
CRAVE: An Advanced Constrained RAndom
Verification Environment for SystemC
Finn Haedicke1 Hoang M. Le1 Daniel Große1 Rolf Drechsler1,2

1Institute of Computer Science, University of Bremen, 28359 Bremen, Germany
2Cyber-Physical Systems, DFKI GmbH, 28359 Bremen, Germany

{finn, hle, grosse, drechsle}@informatik.uni-bremen.de

Abstract—A huge effort is necessary to design and verify com-
plex systems like System-on-Chip. Abstraction-based methodolo-
gies have been developed resulting in Electronic System Level
(ESL) design. A prominent language for ESL design is SystemC
offering different levels of abstraction, interoperability and the
creation of very fast models for early software development.
For the verification of SystemC models, Constrained Random
Verification (CRV) plays a major role. CRV allows to automati-
cally generate simulation scenarios under the control of a set of
constraints. Thereby, the generated stimuli are much more likely
to hit corner cases. However, the existing SystemC Verification
library (SCV), which provides CRV for SystemC models, has
several deficiencies limiting the advantages of CRV. In this paper
we present CRAVE, an advanced constrained random verification
environment for SystemC. New dynamic features, enhanced
usability and efficient constraint-solving reduce the user effort
and thus improve the verification productivity.

I. INTRODUCTION

Creating a new System-on-Chip (SoC) involves many tasks.
Once the specification is agreed on, the modeling phase
starts to derive a potential solution. To manage the complex-
ity of today’s SoCs high-level languages are used for the
first models. For this Electronic System Level (ESL) design
phase [1] a widely accepted approach is SystemC [2], [3],
[4], [5]. Integrated hardware and software models can be
developed, exchanged and refined based on the SystemC IEEE
standard [6]. In particular, Transaction Level Modeling [7], [8]
allows to create high performance virtual platforms for early
software development and architectural analysis. In addition,
the high-level models serve as reference to verify the behavior
of the more detailed descriptions built in the following stages.

In general, facing today’s verification challenges a verifica-
tion environment needs to be constructed. From a high-level
perspective three major components are necessary: stimuli,
assertions and coverage. Assertions are used to check the func-
tional correctness and therefore monitor design variables [9].
The task of functional coverage is to measure which design
functionality has been exercised during simulation [10]. Both
are not in the focus of this work. Here, we target the
problem of stimuli generation. But instead of deterministic
values as defined in traditional directed testbenches we make
use of Constrained Random Verification (CRV) [11], [12].
CRV applies input stimuli to the design that are solutions of
constraints. These solutions are determined by a constraint-
solver. CRV offers two key benefits: First, CRV enables to find

This work was supported in part by the German Federal Ministry of
Education and Research (BMBF) within the project SANITAS under contract
no. 01M3088 and by the German Research Foundation (DFG) within the
Reinhart Koselleck project DR 287/23-1.

unexpected assertion violations since scenarios are simulated
which the verification engineer might have not thought of.
Second, the stimulus generation process is automated and
hence a huge set of scenarios can be executed leading to
higher coverage. Hence, for large and complex systems the
confidence in the correct functionality significantly increases.

For SystemC CRV is available through the SystemC Ver-
ification (SCV) library [13], [14], [15]. However, the SCV
library has several deficiencies:

1) Poor dynamic constraint support, hence no control of
constraint effects at run-time

2) No constraint specification for dynamic data-structures
3) Low usability when specifying constraints for composed

data structures
4) Poor information in case of over-constraining
5) Limits in complexity of constraints, since constraint-

solving is based on Binary Decision Diagrams
(BDDs) [16] only

In this paper we present CRAVE, an advanced Constrained
RAndom Verification Environment for SystemC.1 To overcome
the limitations of the SCV library CRAVE provides the follow-
ing features:

• New constraint specification API
An intuitive and user-friendly Application Programming
Interface (API) to specify random variables and random
objects has been developed.

• Dynamic constraints and data structures
Constraints can be controlled dynamically at run-time.
Moreover, constraints for elements of dynamic data struc-
tures like e.g. STL vectors can be specified.

• Improved usability
Inline constraints can be formulated and changed incre-
mentally at run-time. Furthermore, automatic debugging
of unsatisfiable constraints is supported.

• Parallel constraint-solving
BDD-based and SAT/SMT-based techniques have been
integrated for constraint-solving. A portfolio approach is
used to enable very fast generation of constraint solutions.

