

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

 You may not further distribute the material or use it for any profit-making activity or commercial gain

 You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Apr 26, 2024

System-level Modeling of Wireless Integrated Sensor Networks

Virk, Kashif M.; Hansen, Knud; Madsen, Jan

Published in:
International Symposium on System-on-Chip (SoC)

Link to article, DOI:
10.1109/ISSOC.2005.1595672

Publication date:
2005

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Virk, K. M., Hansen, K., & Madsen, J. (2005). System-level Modeling of Wireless Integrated Sensor Networks. In
International Symposium on System-on-Chip (SoC) IEEE. https://doi.org/10.1109/ISSOC.2005.1595672

https://doi.org/10.1109/ISSOC.2005.1595672
https://orbit.dtu.dk/en/publications/9800842a-53a6-43bd-9ceb-d81f4314aab4
https://doi.org/10.1109/ISSOC.2005.1595672

System-level Modeling of Wireless Integrated
Sensor Networks

Kashif Virk Knud Hansen

Computer Science & Engineering Section
Department of Informatics & Mathematical Modeling

Technical University of Denmark, Lyngby 2800, Denmark
email: {virk, jan}@imm.dtu.dk

Abstract-Wireless integrated sensor networks have emerged
as a promising infrastructure for a new generation of monitoring
and tracking applications. In order to efficiently utilize the
extremely limted resources of wireless sensor nodes, accurate
modeling of the key aspects of wireless sensor networks is
necessary so that system-level design decisions can be made
about the hardware and the software (applications and real-time
operating system) architecture of sensor nodes. In this paper, E
we present a SystemC-based abstract modeling framework that
enables system-level modeling of sensor network behavior by B
modeling the applications, real-time operating system, sensors,
processor, and radio transceiver at the sensor node level and
environmental phenomena, including radio signal propagation, S C
at the sensor network level. We demonstrate the potential of our
modeling framework by simulating and analyzing a small sensor Fig. 1.
network configuration.

I. INTRODUCTION
Wireless sensor networks have emerged as a promising

infrastructure for a new generation of monitoring applications.
Owing to their small form-factors, ad-hoc deployment, and
extended periods of unattended operation requirements, these
wireless sensor networks form an extremely resource- and
energy-constrained sensing, computing, and communication
environment which makes the design and optimization ofthese
systems a challenging task. In particular, the design of the
sensor nodes requires a deep understanding of their various
constituent components, their underlying technologies and the
interactions between those components. Figure 1 shows the
elements of a wireless sensor node and its hardware and
software partitioning.

In order to be able to explore the design space at very
early stages in the design process, it is important to have an
accurate system-level model of the sensor network capturing
all the inter-relationships among the diverse processors, soft-
ware processes and radio- and sensor interfaces. In this paper,
we present an extension of our earlier work on SystemC-
based multiprocessor SoC modeling framework [1] which can
provide the wireless sensor network designers a system-level
abstraction of the sensor network for system-level design-
space exploration to meet the requirements mentioned abovel.
Numerous sensor network simulators implemented in soft-

ware exist, either in the open source or as commercial prod-

1A part of this work was funded by the ARTIST and the Hogthrob Projects.

Jan Madsen

Sensor Node

ucts, which can be broadly categorized into improvised sensor
network simulators - based on existing network simulators
or discrete-event simulation frameworks - and custom sensor
network simulators. Typical examples of improvised sensor
network simulators are: ns-2 [2], Opnet Wireless Module [3],
and OMNeT++ [4] while common examples of custom sensor
network simulators include: TOSSIM [5] and its extension
PowerTOSSIM, Avrora [6] and its extension AEON, and
Atemu [7]. Most of the improvised sensor network simulators
emphasize sensor network level simulations (concentrating on
the simulation of wireless communication protocol stacks)
while a majority of the custom sensor network simulators
focus mainly on sensor node level simulations (mostly code
or processor simulations) and are either specific to certain
sensor network research projects or support a limited number
of sensor node platforms. A unified sensor node level as well
as sensor network level simulator does not exist so far despite
such attempts [8]. Moreover, to the best of our knowledge,
none of the sensor network modeling approaches, reported so
far, addresses the issue of designing sensor network systems
from a hardware/software codesign perspective.
The main contribution of this work is to apply a HW/SW

Codesign approach for the system-level modeling of a generic
sensor node platform embedded in a generic sensor network
environment model forming a system-level sensor network
model which is fairly detailed as well as sufficiently efficient.
The rest of this paper is organized as follows: Section II

0-7803-9294-9/05/$20.00 C2005 IEEE 179

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on January 22, 2010 at 05:00 from IEEE Xplore. Restrictions apply.

provides the methodology and implementation details for our
sensor network model. The results of our implementation and
a simulation example elaborating our modeling framework
are presented in Section III. Section IV, finally, provides
conclusions and the future directions of our work.

