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ABSTRACT

Recently, several blind signal separation algorithms have
been developed which are based on second order statistics.
Little has been published however on whether second order
statistics are sufficient to obtain a unique solution. Espe-
cially for applications that involve convolutive mixing and
unmixing of signals that are correlated in time, there is a
lack of knowledge on why and in what cases second or-
der statistics suffice. This paper investigates the indetermi-
nacies that are introduced when second order statistics are
used and presents a theorem for the unmixing system to be
uniquely found using second order statistics.

1. INTRODUCTION

Blind Signal Separation deals with the problem of recov-
ering independent sources from observed linear mixtures
of them. These mixtures can be convolutive or instanta-
neous depending on the application. Second Order Statis-
tics (SOS) approaches have the advantage that no a priory
knowledge is required about the sources except that they
must be independent and therefore uncorrelated. Also, SOS
can be estimated more reliable than Higher Order Statistics
(HOS).

BSS algorithms that use HOS include, among others,
minimum mutual information and maximum likelihood ap-
proaches [1, 2, 3, 4, 5]. These algorithms contain non-linear
elements which implicitly introduce HOS. These non-linear
elements can be tuned to achieve a good performance for
the particular source signals that are considered.

Recently, several algorithms have been introduced based
on SOS [6, 7, 8]. Theoretically indeterminacies are intro-
duced when SOS are used to solve the BSS problem. There-
fore, some authors claim that SOS are insufficient [2, 9, 10].
This paper briefly gives an overview of the SOS indetermi-
nacies known in literature. It proceeds with deriving a the-
orem for these indeterminacies in the more general case of
convolutive mixing and unmixing of sources that are corre-

lated in time, i.e. sources that have non-zero autocorrela-
tions over multiple time-lags. Also, remarks are made on
implementation details and properties of real world signals
which helps SOS based blind signal separation.

The notation is in accordance to Figure 1 which depicts
the mixing/unmixing system. The independent sources
s1 ...sy are mixed by the mixing system H to obtain the
sensor signals x; ...z . Throughout, both the number of
sources and the number of sensors are equal to .J. Time in-
dexes are not mentioned explicitly in all formulas. The ex-
pectation operator E{.} gives the the ensemble average of
a variable. Superscripts denote the vector or matrix dimen-
sions. A length L vector containing only zeros is denoted
o”.

The unmixing system tries to recover the source signals
blindly. l.e. the source signals and the mixing system are
unknown so that BSS must be performed using only the sen-
sor signals. In general, signal separation is achieved when
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Figure 1: Cascaded mixing/unmixing system

the outputs of the unmixing system y ...y are indepen-
dent. In this paper a SOS criterion is considered

Vi#j: pyy ] = E{yiln]y;n — ]} =0 @
with n the time index and 7 = 7 ... 7p the correlation lags

that are considered. The next additional constraint is used
to prevent the BSS algorithm from producing zero outputs

Vi : py:[0] # 0 @)
The question that needs to be answered is therefore the fol-

lowing. When a SOS based BSS algorithm finds an unmix-
ing system such that its outputs are uncorrelated for the set



of time-lags that are considered, under what conditions does
this correspond to successful signal separation?

2. INDETERMINACIES

The separating criterion that is mentioned in the previous
section does not incorporate any specific knowledge on the
individual sources signals. The objective is merely to ob-
tain separated signals. Consequently, instantaneous BSS al-
gorithms can recover the sources up to a permutation and a
scaling, i.e.

y’[n] = P'D”57[n],

with P/ a permutation matrix which is obtained from the
identity matrix by interchanging columns. Matrix D7 is a
diagonal matrix which accounts for the scaling factors that
cannot be determined. In practical applications, the scaling
indeterminacy can be fixed by normalizing the recovered
signals so that they have equal powers.

For convolutive BSS algorithms, the permutation inde-
termination is the same. The scaling indetermination how-
ever becomes a filtering indetermination. This means that
the BSS algorithm has achieved its goal when filtered ver-
sions of the source signals are recovered.