Please note the usage of CRAVE is not limited to pure
hardware designs. For example, the constraint solutions can
also be used to describe software tests running on a SoC. In
the experiments such an example is presented.

For an industrial application of CRAVE we refer to [17].

1CRAVE is freely available (w/ source code) under MIT license at
www.systemc-verification.org.

The rest of this paper is structured as follows: Related
work is discussed in Section II. Section III presents the
API of CRAVE. Then, in Section IV the dynamic features of
CRAVE are introduced. The usability aspects are described in
Section V. Section VI presents the constraint-solving approach
of CRAVE and Section VII compares CRAVE to the SCV library
in an experimental evaluation. Finally, the paper is concluded
in Section VIII.

II. RELATED WORK

As mentioned above, the CRV techniques of the SCV library
have several weaknesses which limits their use in practice.
Therefore, several improvements for the SCV library have
been developed. In [18] bit-vector operators have been added
and the uniform distribution among all constraint solutions
is ensured in all cases. An approach to determine the exact
reasons in case of over-constraining has been presented in [19].
In [20] the BDD-based constraint-solver is replaced by a
method which uses a generalization of Boolean Satisfiability
(SAT).

However, all these approaches compensate only some of
the SCV weaknesses. In particular, no constraints on dynamic
data structures can be specified, constraints cannot be con-
trolled dynamically during run-time, references to the state
of constraints are not available, and no inline constraints are
possible restricting the usability. In addition, the integration of
different constraint-solvers working in parallel is mandatory to
reduce the time for stimuli generation to a minimum.

To standardize verification processes the so-called Universal
Verification Methodology (UVM) has been developed [21].
Essentially, UVM is a methodology and a class library
for building advanced and reusable verification components.
The initial implementation has been done for SystemVerilog.
Meanwhile UVM also provides a SystemC class implemen-
tation. However, it does not include CRV (which is the core
verification technique in the UVM methodology).

III. CONSTRAINT SPECIFICATION

In this section we describe the basics of CRAVE. In par-
ticular this includes the APIs to create random variables and
constrained random objects.

A. Random Variable
From the user’s point of view, the most elementary entity is

the template class randv<T>, which corresponds to a random
variable of the C/C++ or SystemC built-in type T. All standard
applicable operators (arithmetic, comparison, logical, etc.) are
overloaded so that an instance x of randv<T> behaves as if
it were a variable of type T. A call x.next() assigns a random
value in the range of T to x. While the focus of CRAVE is on
complex constraints involving many variables, it also supports
simple constraints on a single variable. Two member functions
addRange and addWeightedRange can be used to refine the
distribution of x.next(). Furthermore, x() returns a symbolic
link to the value of x to be used to specify constraints in
conjunction with other instances of randv<T> as shown in
the next section. Table I summarizes exemplarily the API of
randv<int>.

1 struct packet : public rand_obj {
2 randv< unsigned int > src_addr;
3 randv< sc_uint<16> > dest_addr;
4
5 packet() : src_addr(this), dest_addr(this) {
6 constraint(src_addr() <= 0xFFFF);
7 constraint("diff", src_addr() != dest_addr());
8 soft_constraint(dest_addr() % 4 == 0);
9 }

10 };

Figure 1: A basic constrained random packet

1 struct packet1 : public packet {
2 randv< char > data;
3 packet1() : data(this) {
4 constraint(’a’ <= data() && data() <= ’z’);
5 constraint(dest_addr() % 2 == 1);
6 }
7 };

Figure 2: An inherited packet

B. Random object

Complex constrained random objects can also be specified.
They must inherit from the class rand_obj provided by CRAVE.
Such an object can contain several instances of randv<T> and
rand_obj. Constraints for each of these instances as well as
constraints between them can be specified in a constructor of
the object. For the instance x of rand_obj, x.next() randomizes
all belonging instances of randv<T> and rand_obj, respecting
the specified constraints.

We demonstrate the specification of constraints using an
example. Figure 1 shows a constrained random packet con-
sisting of two integers to be randomized: a source ad-
dress as randv<unsigned int> and a destination address as
randv<sc_uint<16>>. The member instances are forced to
register themselves to the rand_obj as shown in line 5. The
source address is constrained to be in the range [0x0, 0xFFFF]
(line 6) and the source address and destination address must
not be the same (line 7). Both constraints are so-called hard
constraints, i.e. they must be satisfied otherwise next() should
fail. The second constraint is also a named constraint, which
enables dynamic management of constraints as described later
in Section IV. Line 8 shows a soft constraint stating that
the destination address should be a multiple of four. Soft
constraints can be ignored by the constraint-solver if they
cannot be satisfied in conjunction with the specified hard
constraints. As can be seen in all the constraints, the symbolic
links to the actual instances of randv are used. This packet will
be extended step-by-step and serves as a running example for
the rest of this paper. Table II shows a summary of the basic
API features of rand_obj. Note that while constraints should be
specified in a constructor for the most use cases, it is possible
to add further constraints to an instantiated object using the
API.