II. SENSOR NETWORK MODEL
In our SystemC-based modeling framework, a sensor net-

work model is designed following the principle of composi-
tion. We model a sensor network at two levels: the sensor
network level (Figure 2) and the sensor node level (Figure 3).
This section describes the details of each of these levels and
their inter-relationships and interactions.

Phenomemon Phenomemon 2 - . Phenomemon m Radio Channel

Environment Link

Sensor Node 1 Sensor Node 2 * Sensor Node n

Fig. 2. Sensor Network Level Model

A. Sensor Node Level Model
At the sensor node level, a sensor node platform model

is split into two sections: the software section - for functional
simultion of the sensor node platform and the hardware section
- to enable estimation of the energy consumption of the sensor
node platform.
The software section of the sensor node platform model

consists of the application model, comprising a set of task
models, and the RTOS model, composed of a set of RTOS
services [1].

Fig. 3. Sensor Node Level Model

1) Application Model: The sensor node application soft-
ware is modeled as a set of task models which are executed on
the sensor node processor(s) under the control of RTOS(s). To
accurately model the sensor node application, it is important
to handle both the tasks and their possible inter-dependencies.

The dependencies among the tasks are resolved by the syn-
chronizer which is a component of the RTOS model.
The task models are the abstract building blocks from which

the sensor node application model is composed. From the point
of view of their activation mechanism, task models can be
either time-triggered (periodic) or event-triggered (sporadic).
While periodic task models represent repetitive tasks, sporadic
task models handle the response of the application model to
the events that are generated either by the environment model
or by other task models. In addition, from the point of view
of their function or behavior, task models are organized into
two groups:

. processing task models (Tp) model the usage of a sensoi
node processor and are controlled by the RTOS model.

* I/O task models (rIo) model the usage of the I/O devices
on a sensor node platform, e.g., the sensors and the radio
transceiver. These task models form, a link between the
RTOS model and the environment model with which they
are interfaced using specific interface protocols (e.g., poll-
based/interrupt-based, serial/parallel, etc.). There are two
separate I/O tasks to model the radio transceiver behavior.
The send task models radio transmission and the receive
task models radio reception.

The function or behavior of a task is modeled as a finite-
state machine (FSM) with five states as indicated in Fig-
ure 4: idle, ready, running, preempted, and self-preempted.
Each task model is characterized by a set of parameters.
such as the worst- and the best-case execution time, context-
switching overhead, deadline, period (for a periodic task),
offset, resource requirements, and precedence relations. Upon
initialization, each task starts in the idle state and, if its offset
value is zero, it transits to the ready state. The task remains
in the ready state until it receives a run command from
the RTOS scheduler upon which it transits to the running
state. When the task has finished its execution, it issues a
finished message to the scheduler and transits back to
the idle state. At any time during its execution, a task may
be preempted by the scheduler and it then enters into the
preempted state where it waits till it receives a resume
command from the scheduler which enables it to reenter the
running state. The self-preempted state models the ability
of an application task to release processor control to some
other applicaion task requesting it, while it is waiting for an
interrupt from an I/O device. Note that the self-preempted state
is different from the preempted state in that the task itself
controls its transition to and from it, while the transition to
and from the preempted state is controlled exclusively by the
scheduler.
The occurence of an interrupt is modeled by the

self -resume message from a task in the self-preempted
state. To service the interrupt, the priority of the self-
preempted task is updated to the maximum level when it self-
resumes. Thus, an interrupt is handled by the RTOS schedulei
by interrupting the execution of whatever task is running at the
time of its occurrence to service the interrupt and the portion
of the application task running after self-resumption represents
interrupt servicing. The only difference between running a

180

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on January 22, 2010 at 05:00 from IEEE Xplore. Restrictions apply.

Fig. 4. Task Model

high-priority task and interrupt servicing is that a high-priority
task may not preempt a running task if it has the same priority,
while interrupt servicing does preempt a running task, even
the interrupt servicing of another, previously-occured interrupt
(e.g., in case of nested interrupts).

