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ABSTRACT

In this paper, we consider the problem of underdetermined blind
source separation using modal decomposition. Indeed, audio
signals and, in particular, musical signals can be well approx-
imated by a sum of damped sinusoidal (modal) components.
Based on this representation, we propose a two steps approach
consisting of a signal analysis (extraction of the modal compo-
nents) followed by a signal synthesis (pairing of the components
belonging to the same source) using vector clustering. Our con-
tributions in this paper are a new separation method with relaxed
assumption and reduced computational cost compared to other
existing algorithms. Simulation results are given to assess the
performance of the proposed algorithm.

1. INTRODUCTION

The objective of blind source separation (BSS) is to extractthe
original source signals from their mixtures using only the in-
formation within the observed mixtures with no, or very lim-
ited knowledge about the source signals and the mixing matrix.
BSS problem arises in many fields, such as noise reduction, radar
and sonar processing, speech enhancement, separation of rotat-
ing machine noises, biomedical signal processing and even in
optical tracking system [1]. This problem has been intensively
studied in the literature and many effective solutions havebeen
proposed so far [1]. In the particular case where the number of
sources is larger than the number of observed mixtures (under-
determined BSS case (UBSS)), the separation can be achieved
only if side information about the sources is available (sparse-
ness, W-disjointness, finite alphabet sources, etc). In thecase of
non-stationary signals (including the audio signals), certain so-
lutions using time-frequency (TF) analysis of the observations
and the sources TF-orthogonality exist for the underdetermined
case [2, 3].
In this paper, we propose an alternative approach using modal
decomposition (MD) of the received signals [4]. More precisely
we propose to decompose the signal into its various modes. The
audio signals and more particularly the musical signals canbe
modeled by a sum of damped sinusoids [5] and hence are well
suited for our separation approach. We propose here to exploit
this last property for the separation of audio sources by means
of modal decomposition. To start, we review the MD-UBSS ap-
proach presented in [4], then we propose an improved algorithm
that reduces the computational cost and relax some of the work-
ing assumptions.
In this paper, we use bold upper and lower case letters for matri-
ces and vectors, respectively. The remaining notational conven-
tions and major symbols are listed as follows:

(·)∗ Complex conjugation.
(·)T Transpose.
(·)H Transpose conjugate.
‖ · ‖ Frobenius norm.
I Identity matrix.

2. DATA MODEL

The blind source separation model assumes the existence ofN
independent signalss1(t), . . . , sN(t) andM observationsx1(t),
. . . , xM (t) which represent the mixtures. These mixtures are
supposed linear and instantaneous, i.e.

xi(t) =
NX

j=1

aijsj(t) i = 1, . . . , M . (1)

This can be represented compactly by the mixing equation

x(t) = As(t) (2)

wheres(t)
def
= [s1(t), . . . , sN(t)]T is a N × 1 column vec-

tor collecting the source signals, vectorx(t) similarly collects

theM observed signals, and theM × N mixing matrixA
def
=

[a1, . . . ,aN ] with ai = [a1i, . . . , aMi]
T contains the mixture

coefficients. We assume that for any pair(i, j) with i 6= j, the
vectorsai andaj are linearly independent. It is known that BSS
is only possible up to some scaling and permutation [6]. We
take advantage of these indeterminacies to assume without loss
of generality that the column vectors ofA are of unit norm i.e.
‖ai‖ = 1 for 1 ≤ i ≤ N .
The considered source signals are supposed to be decomposable
in a sum of modal componentscj

i (t), i.e:

si(t) =

liX

j=1

cj

i (t) t = 0, . . . , T − 1 . (3)

The usual source independence assumption is replaced here by a
quasi-orthogonality assumption of the modal components, i.e.

〈cj
i |c

j′

i′
〉

‖cj
i‖‖c

j′

i′
‖
≈ 0 for (i, j) 6= (i′, j′) (4)

where

〈cj

i |c
j′

i′
〉

def
=

T−1X

t=0

cj

i (t)c
j′

i′
(t)∗ (5)

and

‖cj
i‖

2 = 〈cj
i |c

j
i 〉 . (6)



3. MD-UBSS ALGORITHM

Based on the previous model, we propose an approach in two
steps consisting of:

• An analysis step: in this step, one applies an algorithm
of modal decomposition to the sensor outputs in order to
extract all the harmonic components from them.