Table I: The APIs of randv<int>

Description API
Supported operators +,−, ∗, /,%,==, ! =, >,<,>=, <=, !,&&, ||,∼,&, |, <<,>>, ^
Add range to distribution addRange(left, right)
Add weighted range addWeightedRange(left, right, weight)
Generate random value next() returns true on success
Symbolic link x() with x being a variable of type randv<int>

Table II: The basic APIs of rand_obj

Description API
Add hard constraint constraint(expression)
Add named hard constr. constraint(name, expression)
Add soft constraint soft_constraint(expression)
Randomize the object next() returns true on success

C. Constraint Inheritance

The inheritance/reuse of constraints in CRAVE is straight-
forward. The user can add more fields and constraints to an
existing random constrained object by using C++ class inher-
itance. Figure 2 shows an extension of the packet introduced
in the last section. Line 2 adds a data field to the packet.
The constraint for this data field is declared in line 4. The
destination address of the packet is further constrained to be
an odd integer on line 5. This new hard constraint contradicts
the soft constraint specified on line 8 of Figure 1 and therefore
renders the soft constraint useless.

The APIs of CRAVE described in this section are the
basics to specify constrained random objects. Similar APIs
are also available in the SCV library to a greater or lesser
extent. However, CRAVE enables an enhanced usability in
comparison to the SCV library as discussed in Section V. In
the next section we introduce the distinctive features of CRAVE
regarding dynamic constraints and data structures.

IV. DYNAMIC CONSTRAINTS AND DATA STRUCTURES

This section introduces three distinctive features of CRAVE
which are not supported by the SCV library: constraints on
dynamic data structures (currently only vector is supported),
dynamic enabling/disabling of constraints, and the concept of
references that allows the randomization to interact tightly with
the verification environment.

A. Vector Constraints

The SCV library offers no direct support for the constrained
randomization of dynamic data structures such as vectors,
lists and trees. The user must mimic dynamic data structures
by using arrays of fixed-size. This is inconvenient and not
memory-efficient. Furthermore, the upper-bound on size of
dynamic data structures might not be known at the time
of constraint specification. CRAVE offers a template class
rand_vec<T> for the constrained randomization of vectors.

Currently only C/C++ and SystemC built-in data types are sup-
ported as the template parameter T. The class rand_vec<T>
also implements the APIs of the STL class vector and thus
behaves as if it is an STL vector. Similar to randv<T>, for
an instance v of rand_vec<T>, v refers to the actual vector,
while v() is the symbolic vector used to specify constraints. For
the symbolic vector v(), v().size() refers to the size, v()[_i] to a
symbolic vector element, and v()[_i - c] to a previous element
relative to v()[_i] (_i is a predefined constant in CRAVE and
c is a positive constant). The symbolic elements v()[_i] and
v()[_i - c] are used in a foreach constraint.

Figure 3 shows an extension of our packet with the data
field, now being a constrained random vector. The constraint
on the vector is declared in line 5. In the next lines, three
foreach constraints are specified for the vector. The first two
ensure that the first element is an upper case letter and the
rest are lower case letters. Both are hard constraints. The third
constraint (line 14) is a soft foreach constraint: two consecutive
elements cannot be aa, ab or ba.

B. Dynamic Constraint Management

During the constrained random verification process, it is
very useful that the user can enable/disable specific con-
straints of a random object. This functionality is not avail-
able in the SCV library. The user must mimic the feature
by adding an auxiliary variable and constrain this variable
in an implication with the constraints to be enabled/dis-
abled. Moreover, this is inconvenient and inefficient. In the
CRAVE framework, named constraints can be enabled/disabled
directly via the constraint management APIs of rand_obj:
enable_constraint(name) and disable_constraint(name). For
example, the constraint on line 7 of Figure 1 can be disabled
by calling disable_constraint("diff"). Disabled constraints will
have no effect in the randomization via next() until they are
enabled again. Note that the vector constraint foreach can
also be named and intentionally soft constraints cannot be
enabled/disabled.

