing, and other techniques, prediction
of the execution time has become more challenging.

Especially scheduling relies on estimations of timing in the
area of real time systems in order to fulfill the required re-
sponse time. Here also possible interference by other programs
has to be taken into account, which results in a worst case
response time (WCRT). For the task of hw/sw partitioning [4]
execution time contributes to the cost function, which should
be minimized. For this task, where heuristics could be used,
already correct relations between two estimated values are
sufficient in order to optimize a system.

Usually the timing analysis focuses on the prediction of the
worst case execution time (WCET). However, the so called
longest executable path [5] is not necessarily equal to the
longest structural path. In this paper also the analysis of the
best case execution time (BCET) and all other feasible paths
for a function is presented in order to identify the run time
interval of a process.

The rest of the paper is organized as follows. Section II
gives an overview of related work in the field of execution
time estimation. The design flow for developing complex SoC
with the utilization of hardware accelerators (HA) is presented
in Section III. This is followed by Section IV, where the static
analysis of the timing estimation is described. In Section V the
execution time estimation is performed on several examples
and compared to the synthesis results of a high level synthesis
tool. Finally, in the last section some conclusions are drawn.

II. RELATED WORK

Execution time estimation can be achieved by simulation
or static analysis. Simulation based approaches usually try to
enrich the code with logging statements in order to obtain
simulation traces. Hence, this procedure is appropriate for
investigating the standard working conditions. Estimating the
run time of a hardware implementation on an FPGA is
achieved in [6] by simulating the algorithm and using a per-
formance model of the FPGA. Also performance estimations
for FPGAs are shown in [7]. In [8] reliable estimation of
the execution time of an algorithm implemented in software
running on a processor is presented. Analysis of the execution
time achieved by synthesis of behavioral descriptions is given
in [9].

Static analysis allows for identifying the boundaries and
usually gives a pessimistic estimate. Nevertheless, in the case
of real time systems this is essential. Static analysis is usually
applied in the software area. High level estimation without
compiling for a target architecture requires the development
of a virtual processor as shown in [10]. Usually such a
processor model is not available and rather time consuming to
develop. A commercial tool for WCET estimation is AbsInt
(http://www.absint.com/) for software running on an
ARM processor.

III. HARDWARE ACCELERATOR DESIGN FLOW

The algorithm, which is described in a high level lan-
guage (Matlab, Simulink, CoCentrics Sytem Studio), has to
be mapped onto a hardware structure by performing hardware
software partitioning. A general architecture of a SoC consists
of one or more CPUs (DSPs and/or pPs) and HAs connected
by a bus system. Those HAs are used to execute time critical
tasks of the algorithm. They are already available as previously
designed IP or it is necessary to develop them from scratch.
Out of an algorithmic description usually a group of functions
is selected to be implemented together inside one HA. For
example, in Figure 2 the functions A, B, and C from the algo-
rithmic description are grouped together to form the hardware
accelerator HAI of the SoC. A bus interface has to be added
as well to allow communication with the other units on the
bus. The function E will be implemented in software running
on the DSP. Either a manual or a tool supported partitioning
process needs estimates of the final execution time properties
of the selected functions inside the algorithmic description.
Further refinement of the HA can be obtained by high level
synthesis (e.g. Synopsys behavioral compiler, SPARK [11]).

Algorithm

Direct /O

(Bus Interface)

s e Y

Selection of functions for hardware accelerators in SoCs.

Fig. 2.

Especially in the case of integrating foreign IP into a
design, timing characterization is an essential step in order
to identify the usability in a project. An exchange method
of those designs is for example described by the SPIRIT

consortium (http://www.spiritconsortium.com/).
Nevertheless, the full potential of capturing design parameters
like timing can be only exploited, if those design properties
are available to the designer and to all other tools in the
design flow. For this reason it is necessary to store those
properties persistently and to define interfaces, which allow for
seamless access to the computed parameters. An integration
of these design properties into a design database and its
usage in a design flow is shown in the Open Tool Integration
Environment (OTIE) [12], [13].