Besides these basic indeterminacies, there are some spe-
cific indeterminacies that are related to the source signals,
the mixing system and the information that is used. For in-
stantaneous mixing and unmixing, these can be summarized
as [11, 12]

e Mutually uncorrelated sources s’ = (s1 ...s7)7 can
be recovered from an instantaneous mixture z7 =
H’s”7 using second order statistics when the mixing
matrix H* is full rank and there is a 7 > 0 such that

forall i # j
Efsinlsin = I}, B{si[nls;[n = 71}
E{s}} E{s}}

¢ Mutually independent sources can be recovered from
an instantaneous mixture using higher order statistics
when the mixing matrix is full rank and for all 7 # j

E{s}} , Els}}
E{(s)?} © E{(s9)*}

Note that independent sources are uncorrelated. The oppo-
site statement is not always true however. When sources
that are not correlated in time are mixed instantaneously for
example, SOS are insufficient to recover them from the mix-
ture. When these signals have non-zero fourth order mo-
ments, HOS can be used. Sources with Gaussian PDFs have
zero fourth order moments so that they cannot be recovered
using HOS either in this case.

+

In [13] the uniqueness is studied of convolutive BSS of
mixed stationary independent signals based on SOS. It was
concluded that additional constraints are needed and that it
is still not guaranteed that an adaptive algorithm converges
to the desired solution. The cross power spectrum of the
outputs can be written as

By (2) = D Ain(2) 45(2) 25, (2),

k=1

with A;;(z) the z-transformed transfer function from source
sy to output y; and @, (z) the power spectrum of source
skg. From this expression it follows that the true and the
‘permuted’ solutions are not the only ones. Setting the cross
power spectrum to zero for the case of two sources and two
sensors for example gives

A11(2)A51(2)®s, (2) = —A12(2) 455 (2) @5 (2).  (3)

True signal separation is achieved when this equation holds
for all spectra @, (z) and ®,,(z). This is the case when
are crosstalk is eliminated, e.g. A2;(z) = Aj2(2) = 0.
This equation can also be fulfilled however for particular
choices of the unmixing filters that depend on the spectra of
the source signals without achieving signal separation. This
is called the ”phantom” solution in [13]. It is mentioned
that unmixing filters of infinite length are required for the
phantom solution to exist. In the limiting case of very long
unmixing filters it can be approximated however.

3. CONVOLUTIVE BSSINDETERMINACIES

In this section the uniqueness of the unmixing system is
considered taking into account that the unmixing filters are
of finite length. The transfer function of the cascaded mix-
ing and unmixing system is also assumed to be of some fi-
nite length L and is expressed as

J L-1

vl = 3" " aulmsifn —m,

=1 m=0

with a;[m] the impulse response of the cascaded mixing
and unmixing system from source s;[n] to output y;[n]. The
cross-correlations py,,. [7] = E{yi[n]y;[n — 7]} can be
grouped into one equation for the correlation lags consid-
ered:

—~ 2L-1
Pyiy; [Tl] @il
: :EP,J(2L71) (4)
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with the source correlation matrix =77 (2L—1) given by

Ps1 [Tl_L] <o Psy [T1+L] Psy [Tl_L] -~ Psy [T1+L]

Ps1 [TP—L]' ~-Psy [TP+L] sz[TP_L]' <Psy [TP+L]

and with
. (77 [L — 1]ajl [O]
Sl s ailnlajn—L+2]
—— 2L-1 25;11 a;y [n]aﬂ[n —1]
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The ayaj is a correlation of a;; and aj, le. a
convolution of J*a% and ak, with J¥ the L x L mirror
matrix.
This interpretation reveals that a;;a;>" " equals zero

iff al; or gf equals zero. Uncorrelated outputs are suf-

ficient to uniquely define the aja;;>"~" when the source

correlation matrix ZF7(2L=1) s of rank J(2L — 1). In

that case its nullsgace is empty so that the only solution is
— 2L—-1

Vl,i 75] L ag1ag = QzLil.

Theorem 1 An unmixing system that produces uncor-
related non-zero outputs at time lags = = 7 ...7p
achieves signal separation if the source correlation matrix
=PJ(L=1) js of rank J(2L — 1) for this set of time lags.

Proof:
The proof follows directly from the next two observations:

Observation 1. uncorrelated outputs
The separation system retrieves mutually uncorrelated out-
puts if the right hand side of (4) equals zero for i # j. This
is the case iff VI : a% = 0" or al; = 0". When source
[ contributes to a certain output i, e.g. al # 0, it cannot
contribute to any other output as c_sz.l =0b,j #1.