C. References

In many use cases, the randomization depends on the
dynamically changing state of the verification environment.
Using the SCV library, to include the state in the constraints
the user must use additional variables to save the state and
update them manually whenever the state is changed. For this
purpose, CRAVE provides references as a convenient shortcut.
References in CRAVE basically links a “real” variable with
a symbolic variable which can be used during constraint

1 struct packet2 : public packet {
2 rand_vec< char > data;
3
4 packet2() : data(this) {
5 constraint(data().size() % 4 == 0
6 && data().size() < 100);
7
8 constraint.foreach(data, _i, IF_THEN(_i == 0,
9 ’A’ <= data()[_i] && data()[_i] <= ’Z’));

10
11 constraint.foreach(data, _i, IF_THEN(_i != 0,
12 ’a’ <= data()[_i] && data()[_i] <= ’z’));
13
14 constraint.soft_foreach(data, _i,
15 data()[_i] + data()[_i−1] > ’a’ + ’b’);
16 }
17 };

Figure 3: An inherited packet using vector constraints

1 packet2(int &expected_max_size) : data(this) {
2 constraint(data().size() % 4 == 0
3 && data().size() <=
4 reference(expected_max_size));
5 ...
6 }

Figure 4: Example of CRAVE reference

specification. Before the constraints are solved, the value of
this symbolic variable is fixed to the actual value of the linked
variable. Figure 4 gives an example for using references: The
size of the constrained random vector data of the packet in
Figure 3 should not exceed the value of environment variable
expected_max_size, which is constantly changing. As can be
seen, the construct reference links expected_max_size to a
symbolic variable and data().size() is constrained to be smaller
or equal to this symbolic variable.

The new features introduced in this section demonstrated
different use cases where CRAVE offers clear advantages in
comparison to the SCV library. The next section discusses
important usability enhancements of CRAVE.

V. USABILITY

The CRAVE framework provides several usability enhance-
ments in comparison to the SCV library. In this section we
present inline constraints, incremental constraints and auto-
matic over-constraint analysis.

A. Inline and Incremental Constraints

Constraints in CRAVE can be specified without a formal
constraint class. A standalone constrained random generator
can be created anywhere and used with arbitrary variables and
constraints. In practice, this reduces the effort when coding
non-trivial testbench environments. Here is a concrete example
to demonstrate this feature:

1 randv<int> x,y;
2 Generator gen;
3
4 gen(x() != y());
5 for (int i =0 ; i < 1000; ++i) {
6 gen.next();
7 run_test(x,y);
8 }
9

10 gen(x()∗x() == y());
11 for (int i =0 ; i < 500; ++i) {
12 gen.next();
13 run_test(x,y) ;
14 }
15
16 gen(y()%2 == 0);
17 for (int i =0 ; i < 500; ++i) {
18 gen.next();
19 run_test(x,y) ;
20 }

Figure 5: Incremental constraint modification

1 randv<int> x,y;
2 Generator gen;
3
4 gen(x() < y());
5 gen(x() > 100 || y() < −100);
6
7 if (gen.next()) run_test(x,y);

This example declares two variables x, y (line 1) and a
constrained random generator (gen, line 2). The generator
can simply be called to add new constraints: the relation of x
and y (line 4) is specified and that either x has to be larger
than 100 or y is less that −100 (line 5) is constrained. To
generate values, the next function can be called which returns
false if the generator is over-constrained, i.e. the constraints
are contradictory and hence no solution exists. When the
constraint-solver has generated a stimulus, the randv<int>
variables can directly be used, e.g. in run_tests.

A generator can use all features of CRAVE except for
inheritance. However, incremental constraint specification is
supported. This feature is very helpful in dynamic testbenches.
After the generator has been executed for a certain set of con-
straints, new constraints can freely be added e.g. to generate
more general values first and more specific ones later. We
exemplify this in Figure 5.

This example first uses a general constraint (lines 4-8).
Then, additional constraints are added to focus on specific
behavior (lines 10-14 and 16-20). Please note in the final loop
at line 20 all three constraints are respected by the constraint-
solver.

B. Debugging Constraint Contradictions

For large constraint sets it can easily happen that the overall
constraint contains contradiction(s). In this case the problem is

over-constrained and hence the constraint-solver is unable to
generate valid stimuli. Debugging the contradiction manually
is very time-consuming. Therefore CRAVE can automatically
identify which named constraints are part of a conflict.

