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ABSTRACT

In this contribution, we propose an efficient collaborative
online filter in a wireless sensor network under commu-
nication constraints. The observed system is assumed to
evolve according to a non linear state-space model. The
distributed intelligent sensors collaborate to estimate the
marginal probability of the hidden continuous state, within
a Bayesian framework. The communication protocol re-
lies on the activation of only few nodes. The selection of
the leader node, through time, and its spatially collaborat-
ing nodes is based on a trade-off between data relevance
(measured by an information criteria), message approxi-
mation error and communication constraints.

1. INTRODUCTION

A sensor network is a system made up of several tens
to several hundreds of inter-connected nodes, made up,
each one, of a sensor, an information processing unit and
a communication block. The nodes have a zone of ex-
tremely reduced cover and are deployed in a dense way in
heterogeneous environments. They are autonomous and
have for that an energy reserve which renewal could be
impossible, limiting thus their lifespan. Each node must
be able to treat the received data, to make a local deci-
sion and to communicate it in an autonomous way with
the close nodes to which it is connected. This coopera-
tion is intended to ensure best decision-making in spite of
the limits in terms of power consumption and processing
capability.

Recently, distributed particle filters were proposed in
literature [1, 2]. In [2], a message approximating scheme
based on a greedy KD-tree approximation is proposed. In
[1], a full collaborative strategy is proposed with a GMM
(Gaussian Mixture Model) message approximation. How-
ever, with the GMM approximation, the error propagation
is not controlled and the model refinement is not straight-
forward as with the KD-tree approximation. Unlike the
GMM modeling, the KD-tree Gaussian mixture model-
ing allows a more flexible control of the trade-off between
the approximation precision and the communication con-
straints. In this contribution, we propose a full collabora-
tive distributed particle filter based on the KD-tree approx-
imation and a leadership selection protocol. In the pro-
posed strategy, the spatio-temporal selection of the leader

node and its collaborators is based on a trade-off between
the data information relevance, the communication con-
straint and the message approximation error.

The paper is organized as follows: in Section 2, the
probabilistic optimal centralized particle filter is briefly
described. The section 3 is the main contribution of this
paper. We propose a collaborative particle filter in a dis-
tributed sensor network where the smart sensors exchange
only density approximations (sufficient statistics) and se-
lect the leader nodes in an autonomous way. Finally, some
simulation results corroborating the efficiency of the pro-
posed algorithms are presented.

2. CENTRALIZED PARTICLE FILTERING

In this section, we briefly recall the particle filter method
for filtering in nonlinear dynamical systems. It is an ap-
proximate Monte Carlo method estimating, recursively in
time, the marginal posterior distribution of the continu-
ous hidden state of the system, given the observations.
The particle filter provides a point mass approximation of
these distributions. For more details and a comprehensive
review of the particle filter see [3].

The observed system evolves in time according to the
following nonlinear dynamics:







xt ∼ px(xt | xt−1, ut)

y
(m)
t ∼ pm(y

(m)
t | xt, ut), m = 1..M,

(1)

wherey
(m)
t ∈ Rny denotes the observations transmitted

from the sensorm at time t, xt ∈ Rnx denotes the un-
known continuous state, andut ∈ U denotes a known con-
trol signal. The probability distributionpx(xt|xt−1, ut)
models the stochastic transition dynamics of the hidden
state. Given the state, the observationsy

(m)
t from each

sensorm follow a stochastic modelpm(yt|xt, ut), where
the stochastic aspect reflects the observation noise.

In this paper, we assume that, given the statesxt, the
sensor noises are stochastically independent.

The Bayesian filtering is based on the estimation of
the posterior probabilityp(xt|y1:t). The nonlinear and the
non Gaussian aspect of the transition distributions leads to
intractable integrals when evaluating the marginals. There-
fore, one has to resort to Monte Carlo approximation where



the joint posterior distributionp(x0:t|y1:t) is approximated
by the point-mass distribution of a set of weighted samples
(called particles){x(i)

0:t, w
(i)
t }N

i=1:

p̂N (x0:t | y1:t) =

N
∑

i=1

w
(i)
t δ

x
(i)
0:t

(d x0:t),

whereδ
x

(i)
0:t

(d x0:t) denotes the Dirac function.