• A synthesis step: this is to group together the modal com-
ponents corresponding to the same source in order to re-
constitute the original signal. This is done by observing
that all modal components of a given source signal ’live’
in the same spatial direction. Therefore, the proposed
clustering method is based on the component’s direction
evaluated by correlation of the extracted (component) sig-
nal with the observed antenna signal.

3.1. Parametric signal analysis

The source signal and hence the observations are modeled as
sum of damped sinusoids:

xk(t) = ℜe

(
LX

l=1

αl,kzt
l

)
(7)

whereαl,k represents the complex amplitude andzl = edl+ωl

is thelth pole wheredl is the negative damping factor andωl is
the angular-frequency.ℜe(·) represents the real part of a com-
plex entity.
For the extraction of the modal components, we propose to use
the ESPRIT-like (Estimation of Signal Parameters via Rotation
Invariance Technique) technique that estimates the poles of the
signals by exploiting the row-shifting invariance property of the

D×(T −D) data Hankel matrix[H(xk)]n1n2

def
= xk(n1 +n2),

D being a window parameter chosen in the rangeT/3 ≤ D ≤
2T/3.
We use Kung’s algorithm given in [7] that can be summarized in
the following steps:

1. Form the data Hankel matrixH(xk).

2. Estimate the2L-dimensional signal subspaceU(L) =
[u1 . . .u2L] of H(xk) by means of the SVD (u1 . . .u2L

are the principal left singular vectors ofH(xk)).

3. Solve (in the least squares sense) the shift invariance equa-
tion

U
(L)
↓ Ψ = U

(L)
↑ ⇔ Ψ = U

(L)#
↓ U

(L)
↑ (8)

whereΨ = Φ∆Φ−1, Φ being a non-singular2L × 2L
matrix and∆ = diag(z1, z

∗
1 , . . . , zL, z∗

L). ()# denotes
the pseudo-inversion operation and arrows↓ and↑ denote
respectively the last and the first row-deleting operator.

4. Estimate the poles as the eigenvalues of matrixΨ.

5. Estimate the complex amplitudes by solving the least squares
fitting criterion

min
α

‖xk − Zα‖2 ⇔ α = Z
#
xk (9)

wherexk = [xk(0) . . . xk(T − 1)]T is the observation
vector,Z is a Vandermonde matrix constructed from the
estimated poles andα is the vector of complex ampli-
tudes.

3.2. Signal synthesis using vector clustering

For the synthesis of the source signals one observes that thanks
to the quasi-orthogonality assumption, one has:

〈x|cj
i 〉

‖cj
i‖

2

def
=

1

‖cj
i‖

2

2
64

〈x1|c
j
i 〉

...
〈xM |cj

i 〉

3
75 ≈ ai

whereai represents theith column vector ofA. We can then
associate each componentbck

j to a space direction (vector column
of A) that is estimated by

bak
j =

〈x|bck
j 〉

‖bck
j ‖

2
.

Two components of a same source signal are associated to the
same column vector ofA. Therefore, we propose to gather these
components by clustering the vectorsbak

j into N classes1. One
will be able to rebuild the initial sources up to a constant by
adding the various components within a same class.

3.3. Existing MD-UBSS algorithm [4]

This algorithm applies the previous analysis and synthesissteps
to each signal outputxk(t). By doing so, one obtainsM esti-
mates of each source signal with an estimation quality varying
significantly from one sensor to another. Indeed, this latter de-
pends strongly on the mixing matrix coefficients and, in particu-
lar, on the signal to interference ratio (SIR) of the desiredsource.
Consequently, a blind selection method to choose a ’good’ esti-
mate among theM available is proposed in [4]. First, the source
estimates are paired together by associating each source signal
extracted from the first sensor to the(M − 1) signals extracted
from the(M − 1) other sensors that are maximally correlated
with it. The correlation factor of two signalss1 ands2 is evalu-
ated by 〈s1|s2〉

‖s1‖‖s2‖
.