As discussed earlier the soft constraint in Figure 1 (line 8)
and the constraint in Figure 2 (line 5) form a conflict. If
the former constraint would have been declared as a hard
constraint, no constraint solution exists. For such situations
CRAVE provides an analyzer, that identifies the conflicting
constraints and returns their names. The analysis includes
each named constraint and checks them against all unnamed
constraints, which are always enabled. In a first step the
analyzer determines how many and which constraints need
to be disabled to resolve all contradictions. In subsequent
steps each of these constraints is expanded to determine the
“complete” contradiction. For the example, the first step would
determine that one contradiction exists and identify the first
constraint. In the next step the second constraint is identified.
This is completely done on a formal level, therefore the
algorithm is complete and will return all minimal subsets of
the constraints that form a conflict. For the described example
the run-time of the analysis was negligible.

VI. PARALLEL CONSTRAINT-SOLVING

Various alternatives to BDD-based constraint-solving have
been studied, see e.g. [22]. Approaches based on Boolean
Satisfiability (SAT) [23], [24] or Satisfiability Modulo The-
ories (SMT) [20] have shown to give very good results for
constraints which are hard to solve for BDDs. However, in
general it is not possible to know in advance which type of
constraint-solver will show the best performance. Therefore,
CRAVE uses a portfolio approach. Instead of running a specific
constraint-solver, an SMT-based constraint-solver as well as a
BDD-based constraint-solver are executed in parallel for the
same set of constraints. This section describes the basics for
constraint solving and how the portfolio approach works. The
next section will compares the run-times of CRAVE and the
SCV library.

To integrate the most recent reasoning engines we use
metaSMT [25] for implementing the constraint-solving in
CRAVE. Essentially, metaSMT allows engine independent pro-
gramming by providing a unified interface to different solvers.
Hence, no algorithmic changes are necessary when switch-
ing to another solver. The overall architecture is depicted
in Figure 6. As can be seen CRAVE forms the top layer
which implements all the features described in the previous
sections. This layer connects to the metaSMT front-end layer
using the unified input language. In the middle-end layer the
transformations for optimization and the basic parallelization
features (e.g. threading of different engines) is available.
Finally, the backend gives access to a wide range of solvers
(see e.g. SWORD [26], Z3 [27], Boolector [28], MiniSAT [29],
PicoSAT [30], CUDD [31] and AIGER [32]).

Based on these constraint-solving techniques we have made
the following observations for parallelization. In a simple port-
folio approach each constraint would be evaluated (at least)
twice using different solvers in a multi-threaded environment.

METASMT FRONTEND (C++)
Domain Specific Language

METASMT MIDDLE-END

Transformations, APIs, Parallelization

METASMT BACKEND

SWORD Z3

Boolector

CUDD

AIGER

MiniSAT

PicoSAT

SOLVER API

METASMT

CRAVE

Syntax, Data types, randv, rand_obj

Figure 6: Constraint-Solving Architecture

Then, the result of the fastest solver would be used. However,
for CRV a predictable quality of the stimuli is required.
Therefore, if a BDD can be built for the overall constraint this
is preferred since a uniform distribution among all solutions
can be guaranteed2. In CRAVE this is reflected by running the
SMT-solver only until the BDD is build. From this point on
only the BDD is used and execution the SMT solver is stopped.

VII. EXPERIMENTAL EVALUATION

In the following examples we demonstrate the advantages
of CRAVE for stimuli generation.

A. Arithmetic Constraints

Figure 7 shows a constraint object for a 16 bit ALU (later
we scale the size of the ALU). The constraint specifies four
operations with their respective input ranges. Table III shows
the differences between the classical BDD constraints solver
of the SCV and the portfolio approach of CRAVE. The first
column gives the name of the library. Two rows are given
for both: The first row shows the run-time needed to generate
the first solution, and the second row shows the run-time in
seconds for the complete execution of the constraint generator,
respectively. The following columns provide the data for
different bit width of the ALU constraints. As can be seen with
increasing bit width of the ALU the SCV fails to solve the
constraints. In contrast, in CRAVE the SMT-solver can already
generate stimuli before the BDD is ready. Furthermore, note
that for ALU16 the 32 bit memory restriction of the SCV

2A BDD represents all solutions and hence to select each solution with
the same probability is simple. Essentially each path to the 1-terminal needs
to be weighted accordingly respecting the reduction rules of reduced ordered
BDDs.

