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2. PROBLEM FORMULATION

Consider a SIMO system of � outputs given by:

�����	��
 �
 � ���	� ������������������� �!���"� (1)

where # ��$��%
'& �� ��� � �����($*)
�

is an unknown causal FIR �,+ -
transfer function satisfying # ��$.�0/
21 , 3 $ , �.���	� a scalar (non-
observable) stationary process and �!���	� is an additive � -dimensio-
nal spatial white noise, i.e. 465 �!���"�7�98:���	�<;�
>="?A@CB .

Given a finite set of observation vectors ��� - �CDAEFEFEFD��G�IHJ� and
based on the channel entries co-primness (i.e. # ��$��6/
K1 3 $ ), the
objective here is to estimate the channel coefficients vector � 
5 � ��1��(L�DAMFMFMFD � �ONP�(L	;QL up to a scalar constant (this is an inherent
indeterminacy of the BSI problem as shown in [5]) using CR-like
techniques. Before proceeding, we review next the basic idea and
principle of the original CR method in [5].

3. CR-LIKE METHODS

This section is devoted to the development of the MCR and UMCR
methods as well as the generalized formulation of the CR criterion.
For that, we start first by a brief review of the CR principle.

3.1. Review of the CR method

From (1), the noise-free outputs R�S ����� , -UTWVXTY� are given by:

R S ������
0Z S �����	[\�.�����CD -UTWVXTY� (2)

where ” [ ” denotes convolution. Using commutativity of convolu-
tion, it follows:Z.]*�����	[ R S ������
0Z S �����	[ R ].�����CD -UTYVX^�_6TW� (3)

This is a linear equation satisfied by every pairs of channels.
It was shown that based on � � � � - ��`ba possible cross-relations,

the channel parameters can be uniquely identified according to [5]:

Theorem 1 Under the data model assumptions, the set of cross-
relations (in the noise free case):

R�S �����"[cZ�d] �����e� R ] �����	[�Z�dS ������
01*D -UTWVX^f_gTW� (4)

where # d ��$.� is a �:+!- polynomial vector of degree N , is satisfied
if and only if # d ��$��X
>h # ��$.� for a given scalar constant h .

ABSTRACT

We consider the problem of blind identification of FIR systems us-
ing the cross-relations (CR) method first introduced in [1]. Our 
contribution in this paper are as follows: (i) We introduce an ex-
tended formulation of the CR identification criterion which gener-
alizes the standard CR criterion used in [1]. It can be shown that 
many existing multichannel blind identification methods belong to 
the class of generalized CR methods. (ii) We introduce a new iden-
tification method referred to as Minimum Cross-Relations (MCR) 
method which exploits with minimum redundancy the spatial di-
versity among the channel outputs. Simulation-based performance 
analysis of the MCR method and comparisons with CR method 
are also presented. (iii) Then, we present a modified version of the 
MCR referred to as the ”unbiased MCR” (UMCR) method that 
leads to unbiased estimation of the channel parameters and better 
estimation performances without need of noise whitening as in the 
MCR. (iv) Finally, we discuss the multi-input case and show how 
additional difficulties arise due to the non-linear parameterization 
of the noise vectors in terms of the channel parameters.

1. INTRODUCTION

Blind system identification (BSI) is a fundamental signal process-
ing technology aimed at retrieving a system’s unknown informa-
tion from its outputs only. This problem has received a lot of atten-
tion in the signal processing literature and a plethora of methods 
and techniques have been proposed to solve the BSI over the last 
2 decades [6, 7]. Since 1991, it has been shown that using spa-
tial and/or temporal diversity leads to efficient and simplified BSI 
methods using only the second order statistics of the outputs or 
even deterministic approaches. The CR method introduced in [1] 
is one of the simplest and efficient methods for blind identification 
of FIR SIMO systems. This paper focuses on the CR method and 
introduces several improvements and new developments related to 
this technique. At first, we reformulate the CR problem in such 
a way to provide a general framework where a large class of BSI 
methods can be seen as CR-like methods. Then we introduce sev-
eral improvements /simplifications of the original CR method re-
ferred to as MCR (for Minimum Cross-Relations) and UMCR (for 
Unbiased Minimum Cross-Relations) method. Finally, we discuss 
the MIMO case and explain why the CR method cannot be ex-
tended “in a simple way” to solve the MIMO-BSI problem.



