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Abstract

Mel Frequency Cepstral Coefficients (MFCCs) are the most popularly
used speech features in most speech and speaker recognition applications.
In this paper, we study the effect of resampling a speech signal on these
speech features. We first derive a relationship between the MFCC param-
eters of the resampled speech and the MFCC parameters of the original
speech. We propose six methods of calculating the MFCC parameters of
downsampled speech by transforming the Mel filter bank used to com-
pute MFCC of the original speech. We then experimentally compute the
MFCC parameters of the down sampled speech using the proposed meth-
ods and compute the Pearson coefficient between the MFCC parameters
of the downsampled speech and that of the original speech to identify the
most effective choice of Mel-filter band that enables the computed MFCC
of the resampled speech to be as close as possible to the original speech
sample MFCC.

Index Terms: MFCC, Time scale modification, time compression, time ex-
pansion.

1 Introduction

Time scale modification (TSM) is a class of algorithms that change the playback
time of speech/audio signals. By increasing or decreasing the apparent rate of
articulation, TSM on one hand, is useful to make degraded speech more intelli-
gible and on the other hand, reduces the time needed for a listener to listen to
a message. Reducing the playback time of speech or time compression of speech
signal has a variety of applications that include teaching aids to the disabled
and in human-computer interfaces. Time-compressed speech is also referred
to as accelerated, compressed, time-scale modified, sped-up, rate-converted, or
time-altered speech. Studies have indicated that listening to teaching materials
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twice that have been speeded up by a factor of two is more effective than listen-
ing to them once at normal speed [1]. Time compression techniques have also
been used in speech recognition systems to time normalize input utterances to a
standard length. One potential application is that TSM is often used to adjust
Radio commercials and the audio of television advertisements to fit exactly into
the 30 or 60 seconds. Time compression of speech also saves storage space and
transmission bandwidth for speech messages. Time compressed speech has been
used to speed up message presentation in voice mail systems [2].

In general, time scale modification of a speech signal is associated with a
parameter called time scale modification (TSM) factor or scaling factor. In this
paper we denote the TSM factor by α. There are a variety of techniques for
time scaling of speech out of which, resampling is one of the simplest techniques.
Resampling of digital signals is basically a process of decimation (for time com-
pression, α > 1) or interpolation (for time expansion, α < 1) or a combination
of both. Usually, for decimation, the input signal is sub-sampled. For interpo-
lation, zeros are inserted between samples of the original input signal. For a
discrete time signal x[n] the restriction on the TSM factor α to obtain x[αn]
is that α be a rational number. For any α = p

q where p and q are integers

the signal x[αn] is constructed by first interpolating x[n] by a factor of p, say
xp = x[n ↑ p] and then decimating x[n] by a factor of q, namely, xq = x[n ↓ q].
It should be noted that, usually interpolation is carried out before decimation
to eliminate information loss in the pre-filtering of decimation.

Most often, cepstral features are the speech features of choice for many
speaker and speech recognition systems. For example, the Mel-frequency cep-
stral coefficient (MFCC) [3] representation of speech is probably the most com-
monly used representation in speaker recognition and and speech recognition
applications [4, 5, 6]. In general, cepstral features are more compact, discrim-
inable, and most importantly, nearly decorrelated such that they allow the di-
agonal covariance to be used by the hidden Markov models (HMMs) effectively.
Therefore, they can usually provide higher baseline performance over filter bank
features [7].

In this paper we study the effect of resampling of speech on the MFCC
parameters. We derive and show mathematically how the resampling of speech
effects the extracted MFCC parameters and establish a relationship between
the MFCC parameters of resampled speech and that of the original speech. We
focus our experiments primarily on the downsampled speech by a factor of 2 and
propose six methods of computing the MFCC parameters of the downsampled
speech, by an appropriate choice of the Mel-filter band, and compute the Pearson
correlation between the MFCC of the original speech signal and the computed
MFCC of the down sampled speech to identify the best choice of the Mel filter
band.

In Section 3 we derive a relationship between the MFCC parameters com-
puted for original speech and the time scaled speech and discuss six different
choice of Mel-filter bank selection to the MFCC parameters of the downsampled
speech. Section 4 gives the details of the experiments conducted to substantiate
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Figure 1: Computation of Mel Frequency Cepstral Coefficients

the derivation. We conclude in Section 5.