In the Bayesian importance sampling (IS) method, the
particles{x(i)

0:t}
N
i=1 are sampled according to a proposal

distributionπ(x0:t | y1:t) and{w(i)
t } are the correspond-

ing normalized importance weights:

w
(i)
t ∝

p(y1:t | x
(i)
0:t)p(x

(i)
0:t)

π(x
(i)
0:t | y1:t)

.

Sequential Monte Carlo (SMC) consists of propagating
the trajectories{x(i)

0:t}
N
i=1 in time without modifying the

past simulated particles. The normalized importance weights
are then recursively computed in time as:

w
(i)
t ∝ w

(i)
t−1

p(yt | x
(i)
t )p(x

(i)
t | x

(i)
0:t−1)

π(x
(i)
t | x

(i)
0:t−1, y1:t)

. (2)

3. COLLABORATIVE PARTICLE FILTERING

In the following, we propose a collaborative particle fil-
ter (CPF) where the smart nodes collaborate in sequen-
tially updating the filtering distribution. They only ex-
change few statistics characterizing message approxima-
tions. The observed data{y(m)

t }M
m=1 are not propagated

in the sensor network. The proposed distributed particle
filter is characterized by a spatial and a temporal collab-
orative processing of the sequentially collected observa-
tions.

3.1. Temporal collaborative processing

The temporal collaboration consists in selecting, after the
sequential probability update, the leader node at the next
time step. The selection procedure, performed by the leader
node at timet − 1, is based on ranking the nodes accord-
ing to an information-theoretic cost functionJ(m). The
first ranked nodem∗ (argmaxm J(m)) is the next leader
candidate at timet. At time stept − 1, the chosen cost
function is a trade-off between information gain and com-
pression loss:

Jt(m) = I(m) + αE(m) (3)

where the first term of the above criteria represents the
expected information content relevance of the measured
data on the nodem, at the time stept:

I(m) = E
[

DKL(p(xt | y1:t) || p(xt | y1:t−1))
]

(4)

Here,DKL is the Kullback-Leibler divergence between
the current and the predicted filtering distributions, the ex-
pectation is evaluated according to the predicted distribu-
tion p(yt | y1:t−1) [4]. The second termE(m) is the mes-
sage error occurring when transferring the compressed fil-
tering distribution from the leader nodem∗(t−1) to node

m under the communication constraintcm < cmax, where
cm is the communication cost of transferring information
to nodem. The negative coefficientα represents the trade
off between the information gain and compression loss.
Note thatE(m∗(t−1)) = 0, meaning that the leader node
may select itself as the next leader, when the increase of
the data relevance of the other nodes does not compensate
the compression loss.

The first termI(m) can be evaluated with a Monte
Carlo integration (see [4] for details). The second term
E(m) depends on the particle representation form exchanged

between nodes. Propagating all the particles{x
(i)
t , w

(i)
t }

is not allowed in a wireless sensor network because of the
communications constraints. The KD-tree Gaussian mix-
ture is a suitable approximation when communicating dis-
tribution messages [5]. The KD-tree is multi-scale mix-
ture of Gaussian approximation of a given data set. It con-
sists in describing a large data set (particles) with a set a
few sub-trees, each sub-tree is a Gaussian whose statis-
tics can be recursively computed. The top node of the tree
is the largest scale and the leaf nodes represent the finest
scales. The internal nodes represent intermediate resolu-
tions. The set of weighted particles{x(i), w(i)} can thus
be approximated by a set of nodesS containing one and
only one ancestor of each leaf node:

p̂(xt | y1:t) =

N
∑

i=1

w(i)δx(i)(xt) ≈
∑

s∈S

αsN (xt; µs,Σs)

(5)
whereN (.) denotes the Gaussian density. Following the
arguments in [5], the maximum log-error:

ML(p, q) = max
x

| log p(x)/q(x)| (6)

is very suitable for bounding the belief propagation error
and also it is adapted to the KD-tree representation.