By collecting all possible pairs of � channels, one can easily estab-
lish a set of linear equations. In matrix form, this set of equations
can be expressed as: B � 
01 (5)

where B is defined by:� ? 
 5 ��� ?�� D�� ����� � ;
�	� 
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�

�
� ) � ���� � � � � ����� �
. . .

...� � � � � � � � ) � �
����
� (6)

with � 
��*D�EFEFEAD � and:

��� � � 



� R � �ON � EAEFE R � ��1��

...
...R � ��� � - � EAEFE R � ��� �fN � - �

�
� (7)

In the presence of noise, equation (5) can be naturally solved in
the least-square (LS) sense according to:������ 
����! #"%$'&(*)+( � � � 8 � 8B B � (8)

The CR method is referred to as the LS method in [5] because it
represents the least-squares solution to the CR equation (5).

3.2. Minimum CR Method

In the same spirit as in the MNS (Minimum Noise Subspace) me-
thod [4], we show here that only � � - (instead of � � � � - ��` a )
cross-relations can be used for channel identification. We have the
following theorem:

Theorem 2 Let ,�- � D�EFEFEFD - B ) �/. , - S 
 � V � D V ? � , V 
 - DFEFEFEFD � �- , be a set of � � - pairs of channels which form a tree structure,
then the noise-free cross-relations ( # d ��$.� being a polynomial vec-
tor of degree N ):Z d S10 �����	[ R S32 ����� ��Z dS�2 �����	[ R S�0 ������
 1 D V 
 - DAEFEFEFD � � - (9)

yield a unique identification of the channel transfer function # ��$.� ,
i.e. # d ��$.��
0h # ��$.� for a given scalar constant h .

In figure 1, we consider the following example correspond-
ing to � 
54 and - � 
 � - D ab�CD - ? 
 � - D6� �CD -87 
 ���*D�9�� and-;: 
 ��� D64 � that is a set of four (i.e. : � � - ) pairs forming a
tree structure. To solve (9) in presence of noise, we estimate the
channel parameters in the least squares sense according to:�� � �<� 
��=�! >"%$'&(?)@( � � � 8 8 � (10)

where
�

is a block matrix which ��� D � � block entry is zero if � `A, � � D � ? . with -
� 
 ��� � D � ? � and is equal to

��� � 2 � if � 
 � �
and � � �

�
0 � if � 
 � ? . Contrary to the CR method, the MCR

requires noise whitening as the mean value of the noise term in
the quadratic form of (10) is not proportional to identity, but to a
positive diagonal matrix. In the illustrative example of figure 1 and
under the white noise assumption the noise term satisfies:4 � B 8 B �DC>E V�F+G �Oa.D - D6�*D - D - �
where matrix B is defined from the noise term similarly to

�
.

This would require a noise whitening to obtain unbiased estimation
of the channel parameters.

Figure 1: Example of a tree structure for � 
H4 .
3.3. Unbiased MCR Method

We introduce here a modified version of the MCR in such a way
that the contribution of the noise term becomes proportional to
identity. More precisely, instead of using � � � - � cross-relations
as in the MCR, we do use � cross-relations corresponding to the
following pairs: IJJJJK JJJJL

- � 
 � - D ab�- ? 
 �Oa D!� �
...- B ) � 
 � � � - D �- B 
 � � D - �

(11)

where the first � � � - � pairs correspond to the MCR, and the last
one represents a redundancy chosen such that all system outputs
are used similarly1.

This has also the advantage of rendering the performances of
the method independent from a specific choice of the selected tree
structure of the MCR. This leads to a slight performance gain as
observed in the simulation results (see section 5). In addition, in
the UMCR, noise whitening is not necessary as stated by the fol-
lowing theorem:

Theorem 3 Under the data model assumptions, the channel pa-
rameter estimate given by the least squares solution of the cross-
relations of (11) is asymptotically unbiased.

4. GENERALIZED CR CRITERION

Equation (3) can be rewritten in a more compact form as:

5 M ��Z �<;*[��G������
01 (12)

or equivalently (dual form):

5 N � R �<;�[ � �����X
01 (13)

1This is not the case in the MCR as certain system outputs are used
more than others. For example, in the first O1PRQTS/U pairs of (11) system
outputs S and P are used only once while the others are used twice.



where 5 M ��Z �<; and 5 N � R �<; are two matrix-valued operators depend-
ing linearly on the channel parameters and observation signals, re-
spectively, according to:

M ��Z ��


�������
�

Z ? � Z � 1 EFEAE 1Z 7 1 � Z � EFEAE 1
...