1 struct ALU16 : public rand_obj {
2 randv< sc_bv<2> > op ;
3 randv< sc_uint<16> > a, b ;
4
5 ALU16() : op(this), a(this), b(this) {
6 constraint(IF_THEN(op() == 0,
7 65535 >= a() + b()));
8 constraint(IF_THEN(op() == 1,
9 65535 >= a() − b()

10 && b() <= a()));
11 constraint(IF_THEN(op() == 2,
12 65535 >= a() ∗ b()));
13 constraint(IF_THEN(op() == 3,
14 b() != 0));
15 }
16 };

Figure 7: 16 bit ALU constraint

Table III: Comparison of CRAVE and the SCV

ALU4 ALU12 ALU16 ALU24 ALU32

SCV first < 0.01 13.77 MO TO TO
finished 0.09 19.84 MO TO TO

CRAVE
first < 0.01 < 0.01 0.01 0.01 0.01
finished 0.14 0.30 0.37 0.40 0.49

TO = time out, MO = memory out, run-time in seconds

library was hit. CRAVE can also be build on 64 bit architectures
which was however not required for theses experiments.

B. Sudoku Constraints

In the second experiment we formulated the rules of the
Sudoku puzzle in CRAVE and the SCV library. Figure 8 gives
the respective constraints. In line 4 the 81 random variables
of 4 bit size each are declared as the two-dimensional array
res_sdk. Then, in line 6 the standard C++ two-dimensional
array given_sudoku is declared which is filled when reading
the Sudoku numbers from a file. From line 9 on five types of
constraints follow. At first, the numbers of the given_sudoku
array are assigned to the constraint variables (line 13). Note
that we use here the reference feature of CRAVE. Hence, if
a solution for the Sudoku-constraint is requested (by calling
next), then the current values of given_sudoku are used as
values for the constraint variables. In other words the standard
C++ array given_sudoku can be changed anywhere and the
actual values will be used in the constraint automatically. Next,
the ”obvious” constraints stating a valid solution range for each
field (line 15), difference of rows and columns (line 20 and
26) are formulated. Finally, from line 32 on the difference per
region is modeled.

For 15 puzzles the constraint-solver had to find a solution
(between 16-32 numbers are set in the puzzle; 1 was unsolv-
able). The run-time (in seconds) and the memory consumption
(in MB) were measured with a limit of 2 CPU hours or
4 GB of memory for each Sudoku instance. The evaluation
showed largely homogeneous result, hence we only present the

1 class sudoku : public rand_obj {
2 public:
3 // variable to store solved sudoku
4 randv< sc_dt::sc_uint<4> > res_sdk[9][9];
5 // variable to hold given sudoku
6 int given_sudoku[9][9];
7
8 sudoku(rand_obj∗ parent = 0) : rand_obj(parent) {
9 // constrain given numbers

10 for (int i = 0; i < 9; i++)
11 for (int j = 0; j < 9; j++)
12 constraint(IF_THEN(reference(given_sudoku[i][j]) != 0,
13 res_sdk[i][j]() == reference(given_sudoku[i][j])));
14
15 // only numbers from 1 to 9 are allowed
16 for (int i = 0; i < 9; i++)
17 for (int j = 0; j < 9; j++)
18 constraint((res_sdk[i][j]() >= 1) && (res_sdk[i][j]() <= 9));
19
20 // every number must appear exactly one time in one row
21 for (int i = 0; i < 9; i++)
22 for (int j = 0; j < 9; j++)
23 for (uint k = j + 1; k < 9; k++)
24 constraint(res_sdk[i][j]() != res_sdk[i][k]());
25
26 // every number must appear exactly one time in one column
27 for (int j = 0; j < 9; j++)
28 for (int i = 0; i < 9; i++)
29 for (int k = i + 1; k < 9; k++)
30 constraint(res_sdk[i][j]() != res_sdk[k][j]());
31
32 // every number must appear exactly one time in one region
33 for (int i = 0; i < 9; i++)
34 for (int j = 0; j < 9; j++)
35 constraint
36 (res_sdk[i][j]() != res_sdk[index(i,1)][j]())
37 (res_sdk[i][j]() != res_sdk[index(i,2)][j]())
38
39 (res_sdk[i][j]() != res_sdk[i][index(j,1)]())
40 (res_sdk[i][j]() != res_sdk[index(i,1)][index(j,1)]())
41 (res_sdk[i][j]() != res_sdk[index(i,2)][index(j,1)]())
42
43 (res_sdk[i][j]() != res_sdk[i][index(j,2)]())
44 (res_sdk[i][j]() != res_sdk[index(i,1)][index(j,2)]())
45 (res_sdk[i][j]() != res_sdk[index(i,2)][index(j,2)]());
46 }
47 };
48
49 int index(int x, int by) {
50 return (x + by) % 3 + x − (x % 3);
51 }