2 Computing the MFCC parameters

The outline of the computation of Mel frequency cepstral coefficients (MFCC)
is shown in Figure 1. In general, the MFCCs are computed as follows. Let
x[n] be a speech signal with a sampling frequency of fs, and is divided into
P frames each of length N samples with an overlap of N/2 samples such that
{~x1[n], ~x2[n] · · · ~xp[n] · · · ~xP [n]}, where ~xp[n] denotes the pth frame of the speech

signal x[n] and is ~xp[n] =
{
x
[
p ∗
(
N
2 − 1

)
+ i
]}N−1
i=0

Now the speech signal x[n]

can be represented in matrix notation as X def
= [~x1, ~x2, · · · , ~xp, · · · , ~xP ]. Note

that the size of the matrix X is N × P . The MFCC features are computed for
each frame of the speech sample (namely, for all ~xp).

2.1 Windowing, DFT and Magnitude Spectrum

In speech signal processing, in order to compute the MFCCs of the pth frame,
~xp is multiplied with a hamming window w[n] = 0.54 − 0.46 cos

(
nπ
N

)
, followed

by the discrete Fourier transform (DFT) as shown in (1).

Xp(k) =

N−1∑
n=0

xp[n]w[n] exp−j
2πkn
N (1)

for k = 0, 1, · · · , N − 1. If fs is the sampling rate of the speech sig-
nal x[n] then k corresponds to the frequency lf (k) = kfs/N . Let ~Xp =
[Xp(0), Xp(1), · · · , Xp(N−1)]T represent the DFT of the windowed pth frame of

the speech signal x[n], namely ~xp. Accordingly, letX = [ ~X1, ~X2, · · · ~Xp, · · · , ~XP ]
represent the DFT of the matrix X . Note that the size of X is N × P and is
known as STFT (short time Fourier transform) matrix. The modulus of Fourier
transform is extracted and the magnitude spectrum is obtained as |X| which
again is a matrix of size N x P .

2.2 Mel Frequency Filter Bank

The modulus of Fourier transform is extracted and the magnitude spectrum is
obtained as |X| which is a matrix of size N × P . The magnitude spectrum is
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warped according to the Mel scale in order to adapt the frequency resolution
to the properties of the human ear [8]. Note that the Mel (φf ) and the linear

frequency (lf ) [9] are related, namely, φf = 2595 ∗ log10(1 +
lf
700 ) where φf is

the Mel frequency and lf is the linear frequency. Then the magnitude spectrum
|X| is segmented into a number of critical bands by means of a Mel filter bank
which typically consists of a series of overlapping triangular filters defined by
their center frequencies lf c(m).

The parameters that define a Mel filter bank are (a) number of Mel filters, F ,
(b) minimum frequency, lfmin and (c) maximum frequency, lfmax. For speech,
in general, it is suggested in [10] that lfmin > 100 Hz. Furthermore, by setting
lfmin above 50/60Hz, we get rid of the hum resulting from the AC power, if
present. [10] also suggests that lfmax be less than the Nyquist frequency. Fur-
thermore, there is not much information above 6800 Hz. Then a fixed frequency
resolution in the Mel scale is computed using δφf = (φfmax − φfmin)/(F + 1)
where φfmax and φfmin are the frequencies on the Mel scale corresponding to
the linear frequencies lfmax and lfmin respectively. The center frequencies on
the Mel scale are given by φf c(m) = m.δφ where m = 1, 2, · · · , F . To obtain the
center frequencies of the triangular Mel filter bank in Hertz, we use the inverse
relationship between lf and φf given by lf c(m) = 700(10φf c(m)/2595 − 1). The
Mel filter bank, M(m, k) [11] is given by

M(m, k) =


0 for lf (k) < lf c(m− 1)
lf (k)−lf c(m−1)

lf c
(m)−lf c(m−1)

for lf c(m− 1) ≤ lf (k) < lf c(m)

lf (k)−lf c(m+1)

lf c
(m)−lf c(m+1)

for lf c(m) ≤ lf (k) < lf c(m+ 1)

0 for lf (k) ≥ lf c(m+ 1)

The Mel filter bank M(m, k) is an F ×N matrix.