Once, the source pairing achieved, the source estimate of maxi-
mal energy is selected, i.e.

bsi(t) = argmax
bs
j
i
(t)

{Ej
i =

T−1X

t=0

|bsj
i (t)|

2, j = 1, · · · , M} (10)

whereEj
i represents the energy of theith source extracted from

thejth sensorbsj

i (t).

3.4. Proposed MD-UBSS algorithm

We propose here to improve the previous algorithm w.r.t the
computational cost and the estimation accuracy when Assump-
tion 4 (Equation (4)) is poorly satisfied2. First, in order to avoid
repeated estimation of modal components for each sensor output,
we use all the observed data to estimate (only once) the polesof
the source signals. Hence, we apply the ESPRIT-like technique
on the averaged data covariance matrixH(x) define by:

H(x) =

MX

i=1

H(xi)H(xi)
H (11)

and we apply steps 1 to 4 of Kung’s algorithm described in Sec-
tion 3.1 to obtain all the poleszi, i = 1, . . . , L. This way, we
reduce significantly the computational cost and avoid the prob-
lem of ’best source estimate’ selection of the previous algorithm.
Now, to relax Assumption 4, we can re-write the data model as:

Γz(t) = x(t) (12)

whereΓ
def
= [γ1, γ

∗
1, · · · , γL, γ∗

L], γi = βie
φibi, wherebi

is a unit norm vector representing the spatial direction of theith

component (i.e.bi = ak/‖ak‖ if the ith component belongs to

thekth source signal) andz(t)
def
= [zt

1, (z
∗
1)t, · · · , zt

L, (z∗
L)t]T .

1In the simulation, we have used the k-means algorithm in [8] for
vector clustering.

2This is the case when the modal components are closely spacedor
for modal components with strong damped factors.



The estimation ofΓ using the least-squares fitting criterion leads
to :

min
Γ

‖X − ΓZ‖2 ⇔ Γ = XZ
# (13)

whereX = [x(0), · · · ,x(T − 1)] andZ = [z(0), · · · , z(T −
1)]. After estimatingΓ, we estimate the phase of each pole as:

φi =
arg(γH

2iγ2i−1)

2
(14)

The spatial direction of each modal component is estimated by:

bvi = γ2i−1e
−φi + γ2ie

φi = 2βibi . (15)

Finally, we group together these components by clustering the
vectorsbvi into N classes. After clustering, we obtainN classes
with N centroidsba1, . . . , baN corresponding to the estimates of
the column vectors of the mixing matrixA. If the polezi be-
longs to thejth class, then according to (15), its amplitude can
be estimated by:

βi =
baH

j bvi

2
. (16)

One will be able to rebuild the initial sources up to a constant by
adding the various modal components within a same classCi as
follow:

bsi(t) = ℜe

8
<
:

X

j∈Ci

βje
φj zt

j

9
=
; . (17)

4. NON-DISJOINT SOURCES CASE

We consider here the case where a given componentck
j (t) can

be shared by several sources. This is the case, for example, for
certain musical signals such as those treated in [9]. To simplify,
we suppose that a component belongs to at most two sources.
Thus, let us suppose that the componentck

j (t) is present in the
sourcessj1(t) andsj2(t) with the amplitudesαj1 andαj2 , re-
spectively. It follows that the spatial direction associated with
this component as estimated by (15), is given by:

bvi ≈ αj1aj1 + αj2aj2 . (18)

It is now a question of finding the indicesj1 andj2 of the two
sources associated with this component, as well as the ampli-
tudesαj1 and αj2 . With this intention, one proposes an ap-
proach based on subspace projection. Let assume thatM > 2
and matrixA is known and satisfies the condition that any triplet
of its column vectors are linearly independent. Consequently, we
have:

P
⊥
eA
vi = 0, (19)

if and only if eA = [aj1 aj2 ], eA being a matrix formed by a
pair of column vectors ofA andP

⊥
eA

represents the matrix of

orthogonal projection on the orthogonal range space ofeA, i.e.