IV. EXECUTION TIME ESTIMATION

Static analysis of a function is performed on its graph
representation. A function can be decomposed into its control
flow graph (CFG) built up with interconnected basic blocks
(BB). Each BB contains a sequence of data operations ended
by a control flow statement as last instruction (if, for, while).
Those data operations can be represented as expression trees.
A full timing characterization of the execution time of a
hardware accelerator includes not only worst case estimation,
but also best case estimation, as well as estimation of all other
execution paths (Figure 3). This is accomplished by extracting
all the possible paths from the CFG, starting at the root end
ending at the exit node of the CFG. The computation of all
possible paths seems to be feasible for functions restricted to
a certain complexity, which is the case in a CFG derived from
algorithms in industrial context.

A

actual
WCET

actual
BCET
actual possible

execution times
BCET

estimates

WCET
estimates

(A

execution time

Process run time interval

single
feasible
path

»
-

I execution time

Fig. 3. Execution time of different execution paths of a function.

A process run time interval T;,; can be identified by

Tini = WCET — BCET (1)

Not all possible paths from the CFG contribute to the
number of paths, but only those paths which are feasible. A
path is feasible if the boolean product of its conditions is not
false.

In Figure 4, a CFG is depicted with four paths:

Fig. 4. Determining feasible paths of a CFG.

p1 = (BBy, BBy, BBy, BBs, BB-)
p2 = (BB, BBy, BBy, BBg, BBr)
ps = (BBy, BBs, BBy, BBs, BBr)
p1 = (BBy, BB3, BBy, BBg, BB-)

Only the paths p; and p, are feasible. Systems with a single
feasible path (SFP) (T;,; = 0) are hardware related algorithms
e.g. FIR and FFT (Figure 3). In other words, the execution path
is independent from the input data.

However, for context dependent paths, for each set of inputs,
different paths can be examined. Systems with many feasible
paths are control dominated, but differences between run times
of different paths are experienced only if the spent execution
time in the branches differs.

In order to estimate the cycle count that is needed to execute
one path, the operations inside the BBs have to be considered.
A complete sequential software solution would add all the
cycle counts of the existing operations in the path. Hardware
synthesis, especially if high level synthesis tools are used,
exploits the possibilities of re-timing or loop invariant code
motion. The target of detecting the fastest possible hardware
implementation is to find the possible parallelism of each
expression, by tree height reduction (THR) [14] (Figure 5).
A lower bound on the depth of an expression tree can be
given by O(log,(NN)) where N denotes the number of nodes
(operations) inside the expression tree.

V. TIMING ESTIMATION EXAMPLE

The shown static analysis techniques are demonstrated on
two examples. The mpeg algorithm has been chosen from the
embedded systems library called MediaBench [15] and a part
of the cell searching (CS) algorithm in UMTS from the mobile
communication domain.

In order to compare the estimates to results, derived by high
level synthesis, the SPARK [11] environment has been taken.
For the synthesis, all optimization options have been turned on,
like loop invariant code motion, which moves computations

z=a+b+c+d

Fig. 5. Tree height reduction.

that are unchanged by the iteration of one or more surrounding
loops out of the loops, thus eliminating redundant computa-
tion. Also elimination of common sub expression and constant
propagation is deployed.

Function CS ‘ Eq (D) ‘ Es (D) ‘ Ry (D) ‘ Ro (D) ‘ Aq ‘ As
Filter 1 228 230 165 167 | 0.62 | 0.61
Filter 2 2112 2114 1330 1333 0.41 0.41
Sqr and Sum 3 3 5 5 0.6 0.6
Slot Accu 2 2 1 1 0 0
Peak Detection 15360 15360 15362 15362 | 0.99 | 0.99
Function mpeg

calcid 3 3 6 6 0.5 0.5
calculate fwd 13 13 15 17 | 0.76 | 0.86
predcasel 256 512 475 539 | 094 | 0.53
predcase2 2 960 4 1486 | 0.64 0.5

TABLE I

BCET AND WCET EXECUTION TIME PREDICTION.

In Table I the predicted cycle count for BCET E; and
WCET Es for the functions of the chosen examples are shown.
Also the high level synthesis results are given for the BCET
R, and WCET Rs. The accuracy A (between estimated value
and actual value) as defined in Equation 2 is also depicted.