2.3 Mel Frequency Cepstrum

The logarithm of the filter bank outputs (Mel spectrum) is given in (2).

Lp(m, k) = ln

{
N−1∑
k=0

M(m, k) ∗ |Xp(k)|

}
(2)

where m = 1, 2, · · · , F and p = 1, 2, · · · , P . The filter bank output, which is
the product of the Mel filter bank, M and the magnitude spectrum, |X| is a
F × P matrix. A discrete cosine transform of Lp(m, k) results in the MFCC
parameters.

Φrp {x[n]} =

F∑
m=1

Lp(m, k) cos

{
r(2m− 1)π

2F

}
(3)

where r = 1, 2, · · · , F and Φrp {x[n]} represents the rth MFCC of the pth frame
of the speech signal x[n]. The MFCC of all the P frames of the speech signal
are obtained as a matrix Φ

Φ {X} = [Φ1,Φ2, · · · ,Φp, · · ·ΦP ] (4)
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Note that the pth column of the matrix Φ, namely Φp represents the MFCC of
the speech signal, x[n], corresponding to the pth frame, xp[n].

3 MFCC of Resampled Speech

In this section, we show how the resampling of the speech signal in time effects
the computation of MFCC parameters. Let y[s] denote the time scaled speech
signal given by

y[s] = x[αn] = x ↓ α (5)

where α is the time scale modification (TSM) factor or the scaling factor 1. Let
yp[s] = xp[αn] = xp ↓ α denote the pth frame of the time scaled speech where
s = 0, 1, · · · , S − 1, S being the number of samples in the time scaled speech
frame given by S = N

α . If α < 1 the signal is expanded in time while α > 1
means the signal is compressed in time. Note that if α = 1 the signal remains
unchanged.

DFT of the windowed yp[n] is calculated from the DFT of xp[n]2. Assuming
that α is an integer and using the scaling property of DFT [12], we have,

Yp(k
′) =

1

α

α−1∑
l=0

Xp(k
′ + lS) (6)

where k′ = 1, 2, · · · , S. The MFCC of the time scaled speech are given by

Φrp{y[n]} = Φrp {x ↓ α} =

F∑
m=1

L′p(m, k
′)cos

{
r(2m− 1)π

2F

}
(7)

where r = 1, 2, · · · , F and

L′p(m, k
′) = ln

{
S−1∑
k′=0

M ′(m, k′)

∣∣∣∣∣ 1α
α−1∑
l=0

Xp(k
′ + lS)

∣∣∣∣∣
}

(8)

Note that L′p and M ′ are the log Mel spectrum and the Mel filter bank of the
resampled speech. We consider various forms of the Mel filter bank, M ′(m, k′)
which is used in the calculation of MFCC of the resampled speech. The best
choice of the Mel filter band is the one which gives the best Pearson correlation
between the MFCC of the original speech and the MFCC of the resampled
speech.

1We use x[αn] and x ↓ α interchangeably. If x = [1, 2, 3, ..., 2n]1X2n , then x ↓ 2 =
[1, 3, 5, ...2n − 1]1X2n−1

2For convenience, we ignore the effect of the window w[n] on yp[n] or assume that w[n] is
also scaled by α.
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3.1 Computation of MFCC of Resampled speech

The major step in the computation of MFCC of the resampled speech lies in
the construction of the Mel filter bank. The Mel filter bank used to calculate
the MFCC of the resampled speech is given by

M ′(m, k′) =


0 for lf (k

′) < lf
′
c
(m− 1)

lf (k′)−lf
′
c
(m−1)

lf
′
c
(m)−lf ′c(m−1)

for lf
′
c
(m− 1) ≤ lf (k′) < lf

′
c
(m)

lf (k′)−lf
′
c
(m+1)

lf
′
c
(m)−lf ′c(m+1)

for lf
′
c
(m) ≤ lf (k′) < lf

′
c
(m+ 1)

0 for lf (k
′) ≥ lf ′c(m+ 1)

where lf (k′) = k′(fs/2)
N/2 .