...
. . .

. . .
...Z B 1 EFEFE 1 � Z �

...
...

...
...

...1 EFE�E 1 Z B � Z B ) �

� �������
�

(14)

N � R ��


�������
�

R ? � R � 1 EAEFE 1R 7 1 � R � EAEFE 1
...

...
. . .

. . .
...R B 1 EFEAE 1 � R �

...
...

...
...

...1 EFEAE 1 R B � R B ) �

���������
�

(15)

In this case 5 M ��Z �<; and 5 N � R �<; have well defined specific forms
given by (14) and (15). However, this specific forms are not neces-
sary to achieve unique identification of the system parameters and
thus a large class of functions 5 M ��Z �<; and 5 N � R �<; different from
those used in (14) and (15) can provide admissible identification
criteria (i.e. a criterion is said to be admissible if it yields a unique
identification of the system parameters).

Also, we allow 5 M ��Z �<; and 5 N � R �<; to be linear or non-linear,
explicit or implicit function of the channel parameters and obser-
vation signals respectively.

Note that the second form of criterion (15) is generally pre-
ferred for channel identification since it depends linearly on the
unknown channel parameters. However, this latter is not always
possible to derive from the first form (14) when 5 M ��Z �<; is a non-
linear or an implicit function of h (see the multi-input case below).

Using this general formulation it can be shown that methods
as maximum likelihood [3], Subspace [2], MNS (Minimum Noise
Subspace) [4], etc. are special members of the class of generalized
CR methods.

For example the subspace method in [2] consists of estimat-
ing the channel parameters using the signal and noise subspace
orthogonality. The estimation criterion can be written as:

����� ��Z ��
01 (16)

or equivalently: � �����	[ � �����X
01 (17)

where
�

represents the noise subspace projection,
� � ��Z � is a

block Sylvester matrix, and
�

is a filtering matrix computed from�
as: � S ] ������
 � S�� ]��

� B (18)

Equation (17) has the form of (13) where 5 N � R �<; is given here by�
, that is a non-linear, implicit function of the observation process�G����� (recall that the noise projection

�
is computed from the data�G����� through the eigen decomposition of its covariance matrix).

5. THE MULTI-INPUT CASE

In the multi-input case the transfer function becomes a � + - matrix��$.� , -�^�-Y^ � being the number of input signals. The noise-

free observation can be written as:� � 
 � �����X
 5 	 � 
 � ��$.�<;��������R 
 � � �����X
 5 	 
 � � � 
 ��$.�<;��������
...R B �����X
 5 	 B � 
 ��$.�<;�������� (19)

with � � 
 � �����!
 5 R � �����CDFEFEFEFD R 
 �����<; L , where
	 � 
 � ��$.� is the top- + - sub-matrix of

	 ��$�� , the
	 S�� 
 ��$.� is the -�+ -UV�� Z row vector of	 ��$�� and 5 	 ��$��<;�������� represents the system outputs, corresponding

to a transfer function
	 ��$.� excited by �������������
 5 � � �����CDFMFMFM�D � 
 �����<;QL

the p-dimensional vector of independent source signals.
For unique channel identifiability,

	 ��$.� is assumed to be irre-
ducible [5] i.e: � F ��� 5 	 ��$.�<; 
 - D 3 $
In addition, we assume here that the - +%- sub-matrix

	 � 
 � ��$�� is
full rank, i.e: ����� � 	 � 
 � ��$.���J/� 1
In that case, the following � � - cross-relations can be obtained
by:

�������X
 5 � ) �� 
 � ��$.�<; � � 
 � ������
 5 �� "!� 	 � 
 � ��$.�������� � 	 � 
 � ��$.��� ; � � 
 � ����� (20)

or equivalently:

5 ����� � 	 � 
 � ��$.���<; R 
 � � ������
 5 	 
 � � � 
 ��$.� �� " � 	 � 
 � ��$.���<; � � 
 � �����
... (21)5 ����� � 	 � 
 � ��$.���<; R B�������
 5 	 B � 
 ��$.� �� " � 	 � 
 � ��$.���<; � � 
 � �����

where �� " � A � and
����� � A � denote the co-factor matrix and deter-

minant of A, respectively. Under above assumptions, this set of
cross-relations yields a unique identification2 of the channel pa-
rameters (up to a constant -f+	- non-singular matrix which rep-
resents in fact the inherent indeterminacy of the MIMO-BSI prob-
lem).