Figure 8: Sudoku Constraints

Table IV: Comparison of CRAVE and the SCV

Sudoku min max median

SCV time 2 636.60 4 529.07 3 165.34
mem MO MO MO

CRAVE
time 0.81 1.83 1.42
mem 14.00 15.40 14.40

MO = memory out, run-time in seconds

aggregated results in Table IV. Although plenty of memory
was provided, the SCV library could not solve a single
instance3. In contrast, CRAVE solved all instances very fast.

3Note these instances are not inherently hard for BDD-based solvers. A
dedicated BDD-based Sudoku solving algorithm was able to find the solution
for each instance in less than a minute using no more than 216 MB of memory.

1 struct bubble_sort_input : public rand_obj {
2 // start address in mem
3 randv< unsigned int > start;
4 rand_vec< unsigned int > data;
5
6 bubble_sort_input() : start(this), data(this) {
7 constraint(0x70 <= start() && start() < 1024);
8 constraint(start() % 4 == 0);
9

10 constraint(0 < data().size()
11 && data().size() < 1024);
12 constraint(start() + 4 ∗ data().size() <= 1024);
13
14 constraint.foreach(
15 data, _i, data()[_i] <= 0x00FFFFFF);
16 constraint.foreach(
17 data, _i, data()[_i] <= data()[_i−1] + 5);
18 }
19 };

Figure 9: Input data constraints for bubble sort

C. Program Input Generation for CPU Testbench

We also apply CRAVE to verify a CISC CPU with 8
registers of 32 bit data width each. The CPU implements a
subset of the instructions of the IA-32 architecture including
load/store, arithmetic, jump and halt instructions [33]. The
CPU is available at three different levels of abstraction: an
Instruction Set Architecture (ISA) model in C++, a SystemC
TLM model using OSCI TLM-2.0, and a SystemC RTL model
implementing a five-stage pipeline [34], [35]. We use CRAVE
to generate programs (i.e. instruction sequences) as well as
their inputs, which can be used as stimuli for all three models.
Then, the simulation-based equivalence checking approach
in [35] for models at different levels of abstraction is applied.
We describe only one verification scenario: for an instruction
sequence implementing the bubble sort algorithm, we random-
ize its input under the constraints shown in Figure 9. The first
four constraints ensure that the array to be sorted fits into the
CPU memory and does not collide with the loaded program.
The last constraint forces the array to be nearly non-increasing
(and thus challenging for bubble sort). Such a concise set of
constraints would have not been possible with the SCV library
due to the lack of support for dynamic data structures. The
average time for CRAVE to generate the first 1000 arrays is
approximately 90s (0.09s per array).

VIII. CONCLUSIONS

In this paper we have presented the advanced constrained
random verification environment CRAVE. After the introduc-
tion of the API for constraint specification we have shown
the advantages of CRAVE in comparison to the existing SCV
library. The advantages include dynamic constraint specifica-
tion and management, enhanced usability and much faster
constraint-solving based on a portfolio approach. All these
aspects have been demonstrated by means of examples. In

summary, CRAVE improves the verification productivity for
SystemC models significantly.

A possible direction for future work is to extend the support
for dynamic data structures and to improve the distribution of
the SAT/SMT generated stimuli.

REFERENCES

[1] B. Bailey, G. Martin, and A. Piziali, ESL Design and Verification: A
Prescription for Electronic System Level Methodology. Morgan Kaufman-
n/Elsevier, 2007.

[2] Accellera Systems Initiative, “SystemC,” 2012, available at
http://www.systemc.org.

[3] T. Grötker, S. Liao, G. Martin, and S. Swan, System Design with SystemC.
Kluwer Academic Publishers, 2002.

[4] D. C. Black and J. Donovan, SystemC: From the Ground Up. Springer-
Verlag New York, Inc., 2005.

[5] D. Große and R. Drechsler, Quality-Driven SystemC Design. Springer,
2010.

[6] IEEE Standard SystemC Language Reference Manual, IEEE Std. 1666,
2005.

[7] L. Cai and D. Gajski, “Transaction level modeling: an overview,” in
CODES+ISSS, 2003, pp. 19–24.