2) RTOS Model: The RTOS model is composed of three
independent modules that model the basic RTOS services. The
model is designed such that any of the RTOS services can
be changed in a simple and straight-forward manner. Each
module handles its relevant data independently of the other
to preserve composability. A scheduler models a real-time
scheduling algorithm. A synchronizer models dependencies
among tasks. An allocator models the mechanism of resource
sharing among tasks. For details on the model and how it is
implemented in SystemC, we refer to [1].

All the task models are connected to the RTOS model
through a pair of SystemC master/slave ports. In addition to
that, the I/O task models are connected to the master/slave
ports of the sensor node platform model which, in tum,
are connected, in a similar way, to the components of the
environment model. The receive and the sense task models
also have activation ports (see Figure 3).

3) Battery Model: The hardware section of the sensor
node platform model contains energy macro models2 for the
processor, memory, clock, and I/O devices alongwith a battery
model. The battery model handles the energy consumption
of a sensor node. It is connected to each of the hardware
component models ofthe sensor node and decreases its energy
resources depending on their power draw. At each clock cycle,
the battery model updates it energy resources according to a
certain specified function depending on the selected battery
model (simplistic linear battery discharge models as well
as more advanced battery models, which take the hysteresis
phenomenon into account, can be selected). The link between
the hardware component models is bidirectional which enables

2The energy macro modeling approach refers to the pre-characterization
of a hardware or a software macro-block in terms of its energy consumption
using empirical, simulation, or analytical models. A macro-block comprising
a system can be defined at any level of abstraction by trading-off accuracy
with efficiency or vice vera, e.g., a hardware macro-block can be defined at
the RT-level or a software macro-block can be defined at the instruction-level.

modeling the demise of a sensor node when its battery
runs out of energy. The battery model can also inform the
hardware component models when its energy resources go
below predefined thresholds.

B. Sensor Network Level Model
At the sensor network level, a sensor node platform model

is embedded in an environment model that models the en-
vironmental phenomena to be sensed by the sensor network
application.

1) Environment Model: The environment model represents
an abstraction of the environment as observed at the outputs
of the sensors on the sensor nodes. It is composed of dif-
ferent component models each of which corresponds to the
phenomenon monitored by the sensor network application. The
environment model connects all the instantiations ofthe sensor
node model - any of which can request it for data pertaining
to a certain phenomenon. The environment model can also
generate events for any instantiation of the sensor node model.
To model sensing, an I/O task model requests or gets events

from the environment model component corresponding to the
phenomenon (temperature, movement, etc.) according to a cer-
tain interface protocol (poll-based/event-based, serial/parallel,
etc.). The receiver part of the radio transceiver is treated as
a special kind of sensor and the transmitter part as a special
kind of actuator. Thus, the radio signal propagation through the
environment is treated as a special kind of phenomenon. The
radio channel model, therefore, forms a special component of
the environment model.

III. EXAMPLE
This section describes an example illustrating the capabili-

ties of our sensor network model to capture the mechanism of
radio communication among the sensor nodes. The example
configuration consist of 5 sensor nodes, two of which are
transmitting a message while the rest are receiving it (see
Figure 5).

...S......

.....

Leged: *,e« d -igd. 0 -g-od

Fig. 5. Example Topolgy

On each sensor node, the processor runs the 1/0 tasks
modeling the communication protocol. The transmission com-
ponent of the communication protocol is described in Figure 6
and the reception component of the communication protocol
is described in Figure 7. Two I/O task models have been
instantiated for this example. The send task is a low-priority
task, i.e., it does not preempt a running task when it initially
starts. Once it has started, it periodically self-preempts and
self-resumes. Everytime the send task enters its 'running'
state, it steps through the states of the send protocol, either

181

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on January 22, 2010 at 05:00 from IEEE Xplore. Restrictions apply.

causing transition(s) to the next state(s) of the send protocol
or retaining its existing state. The receive task is a high-priority
task (its activation is based on the timer interrupts). Similar to
the send task, the receive task executes the receive protocol in
its 'running' state.

usU I40 , 150001ul , 12600us 137°°ut ,14800us1 19,nu..iIp9u j2pqus, I~?'MU1T I5q~ 1Pu5 jpu 89u p
Node1_Receive_Protooo I 0 Iii 0 II 0 l 0_Il 2 3l 0