[E(D) — R(D)|

A= Ry

2

In regard of applying the cost estimation heuristic within
transformational design space exploration, the ability to quan-
tify relative dependencies of design characteristics is much
more important than the ability to capture absolute values.
For comparison of values it is only needed to achieve a high
fidelity [16] value as proposed by Gajski.

n—1 n
2
Fidelity =100——— 3" 3" p; 3)
n(n —1) i=1 j=i+1

The fidelity measure supplies for a given set of n refer-
ence values Ry,..., R, and n estimated values F1,...,F, a
number describing the quality of the estimate with respect
to its ability to quantify relative dependencies of pairs of
reference/estimation values.

R; < Rj NE; < Ej
R; > Rj ANE; > Ej
R, =R;\NE; =L
0 otherwise

1 if @

The fidelity value for the given set of nine function has been
evaluated and gives for the WCET 0.96 and 1 for the BCET
estimation values. Those values emphasize their usability for
optimization processes, where only relative values are needed.

Further, Table II reports on the number of paths (Vpqt1)
found in the control flow graph and the reduced amount of
paths (Nypqtn) by selecting only the feasible ones. Also, the
process run time intervals, estimated (E;,;) and deduced by
synthesis (R;y;) are shown in this table.

Function CS | Npath | Nypath | Eint | Rint
Filter 1 16 16 2 2
Filter 2 64 64 3 3
Sqr and Sum 1 1 0 0
Slot Accu 1 1 0 0
Peak Detection 2 2 0 0
Function mpeg

calcid 1 1 0 0
calculate fwd 1 1 0 2
predcasel 16 4 256 64
predcase2 128 11 958 1482

TABLE I1I

NUMBER OF FEASIBLE PATHS AND PROCESS RUN TIME INTERVAL.

In Figure 6 the execution time profile of the function
predcasel is depicted. In Table II is shown that 16 structural
paths can be determined from the CFG of the function. Not
all of them lead to different execution times. The dashed lines
denote, those path which are not feasible and therefore do not
contribute to the actual possible paths. So that after removing
the non feasible paths only four paths remain. Only three paths
are drawn solid, because two of the remaining paths lead to
the same execution time of 320 cycles. The BCET has the
value of 256 cycles and the WCET has 512 cycles with a
run time interval T, of 256 cycles. Whereas for the non
feasible paths a BCET of 128 cycles and a WCET of 896
cycles (T;,:2=768 cycles) can be determined. The removal
of the non feasible paths leads to much tighter WCET and
BCET estimates, so that the estimated run time interval has
been significantly reduced.

A

-———e
-———e

»

7. .
execution time

128 256 512 896

Fig. 6.
algorithm.

Execution time profile for the predcasel function from the mpeg

VI. CONCLUSIONS

Early and reliable estimation of performance parameters is
a necessary step for reducing time to market in an SoC design
methodology. Especially design decisions for the design of a
complex SoC like hw/sw partitioning need reliable information
of the timing of HAs, as well as the scheduling of real
time systems. The presented static analysis approach has been
applied to several functions out of the embedded systems area.
It has been shown that in cases of relative values, a high
fidelity measure can be achieved. Also removing of the non
feasible paths has demonstrated, that the estimates especially
for WCET can be tightened, which allows for better utilization
of the system resources.

REFERENCES

[1] A. Sangiovanni-Vicentelli and G. Martin, “Platform-Based Design and
Software Design Methodology for Embedded Systems,” in /[EEE Design
& Test of Computers, vol. 13, December 2001, pp. 23-33.

[2] Y. L. Moullec, P. Koch, J.-P. Diguet, and J. L. Philippe, “Design Trotter:
Building and Selecting Architectures for Embedded Multimedia Appli-
cations,” in IEEE International Symposium on Consumer Electronics,
December 2003.

[3] D. Gajski, N. Dutt, A. Wu, and S. Lin, High-Level Synthesis: introduc-
tion to chip and system design. Kluwer Academic Publishers, 1992.

[4] B. Knerr, M. Holzer, and M. Rupp, “HW/SW Partitioning Using High
Level Metrics,” in International Conference on Computing, Communi-
cations and Control Technologies (CCCT), August 2004, pp. 33-38.

[5] P. Altenbernd, “On the false path problem in hard real-time programs,”
in Euromicro Workshop, June 1996, pp. 102—107.

[6] P. Bjuréus, M. Millberg, and A. Jantsch, “FPGA resource and timing
estimation from Matlab execution traces,” in Proceedings of the tenth
international symposium on Hardware/software codesign, 2002, pp. 31—
36.