Unfortunately, as we can see in the case -"! - , the noise vec-
tors are non-linear functions3 of channel parameters. Therefore, a
simple extension of the cross-relations algorithm to the multi-input
case seems not to be possible.

6. SIMULATION RESULTS

We present here some numerical simulations to assess the perfor-
mances of the proposed CR-like methods. We consider a SIMO
system with � 
$# outputs represented by polynomial transfer
function of degree N 
 9 . The channel coefficients are gener-
ated randomly (at each Monte-Carlo run) following the complex
gaussian distribution, i.e. the amplitude of each channel coeffi-
cient is Rayleigh distributed with unit-variance while its phase is
uniformly distributed in 5 1*DCa&%�; . The input signal is a 4QAM iid
sequence of length H 
 a 4'# . The observation is corrupted by ad-
dition white gaussian noise with a variance = ? chosen such that

the ( � � (*)+( 2) 2 varies in the range 5 1*D6�b1 ;�E+* .

2The proof is omitted here due to space limitation.
3In the mono-input case, noise vectors are expressed as linear functions

of the channel parameters as shown by eq.(14).
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Statistics are evaluated over � � - 1b1 1 Monte-Carlo runs
and estimation performances are given by the normalized mean-
square error criterion:

N (�4 -�
�
�


� � �
� �� � � � � ?

� � � ?
Where

�� � denotes the estimated channel coefficient vector at the
r-th Monte-Carlo run.

In figure 2, we compare the performances of the CR, the MCR
referred to as MCR1 with - S 
 � - D V � , V 
'a DFEFE�EAD � , the UMCR
and the MCR with - S 
 � V � - D V � , V 
 a D�EAEFEFD � referred to as
MCR2.

We can observe that the choice of the structure underlying
the MCR method can affect significantly the performances of the
method. Also, we observe a slight loss of estimation performances
of the UMCR compared to the CR method, but the former remains
computationally much more efficient.

7. CONCLUSION

In this paper we have presented several extensions of the CR method
originally introduced in [5]. These extensions consist of a general
formulation of the CR criterion, a minimum CR (MCR) method,
an unbiased MCR method and a discussion of the CR method for
the MIMO case.

The MCR and UMCR methods presented in this paper are
simplified version of CR that might reduce significantly the com-
putational cost of the blind channel estimation especially for large
systems.
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9. APPENDIX

Proof of Theorem 2: Let consider the Z-transform of the � � � - �
cross-relations of (5) in the noiseless case. That leads to :

�	 ��$.� L # d ��$.��
 1
where # d ��$.� 
 5 Z d � ��$.�CDFEFEAEFD Z dB ��$.�<;QL and

�	 ��$.� is a � + � � � - �
polynomial matrix which � -th column is the zero valued vector
except for the � � -th and � ? -th entries that are equal to Z

�
2 ��$.� and� Z � 0 ��$.� respectively (with -

� 
 ��� � D�� ? � ).
According to [4] and thanks to the tree structure, the columns

of
�	 ��$.� form a basis of the rational subspace Range , # ��$.� .�� , i.e.,

the orthogonal rational subspace to Range ,�# ��$.� . . As a conse-
quence # d ��$.� belongs to Range ,�# ��$.� . and since it is a polynomial
vector with degree N equal to that of # ��$.� , we have# d ��$��X
>h # ��$.�
for a given scalar constant h .

Proof of Theorem 3: In presence of noise, matrix in (10) con-
structed from the set of pairs in (11) becomes :

� � B
where B represents the additive noise term. Under the spatial
and temporal white noise assumption and the independence of the
noise and signal term, we have:

4 � � 8 � �X
 4 � � 8 ���F� 4 � � 8 B �F� 4 � B 8 ���F� 4 � B 8 B
the second and third term in the right side of above equation is
equal to zero because of the independence of noise and signal
terms. The last term is equal to :

4 � B 8 B ��
 a = ? �IHY�fN �(@ B � � � � �
where = ? is the noise power, H the sample size and N the channel
polynomial degree. Consequently, the channel estimate given by

the least eigenvector of 4 � � 8 � � coincide with that of the noise-

less covariance matrix 4 � � 8 ��� .
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