Nodel_Receive_Task 0 0 0 0

Nodel Send Proiocd 2 1 3 4

NodelSend-Task I

Node2_Receive_Protoco =
Node2 Receive-Task 2*_2_ 2L_
Node2_Send Protocol CI 2 1u-4 2 2 _1

Node2-Send-Task 3 1 11 C a123
Node3 Receive Protoco 5 0 0 0 0 0

Node3_Receive_Tasl _ 2 3010 0 10 i0I 23C

Node4 Receive Protow 0
Node4 Receive_Tasl 1 0 0 0 0 0 0 0 0

N e5Receive_Protoco

NIg7 Re
-

T
r7 tion results for Example (see Table Ifor state enumerati

TABLE I

State No. Send/Receive Task Send Protocol Receive Protocol
0 inactive idle idle
I ready back-off poll
2 running carrier-sense synchronize
3 preempted transmit preemble receive data
4 self-preempted transmit data

Fig. 6. Send Protocol running on Send Task Model

Fig. 7. Receive Protocol running on Receive Task Model

The simulation output waveforms corresponding to the
example are presented in Figure 8. This figure represents the
state of each task in terms of processor occupation as well as
in terms of the communication protocol state for the send and
the receive tasks. The example illustrates the behavior of the
MAC (CSMA protocol) in the case of channel contention. The
send task of the sensor node 2 fails to obtain channel access
at its first attempt (because it detects that the sensor node 1 is
transmitting). It, therefore, backs-off for a random period of
time before reattempting to gain access to the radio channel.
On its second attempt, the transmission of the sensor node
1 has finished and the radio channel is clear, so the sensor
node 2 can send. The reason why the sensor node 1 gains
access to the radio channel first is because its initial back-off
time was smaller than that of the sensor node 2. Furthermore,
notice that once the send task of the sensor node 1 has finished
transmitting, the receive task of the sensor node 1 polls the
radio channel, detects the preamble from the sensor node 2
and receives the packet sent by it.

IV. CONCLUSIONS
We have presented a system-level wireless sensor netw

modeling framework based on SystemC. The aim of our m
eling framework is to provide designers of sensor netwc
with a simple modeling and simulation framework in wi
one can experiment with different application task mappii
RTOS policies and communication protocols in order to
ficiently utilize the limited resources available. Using
framework, one can also study the consequences of des
decisions taken at the sensor node-level on the behavior;
performance of the sensor network. We are currently work
on extending our modeling framework to incorporate m
accurate power modeling. This will enable us to estimate I
different power management strategies can improve the ser
network lifetime.

REFERENCES
[1] J. Madsen, K. Virk, and M. Gonzalez, "Abstract RTOS Modelling

Multiprocessor System-on-Chip," in International Symposium on Sys,
on-Chip, November 2003, pp. 147-150.

[2] University of California, Berkeley, "Network SimulatoJ
http://www.isi.edu/nsnam/ns/.

[3] OPNET Technologies Inc., "OPNET Wireless Modi
http://www.opnet.com/products/wirelessmodule.

[4] OMNet++, "OMNet++: Discrete-Event Simulation Syst
http://www.oomnetpp.org/.

[5] P. Levis, N. Lee, M. Welsh, and D. Culler, "TOSSIM: Accurate
Scalable Simulation of Entire TinyOS Applications," in Proceeding
1st International Conference on Embedded Networked Sensor Sys
(SenSys 2003). ACM Press, 2003, pp. 126-137.

[6] B. Titzer, D. K. Lee, and J. Palsberg, "Avrora: Scalable Sensor Nets
Simulation with Precise Timing," in Proceedings of 4th Internati,
Conference on Information Processing in Sensor Networks (IFIP 2C
April 25-27, 2005.

[7] J. Polley, D. Blazakis, J. McGee, D. Rusk, J. S. Baras, and M. K
"ATEMU: A Fine-Grained Sensor Network Simulator," in Proceedins
First International Conference on Sensor and Ad Hoc Communicat
and Networks (SECON 2004), October 4-7, 2004.

[8] H. Park, W. Liao, K. H. Tam, M. B. Srivastava, and L. He, "A Un
Network and Node Level Simulation Framework for Wireless Se
Networks," Center for Embedded Networked Sensing, UCLA, Tech. F
Nr. 25, September 2003.

182

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on January 22, 2010 at 05:00 from IEEE Xplore. Restrictions apply.

