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ABSTRACT 

Me1 frequency cepstral coefficients (MFCCs) are currently 
the most popular form of parameterization of the speech sig- 
nal in speech recognition systems. In this paper, we look at 
a way to improve the extraction of these features using in- 
formation about the spectral characteristics of the signal to 
modify filter-bank shapes. This information is captured in 
the form of spectral moments of the subbands. We show 
that this improves speech recognition performance, but the 
improvement is not very significant. 

1. INTRODUCTION 

Selection of proper acoustic features representing the speech 
signal is one of the most important tasks in the design of a 
speech recognition system. One wishes to extract parame- 
ters that represents the maximum information necessary for 
speech recognition and that are, at the same time, indepen- 
dent of irrelevant information such as speaker characteris- 
tics, manner of speaking, background noise, channel distor- 
tion etc. Cepstral coefficients, along with its time deriva- 
tives, are the most common features used in today’s speech 
recognition systems. MFCC features are currently the most 
popular of these features. 

It has been shown [l] that information about the sub- 
band spectral centroids in the speech signal can be used to 
improve speech recognition. The centroids provide a crude 
estimation of the formants of the signal, which in turn have 
physical interpretation as vocal tract resonances. Formant 
frequencies were actually used as recognition features in the 
sixties but they have been lately abandoned due to difficul- 
ties of accurate estimation. However, spectral centroids still 
provide useful information on where to find local energy 
maxima in the signal. Because the speech power spectrum 
in the formant frequency area of the signal will be less af- 
fected by additive white noise, spectral centroids are also 
robust to noise. 

The spectral centroid of a given subband is computed as 
the first moment of the power spectrum within the subband. 

In this paper, we want to use the information captured by the 
higher-order moments of the power spectrum as well. We 
utilize this information to improve extraction of MFCC co- 
efficients from the FlT spectrum. More precisely, we wish 
to apply Gaussian windows, derived from the first and sec- 
ond order spectral moments, as filters, instead of the trian- 
gular filters in the MFCC filter-banks. This is explained in 
more detail in the next section. 

2. MFCC FEATURES AND SPECTRAL 
CENTROIDS 

Computation of traditional MFCC coefficients consists of 4 
steps [2]: 

1. Computation of FFT from input speech signal. 

2. Smoothing of FFT spectrum by integrating the spec- 
tral coefficients within triangular frequency bins (Fig. 
1) arranged uniformly on the nonlinear mel-frequency 
scale. 

3. Discrete Cosine Transform of the logarithm of the 
filter-bank output. 

4. (optional) Append first and second order time differ- 
entials to incorporate dynamic information about the 
signal. 

In this paper, we will try to improve recognition perfor- 
mance by modifying step 2. The triangular filters used for 
MFCC computation are totally independent of the nature of 
the speech signal. For instance, if there is a high-energy area 
in the left part of a filterbank, this might be partially sup- 
pressed as a result of the filtering. If we instead manage to 
find a window that is adapted to the shape of the power spec- 
trum within each subband frequency bin, this could help us 
to better capture the energies in that bin, thus giving a better 
modeling of the signal. Our choice of filter window is a 
Gaussian filter centered at the spectral centroid (first order 
moment) in each bin and with variance equal to the second 
order moment. 
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Figure 1 : The mel-frequency triangular filters 

Figure 2: FFT spectrum of a signal and its adapted Gaussian 
filter-banks when h(o,) = 1. 

Let us assume that the frequency band [0, F,/2] is di- 
vided into M subbands, uniformly distributed on the mel- 
frequency scale. Let the lower and higher edges of the mth 
subband be 1, and h, respectively. In general the subbands 
overlap, that is, h, > Zm+l. We define the mth subband 
spectral centroid C, as follows: 

where P ( f )  is the power spectrum of the speech signal. y is 
a constant determining the dynamic range, and can be set to 
a value that optimizes the recognition performance. w,(f) 
is a window that weights the significance of the spectral co- 
efficients in each bin [l]. The second order moment, ck is 

Figure 3: FFT spectrum of a signal and its adapted Gaussian 
filter-banks when h(a,) = 1. m 
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Figure 4: FFT spectrum of a signal and the envelope of all 
its adapted Gaussian windows for h(a,) = 1. 

defined as follows: 

We then define the mth Gaussian window as 

where h(a,) is a weighing function that can be used to set 
the weighing of each subband m as a function of U,. We 
have investigated two realizations of the function h(a,): 