P
⊥
eA

= I − eA
“

eAH eA
”−1 eAH . (20)

In practice, by taking into account the noise, one detects the
columnsj1 andj2 by minimizing:

(j1, j2) = arg min
(l,m)

n
‖P⊥

eA
bvi‖ | eA = [al am]

o
. (21)

Once eA found, one estimates the weightingsαj1 andαj2 by:
»

αj1

αj2

–
= eA#bvi. (22)

In the simulation, the optimization problem of (21) is solved
using exhaustive search. This is computationally tractable for

small vector array sizes but would be prohibitive ifM is very
large. In this paper, we treated all the components as being as-
sociated to two source signals. If ever a component is present
only in one source, one of the two coefficients estimated in (22)
should be zero or close to zero. Also, in what precedes, the mix-
ing matrix A is supposed to be known. This means, it has to
be estimated before applying a subspace projection. This isper-
formed here by clustering all the spatial direction vectorsin (15)
as for the preview MD-UBSS algorithm. Then, theith column
vector ofA is estimated as the centroid ofCi assuming implic-
itly that most modal components belong mainly to one source
signal. This is confirmed by our simulation experiment shown
in Figure 2.

5. SIMULATION

We present here some simulation results to illustrate the perfor-
mance of our blind separation algorithms. For that, we consider
a uniform linear array withM = 3 sensors receiving the signals
from N = 4 audio sources. The angles of arrival of the sources
are chosen randomly. The sample size is set toT = 10000 sam-
ples (the signals are sampled at a rate of 22 kHz). The observed
signals are corrupted by an additive white noise of covariance
σ2

I (σ2 being the noise power). The separation quality is mea-
sured by the normalized mean squares estimation errors (NMSE)
of the sources evaluated over 200 Monte-Carlo runs and defined
as:

NMSEi
def
=

1

Nr

NrX

r=1

min
α

„
‖αbsi,r − si‖

2

‖si‖2

«
(23)

NMSEi =
1

Nr

NrX

r=1

1 −

„
bsi,rs

H
i

‖bsi,r‖‖si‖

«2

(24)

NMSE =
1

N

NX

i=1

NMSEi . (25)

wheresi
def
= [si(0), . . . , si(T − 1)], bsi,r ( defined similarly)

represents therth estimate of sourcesi andα is a scalar factor
that compensate for the scale indeterminacy of the BSS problem.
In Figure 1, we compare the separation performance obtained
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Fig. 1. NMSE versus SNR for 4 audio sources and 3 sensors:
comparison of the performance of MD-UBSS algorithms with
and without quasi-orthogonality assumption.

by existing MD-UBSS algorithm and the new MD-UBSS algo-



rithm. We observe a performance gain in favor of the new MD-
UBSS due mainly to the fact that it does not rely on the quasi-
orthogonality assumption. This plot also highlights the problem
of ’best source estimate’ selection related to the MD-UBSS as
we observe a performance loss between the results given by the
proposed energy-based selection procedure and the optimal3 one
using the exact source signals. Figure 2 illustrates the estimation
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Fig. 2. Mixing matrix estimation: NMSE versus SNR for 4
speech sources and 3 sensors.

performance of the mixing matrixA using proposed clustering
method. The observed good estimation performance translates
the fact that most modal components belong ’effectively’ toone
single source signal. In Figure 3, we compare the performance of
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Fig. 3. NMSE versus SNR for 4 audio sources and 3 sensors:
comparison of the performance of modified MD-UBSS algo-
rithm and the same algorithm with subspace projection.

new MD-UBSS algorithm and the same algorithm with subspace
projection. One can observe that using the subspace projection
leads to a performance gain at moderate and high SNRs. At low
SNRs, the performance is slightly degraded due to the noise ef-
fect. Indeed, when a given component belongs ’effectively’to

3Clearly, the optimal selection procedure is introduced here just for
performance comparison and not as an alternative selectionmethod since
it relies on the exact source signals that are unavailable inour context.

only one source signal, equation (22) would provide a non zero
amplitude coefficient for the second source due to noise effect
which explains the observed degradation.

6. CONCLUSION

This paper introduces a new MD-UBSS algorithm of audio sources.
The main advantages over the proposed MD-UBSS algorithm
are, a reduced the computational cost and relaxed a quasi-orthog-
onality assumption. Moreover, this algorithm is extended to the
non-disjoint sources case using an approximate subspace projec-
tion technique. Simulation results illustrate the effectiveness of
our algorithm compared to the one [4].
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