[71 R. Enzler, T. Jeger, D. Cottet, and G. Trostler, “High-Level Area and
Performance Estimation of Hardware Building Blocks on FPGAs,” in
R.W. Hartenstein and H. Griinbacher (Eds.) FPL 2000, vol. 1896.
Springer, 2000, pp. 525-534.

[8] H. Posadas, F. Herrera, P. Sanchez, E. Villar, and F. Blasco, “System-
Level Performance Analysis in SystemC,” in Design, Automation and
Test in Europe, Feb 2004, pp. 378-384.

[9] D. Mintz and C. Dangelo, “Timing Estimation for Behavioral Descrip-

tions,” in International Symposium on System Synthesis, 1994, pp. 42—

47.

P. Giusto, G. Martin, and E. Harcourt, “Reliable estimation of execution

time of embedded software,” in Proceedings of the conference on

Design, automation and test in Europe, 2001, pp. 580-589.

S. Gupta, “Spark: A high-level synthesis framework for applying paral-

lelizing compiler transformations,” in International Conference on VLSI

Design, January 2003.

P. Belanovi¢, M. Holzer, D. Micusik, and M. Rupp, “Design Methodol-

ogy of Signal Processing Algorithms in Wireless Systems,” in Interna-

tional Conference on Computer, Communication and Control Technolo-

gies CCCT’03, July 2003, pp. 288-291.

P. Belanovic¢, B. Knerr, M. Holzer, G. Sauzon, and M. Rupp, “A Consis-

tent Design Methodology for Wireless Embedded Systems,” in accepted

for publication EURASIP Journal of Applied Signal Processing, 2005.

D. Kuck, The Structure of Computers and Computation. John Wiley

& Sons, 1978.

C. Lee, M. Potkonjak, and W. H. Mangione-Smith, “MediaBench: a

tool for evaluating and synthesizing multimedia and communication

systems,” in International Symposium on Microarchitecture, 1997, pp.

330-335.

D. Gajski, F. Vahid, S. Narayan, and J. Gong, Specification and Design

of Embedded Systems. Prentice Hall, Englewood Cliffs, 1994.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

	Index
	SOC 2005 Home Page
	Conference Info
	Welcome Message
	Invited Presentations
	Committees
	Sponsors

	Sessions
	Tutorial
	MonTut-Tutorial

	Tuesday, 15 November 2005
	TueAmOR2-Invited1
	TueAmOR3-Industry1 and Coffee
	TuePmOR1-Invited2
	TuePmOR2-Processors
	TuePmOR3-Invited3
	TuePmOR4-Industry2 and Coffee
	TuePMOR5-Invited4

	Wednesday, 16 November 2005
	WedAmOR1-Configurable and reconfigurable technologies
	WedAmOR2-Industry3 and Coffee
	WedAmOR3-Invited5
	WedAmOR4-Exploring New Directions
	WedPmOR1-Design Flow
	WedPmOR2-High-Performance Systems
	WedPmOR3-Invited6

	Thursday, 17 November 2005
	ThuAmOR1-4S Special Session
	ThuAmPO1-Poster1 and Coffee
	ThuAmOR2-Invited7
	ThuPmOR1-SoC Applications
	ThuPmOR2-Invited8
	ThuPmPO1-Poster2 and Coffee
	ThuPmOR3-Invited9

	Authors
	All Authors
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	V
	W
	Y
	Z

	Papers
	All Papers
	Papers by Session
	Papers by Topics

	Topics
	Alternative computing paradigms
	Analysis and early estimation techniques, technology ro ...
	Application-specific processors and architectures
	Configurable and reconfigurable architectures
	Design flow and methodology
	Embedded processor hardware
	Embedded software tools and techniques, e.g. retargetab ...
	Engineering education to qualify for SoC
	Low-power techniques
	Multiprocessor SoC
	Network-on-Chip
	On-chip communication and interconnects
	Physical design issues
	Platform architectures
	Reuse techniques
	SoC applications
	System-level integration
	Tools and languages for SoC design
	Verification, debugging, testing and testability

	Search
	Help
	Browsing the Conference Content
	The Search Functionality
	Acrobat Query Language
	Using Acrobat Reader
	Configurations and Limitations

	About
	Current paper
	Presentation session
	Abstract
	Authors
	Martin Holzer
	Markus Rupp