1. h(am) = 1 

2. h(a,) = 2 E 
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The shapes of the Gaussian filters for these two cases are 
shown in Figs. 2 and 3, respectively. The smoothed spec- 
trum will now be obtained by integrating the product of the 
spectral coefficients and the Gaussian window within each 
frequency bin, e.g; we integrate between 1, and h,. 
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Figure 5: Cespstral coefficients using 12 parameters after 
Gaussian filtering compared to the coefficients after trian- 
gular filtering for the phone 'eh' 

Figure 6:  Cespstral coefficients using 12 parameters after 
Gaussian filtering compared to the coefficients after trian- 
gular filtering for the phone 'ah' 

In order to have a smooth transition from one subband 
to the other, it may be desirable to increase the overlap be- 
tween the subbands. One way to do this is to combine the 
effect of all the Gaussian windows into one filter-shape that 
covers the whole spectrum, thus producing an envelope of 
all the Gaussian filters. This envelope will then be used as 
a weighing function for the spectral coefficients inside each 

bin, replacing the triangular filters. The envelope function 
e ( f )  will look like this: 

(4) 
m 

The power in each bin will now be calculated by integrating 
the product of the FFT coefficients and the envelope inside 
each bin. An example of such an envelope is given in Fig. 
4. 

A third realization is worked out by combining the Gaus- 
sian envelope with the traditional triangular filters. By mul- 
tiplying the original FFT spectrum with the envelope spec- 
trum before integrating within the triangular bins, we achieve 
a sort of 'prefiltering before the filters' that 'fits' the signal 
to the bins befhre we integrate up the coefficients. 

3. RESULTS FROM SIMULATIONS 

We evaluate the performance of the modified MFCCs us- 
ing the HTK toolkit for monophone HMMs on the TIMIT 
database. The database consists of sentences spoken by 
speakers from 8 different regions of the USA. The sentences 
are both phonetically balanced and designed to show dif- 
ferences between dialects (e.g.; we use all the sa- and sx - 
sentences). The training data and the test data are differ- 
ent. Speech is digitized at a sampling rate of 16 kHZ. The 
signal is analyzed every 10 ms with a frame width of 25 
ms (with Hamming window and preemphasis). The exper- 
iments are carried out using 24 subband filters, deriving 12 
cepstral coefficients plus the total energy. Then their first 
order differentials are appended, giving a total vector-size 
of 26 parameters for each frame. 

At first, the experiments are run on clean speech. Then a 
second experiment is run with white Gaussian noise added 
to the test data. The SNR ratio is 20 dB. The constant y is 
set to 0.5 [ 11. 

Simulations were carried out using both triangular and 
rectangular shapes for the windows w m  (f) from equations 
(1) and (2). Triangular shapes were found to be better, and 
are used throughout this paper. As for the weighing function 
h(am) from equation (3), the best results were obtained by 
setting h(a,) = 1. 

We also experimented with the effect of the band edges 
I, and h, while calculating the moments. When the sub- 
bands overlapped, e.g; the lower band edge was set at the 
center of the previous subband, we got better results for 
all realizations than when the band-edges were set consecu- 
tively next to each other. 

We can see from Table 1 that recognition performance 
has changed very little compared to traditional MFCC com- 
putation. However there is a slight improvement for all the 
new realizations when in presence of noise. 
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Filter 
Realization 

Recognition accuracy 
Clean Noisv 

Triangular 
Gaussians 

I Envelope I 59.27% 33.84% I 
59.46% 33.43% 
59.32% 33.96% 

t Enve]oDe& trians?ular I 59.49% 33.67% I 
Table 1 : Speech recognition results using 24 subbands 

To order to understand these results, we show in Figs.5 
and & 6 the cepstral coefficients for the vowels ’a’ and ’e’ 
after applying Gaussian filtering in each bin. We can see 
that cepstral coefficients are slightly changed, but their over- 
all trend is more or less the same. 

i 

4. CONCLUSION 

We have investigated how we can modify the shape of the 
subband filters used in MFCC parametrisation using infor- 
mation about the first and second order moments in each 
subband of the speech signal. Our results so far do not 
give evidence that this leads to a significant improvement 
of speech recognition performance. However, the idea of 
using spectral knowledge about the signal to shape the sub- 
band filters remains interesting. 
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