[8] F. Ghenassia, Transaction-Level Modeling with SystemC: TLM Concepts
and Applications for Embedded Systems. Springer, 2006.

[9] H. Foster, A. Krolnik, and D. Lacey, Assertion-Based Design. Kluwer
Academic Publishers, 2003.

[10] S. Tasiran and K. Keutzer, “Coverage metrics for functional validation of
hardware designs,” IEEE Design and Test of Computers, vol. 18, no. 4, pp.
36–45, 2001.

[11] J. Bergeron, Writing Testbenches Using SystemVerilog. Springer, 2006.
[12] J. Yuan, C. Pixley, and A. Aziz, Constraint-based Verification. Springer,

2006.
[13] SystemC Verification Standard Specification Version 1.0e, SystemC Verifi-

cation Working Group, http://www.systemc.org, 2003.
[14] J. Rose and S. Swan, SCV Randomization Version 1.0, 2003.
[15] C. N. Ip and S. Swan, “A tutorial introduction on the new SystemC

verification standard,” www.systemc.org, White Paper, 2003.
[16] R. E. Bryant, “Graph-based algorithms for Boolean function manipulation,”

IEEE Trans. on Comp., vol. 35, no. 8, pp. 677–691, 1986.
[17] M. F. S. Oliveira, C. Kuznik, W. Mueller, F. Haedicke, H. M. Le, D. Große,

R. Drechsler, W. Ecker, and V. Esen, “The system verification methodology
for advanced TLM verification,” in CODES+ISSS, 2012.

[18] D. Große, R. Ebendt, and R. Drechsler, “Improvements for constraint solv-
ing in the SystemC verification library,” in ACM Great Lakes Symposium on
VLSI, 2007, pp. 493–496.

[19] D. Große, R. Wille, R. Siegmund, and R. Drechsler, “Contradiction analysis
for constraint-based random simulation,” in FDL, 2008, pp. 130–135.

[20] R. Wille, D. Große, F. Haedicke, and R. Drechsler, “SMT-based stimuli
generation in the SystemC verification library,” in FDL, 2009, pp. 1–6.

[21] Accellera Systems Initiative - Universal Verification Methodology 1.1,
http://www.accellera.org, 2011.

[22] N. Kitchen and A. Kuehlmann, “Stimulus generation for constrainted ran-
dom simulation,” in Int’l Conf. on CAD, 2007, pp. 258–265.

[23] S. M. Plaza, I. L. Markov, and V. Bertacco, “Random stimulus generation
using entropy and XOR constraints,” in DATE, 2008, pp. 664–669.

[24] H. Kim, H. Jin, K. Ravi, P. Spacek, J. Pierce, B. Kurshan, and F. Somenzi,
“Application of formal word-level analysis to constrained random simula-
tion,” in CAV, 2008.

[25] F. Haedicke, S. Frehse, G. Fey, D. Große, and R. Drechsler, “metaSMT:
Focus on your application not on solver integration,” in DIFTS’11: 1st
International workshop on design and implementation of formal tools and
systems, 2011, pp. 22–29.

[26] R. Wille, G. Fey, D. Große, S. Eggersglüß, and R. Drechsler, “Sword: A
SAT like prover using word level information,” in VLSI of System-on-Chip,
2007, pp. 88–93.

[27] L. de Moura and N. Bjørner, “Z3: An efficient SMT solver,” in TACAS,
2008, pp. 337–340.

[28] R. Brummayer and A. Biere, “Boolector: An efficient SMT solver for bit-
vectors and arrays,” in TACAS, 2009, pp. 174–177.

[29] N. Eén and N. Sörensson, “An extensible SAT-solver,” in SAT, 2003, pp.
502–518.

[30] A. Biere, “Picosat essentials,” JSAT, vol. 4, no. 2-4, pp. 75–97, 2008.
[31] F. Somenzi, CUDD: CU Decision Diagram Package Release 2.4.1. Uni-

versity of Colorado at Boulder, 2009.
[32] “Aiger,” http://fmv.jku.at/aiger/.
[33] IA-32 Architecture Software Developer’s Manual, Intel Corporation, 2003.
[34] A. Biere, D. Kroening, G. Weissenbacher, and C. Wintersteiger, Digitaltech-

nik - eine praxisnahe Einführung. Springer, 2008.
[35] D. Große, M. Groß, U. Kühne, and R. Drechsler, “Simulation-based equiva-

lence checking between SystemC models at different levels of abstraction,”
in ACM Great Lakes Symposium on VLSI, 2011, pp. 223–228.