Observation 2: non-zer o outputs
To prevent the system from setting the filters in the unmix-
ing system to zero it is required that the autocorrelations of
the outputs are non-zero, Vi : 37 : p,, [7] # 0. This require-
ment is met when Vi : 31 : aga;”" " # 0*"~" or similarly
Vi : 3l : al; # 0. This means that there is at least one
non-zero transfer function a % to every output i.

According to observation 2 there is a source that con-
tributes to a particular output. According to observation 1
this source cannot contribute to any other outputs. Each
source therefore uniquely corresponds to one output .

4. RANK OF THE SOURCE CORRELATION
MATRIX

According to Theorem 1 the source correlation matrix
=PJCL=1) must be of rank J(2L — 1) in order for BSS to
succeed using SOS. The number of time lags that are con-
sidered P must therefore at least be equal to .J(2L — 1).
Whether the source correlation matrix Z77/(2E=1) s full
rank then still depends on

e Source similarity: when the autocorrelations of two
sources are similar, columns in the source correlation
matrix can be eliminated and BSS is not possible in
accordance with Theorem 1.

e Correlation length: the autocorrelation of at least
one source needs to be of sufficient length. When the
sources have autocorrelations equal to zero p,,[7] =
0 for |7| > K, then the rank of the source correlation
matrix is at most 2L — 1 + 2K.

The well known fact that white noise sources cannot be re-
covered using SOS is found from investigating the rank of
the source correlation matrix. Another result is that sources
with short autocorrelation sequences (e.g. moving average
processes) can be recovered if one of the sources does have
a long autocorrelation sequence. So if the correlation se-
guences are distinct, one source with a long correlation se-
guence can render the source correlation matrix full rank.
The length of this correlation sequence must be such that
2L — 1+ 2K > J(2L — 1) which gives

(/-1
2

K> (2L —-1). (6)
When there are many sources .J, there must be a source with
a long correlation sequence in order for SOS-based BSS to
work. In audio applications this criterion is not met in gen-
eral as the correlation length K for signals such as speech is
shorter than the length of the cascaded mixing and unmixing
system L. Despite of this, successful separation is achieved
for several algorithms. This is due to the non-stationarity of
the data and implementation details of such algorithms as
discussed in the next section.

5. REAL WORLD DATA CONSIDERATIONS

Source signals that have short autocorrelation sequences can
be whitened when long unmixing filters are used. BSS is
therefore not possible when using SOS, which is in cor-
respondence with (6). However, typically constraints are
incorporated into BSS algorithms to prevent them from
whitening the data. For audio signals this is usually done
so that the separated signals sound more natural. It has
as a side effect however that the algorithms are forced to



separate as they are prevented from minimizing their cost-
function by whitening the data.

Another important aspect is that most analysis - includ-
ing the one in the previous section - assume stationarity of
the source signals. Real world applications however typi-
cally involve the separation of signals that are not stationary.
Consider for example speech signals which are recorded in
a real room. Speech signals are stationary only over approx-
imately 10-30 milliseconds. Thus, speech can be modeled
by time varying innovation filters excited by white noise.
These innovation filters change therefore every 10-30 ms.
Typically, the convergence time of the SOS algorithm is
slower than 10-30 ms so that the BSS algorithm fails to track
the inverse of the innovation filters and only true separation
results in uncorrelated recovered signals at all times. This
is in correspondence with (3) in which for each choice of
stationary source signals there exist a set of unmixing filters
that renders the cross-correlations among the outputs equal
to zero. This set is different for other stationary source sig-
nals but it always contains the desired solution that gives
true signal separation. This true solution can therefore be
found from the intersection of the solution sets. This is ob-
tained automatically in an adaptive system when the sta-
tionarity of the source signals is over a shorter time than the
convergence time of the adaptive system.

6. CONCLUSIONS

In this paper conditions are derived for second order statis-
tics to be sufficient in convolutive blind signal separation
which are based on mathematical proof and properties of
real world signals. A theorem is given for second order
statistics to be sufficient for the blind separation of signals
that have long autocorrelation sequences compared to the
length of the mixing and unmixing filters. For signals that
do not have autocorrelations of such lengths it is argued that
blind signals separation is still possible given that these sig-
nals are non-stationary.
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