Deciding the hand-over consists in comparing the in-
formation gain / compression loss ratio, computed for the
selected leader candidatem∗

t , with a thresholdβ. In words,
the hand-over to the nodem∗

t is allowed if:

I(m∗
t )

I(m∗
t ) + αE(m∗

t )
> β

The thresholdβ is an increasing function of the energy
reserve communicated by the active node’s battery. If the
energy reserve is very low (β ≈ 0), the hand-over is al-
most surely done. However, if the energy reserve is at a
correct level, the active node will take into consideration
the information gain before performing the hand-over.

3.2. Spatial collaborative processing

The basic difference between the temporal and the spatial
collaboration is the following: Once the hand-off is per-
formed betweent−1 andt, the leader nodem∗(t−1) has

no more control on the filtering distributionp(xt | y
(m∗

t )
1:t ).

However, in the spatial case, the leader node can select its
collaborating neighbors and then decide whether to take



into account this collaboration or not. In other words, af-
ter evaluating the collaboration, the leader node has the
possibility to cancel the spatial update and transmit only
its filtering distribution. The aim of the proposed proce-
dure is to take into account the message error propagation
in the network. If the ratio between the message error and
the information gain becomes greater than a fixed thresh-
old, the collaboration is useless and thus cancelled by the
leader. In the following, we describe, in details, this col-
laboration protocol between the leader and the auxiliary
nodes.

1. Recursive auxiliary node selection:As the auxil-
iary nodes are selected among the neighboring nodes, we
assume that the communication cost is fixed. The number
of the maximum number of the Gaussian components is
therefore fixed to a value depending on the surface area
where the auxiliary nodes are selected. The spatial collab-
orative updating of the filtering distribution, at the time
step t, is iteratively performed. First, the leader node
updates the filtering distributionp0 = p(xt|y1:t−1, y

0
t ),

where the superscript0 refers to the leader node. Then,
the leader node selects one auxiliary nodem1 if the ra-
tio E0/I(m1) < γ, whereE0 is the message error of
the KD-tree compression,I(m1) (expression 4) the ex-
pected information gain andγ a fixed threshold. If the ra-
tio E0/I(m1) is greater than the threshold, then the leader
node cancels the collaboration. When selected, the first
auxiliary nodem1 updates the filtering distribution to ob-
tainp1 = p(xt|y1:t−1, y

0
t , y1

t ). Then, it computes the ac-
tual information gain as the Kullback-Leibler divergence
Ia(m1) between the filtering distributionsp0

KD andp1. If
the ratioE0/Ia(m1) is lower than the thresholdγ then, the
updatedp1 is accepted, otherwise the leader node cancels
the collaboration. This procedure can be considered as an
a posterioricorrection. It is useful when the computed
expected information gain shows a significant difference
with the actual information gain. If the collaboration is
not cancelled, then the auxiliary nodem1 selects the next
auxiliary nodem2, based on the same procedure, and so
on, until the maximum numberL of auxiliary nodes is
reached.

In order to analyze the divergence betweenp0 and
pj

KD and relate it to the information gain and error propa-
gation, we need a divergence measure satisfying the trian-
gle inequality. Unfortunately, the Kullback-Leibler diver-
gence does not satisfy the triangle inequality in general.
However, using the ML-measure and applying the triangle
inequality to the successive error propagations and likeli-
hood updates (see figure 1), the distance betweenp0 and
pj

KD (the KD-tree approximation ofpj) can be bounded
as follows:































ML(p0, pj
KD) ≤ Ij

a + Ej
p ,

Ij
a = 2

j
∑

l=1

ML(pl−1
KD, pl)

Ej
p = 2

j
∑

l=0

ML(pl, pl
KD)

Thus, constraining the ratioEj−1/Ia(mj) to be lower

than the thresholdγ, at each node selection step, ensures
that the overall ratio is bounded by the same thresholdγ.

Expected information gain
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Fig. 1. Message passing and updating in the spatial col-
laboration step.

2. Spatial filtering distribution updating: The opti-
mal centralized particle filtering requires that the sampled
particles{x(i)} at the leader node must be weighted by the

product of the likelihoods
L

∏

l=1

py(y
(ml)
t |x(i)). However,

to meet the communication constraints, only the KD-tree
representations are exchanged between the collaborating
nodes. We propose to update the filtering distribution in
the following cumulative way:

- For l = 1..L, at the collaborating nodeml
t,

• SampleN particles{x̃(l−1,i)} from pl−1
KD sent byml−1

t ,
• Compute normalized weightswi ∝ p(y(ml)|x̃(l−1,i)),
• Resample the particles according to the normalized weights,
• Approximate the particle distributionpl by a KD-tree
pl

KD

• Send the KD-tree approximationpl
KD to the next node

ml+1
t .

Using the above notation,p0 andp0
KD represent the leader

filtering distribution and its KD-tree approximation. Fig-
ure 2 illustrates the global spatio-temporal collaborative
online Bayesian filter.

Auxiliary node

Sensor node

Leader node

m∗(t)

m∗(t − 1)

Fig. 2. Spatio-temporal belief propagation: The leader
node and its collaborators are selected according to a
trade-off between data information relevance and com-
munication constraints, the spatial collaboration allowsa
posterioricorrection of the filtering distribution.

4. SIMULATION RESULTS

In order to illustrate the performances of the proposed col-
laborative particle filter, we consider the following non



linear reference model:






















xt = F (xt−1, t, u(t)) + vt

= 1
2xt−1 + 25xt−1(1 + x2

t−1)
−1+

8 cos 1.2t + vt.
ym,t = Gm(xt, u(t)) + wm,t

= βmx2
t + wm,t, m = 1..M

wherevt and{wm,t}M
m=1 are mutually independent Gaus-

sian noises with variancesσ2
v = 10 and{σ2

w,m}M
m=1 ran-

domly set between 1 and 2. Figure 3 illustrates the hidden
state and observation time series data for4 distributed sen-
sors.
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Fig. 3. From top to bottom: hidden state time seriesx1..T

and the4 sensor time series observations{ym,t}4
m=1.

The collaborative particle filter is applied on this data
set to estimate the marginal distributionp(xt | y1:t). We
have used the transition prior as the importance sampling
distribution (first collaborative strategy, see subsection 3.2)
with N = 50 particles. In figure 4, the estimated hidden
state time series is plotted against the true corresponding
time series, for a typical run. Note the ability of the col-
laborative filter to follow the hidden state dynamics. The
hidden states are approximated by their empiricala poste-
riori expectation:

x̂t =
1

N

N
∑

i=1

x
(i)
t
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Fig. 4. The empirical mean estimate of the hidden state
time series.

In order to better illustrate the performances of the col-
laborative particle filter, we have plotted in figure 5 the
residual estimation error of both the collaborative filter
and the local particle filterPF1 updated by the leader node

m∗. The local filter is obtained by storing the locally sam-
pled particles without spatially collaborating with auxil-
iary nodes. Note that the collaborative filter clearly out-
performs the localPF1 filter, except for a short time inter-
val (around70 s). In fact, it happens that the leader node
is particularly very informative about the true state in this
short interval for this experiment. However, the collabo-
rative filter surpasses the local filter at each time step on
the average (in a Monte Carlo sense) as the expected in-
formation content of the grouped nodes is higher than the
local information content of the leader node.
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Fig. 5. The estimation error of theCPF filter (|xt −
xCPF

t |) and the local particle filter (|xt − xPF
t |).

5. CONCLUSION

In this contribution, a collaborative distributed Bayesian
online filter is proposed. The collaboration is based on a
spatio-temporal protocol to select only few active smart
sensors. The selection of the collaborating nodes is based
on a trade-off between the data information relevance (mea-
sured by an information theoretic criteria), the communi-
cation constraints and the propagation of the message ap-
proximation error.
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