As mentioned, we consider different forms of Mel filter banks and identify
the Mel-filter bank that results in the MFCC value of the resampled speech
signal that matches best with the original speech signal MFCC. This is done by
computing the Pearson coefficient between the MFCC of the resampled speech
and the MFCC of the original speech. The variations in the Mel filter banks
is a result of the way in which the center frequencies and the amplitude of the
filter coefficients are chosen. In all the cases discussed below, we assume, (a)
α = 2, (b) the number of Mel filters used for the feature extraction of original
speech and that of the resampled speech are same and, (c) the window length
reduces by half, namely, N/2.

3.1.1 Type A and Type B: Downsampling M(m, k)

M ′(m, k′) is obtained by downsampling M(m, k) by a factor of α, namely,
M ′A(m, k′) = M(m,αk). There are two ways in which the center frequencies of
M ′A are chosen. Type A: same as that of the original center frequencies, namely,
lf
′
c(m) = lf c(m), and Type B: halving the original center frequencies, namely,

lf
′
c(m) = 1

2 lf c(m).

3.1.2 Type C: Constructing new filter bank in the halved band

Here, we halve the frequency band on which the original filter bank (M) is
constructed and construct a new filter bank following the steps described in
Section (2) on the halved band. The minimum and maximum frequencies of the

new Mel bank are chosen as
lfmax

2 and
lfmin

2 respectively.

3.1.3 Type D: Interpolating

Here, alternate center frequencies of the original Mel bank are halved and filters
are constructed with the resultant center frequencies. This reduces the band-
width of the Mel bank and the number of Mel filters by a factor of 2. The
output of these F

2 Mel filters are denoted as [~g1 ~g2 · · · ~gm · · · ~gF/2]. and the Mel
spectrum is computed as[

~g1
~g1 + ~g2

2
~g2

~g2 + ~g3
2

· · · ~gm · · · ~gF/2
~gF/2 + ~g1

2

]
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Figure 2: Type E and F - Reversing, Adding and Averaging.

DCT of the logarithm of the above vectors gives the MFCC of the down sampled
speech.

3.1.4 Type E and Type F: Reversing, Adding and Averaging

In this case, the filter bank outputs of the downsampled Mel filter bank,
namely, M ′A(m, k′) are computed. Then the downsampled Mel filter bank is
mirrored/reversed such that the filter with the highest bandwidth comes first
and the one with the lowest bandwidth comes last. The spectrum of the down-
sampled signal is passed through this reversed filter bank and the filter bank
outputs are again reversed. These reversed filter bank outputs are added to the
former filter bank (downsampled bank) outputs and their average is considered
to be the Mel spectrum. DCT of the logarithm of the Mel spectrum gives the
MFCC of the down sampled speech. This method also has 2 cases, namely, Type
E: the center frequencies chosen are of type Type A, and, Type F: the center
frequencies chosen are of type Type B. This process is depicted in Figure 2.

4 Experimental Results

In all our experiments we considered speech signals sampled at 16 kHz and rep-
resented by 16 bits. The speech signal is divided into frames of duration 32 ms
(or N = 512 samples) and 16 ms overlap (256 samples). MFCC parameters are
computed for each speech frame using (3). The Mel filter bank used has F = 30
bands spread from lfmin = 130 Hz to a maximum frequency of lfmax = 6800 Hz.
The MFCC parameters (denoted by Φ{x[n]} = [Φ1,Φ2, · · · ,Φm, · · ·ΦF ]3) are
computed for the 16 kHz speech signal x[n], as described in Section 2. Then x[n]
is downsampled by a scaling factor of α = 2 and denoted by y[s] = x ↓ 2 = x[2n].
The MFCC parameters of y[s] (denoted by Φ{y[s]} = [Φ′1,Φ

′
2, · · · ,Φ′m, · · ·Φ′F ])

3Note that Φm is a vector formed with the mth MFCC of all the speech frames
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are calculated using the six methods discussed in Sections 3.1.1 to 3.1.4. Pearson
correlation coefficient (denoted by r) 4 is computed between the MFCC param-
eters of the downsampled speech (using different Mel-filter bank constructs) and
the MFCC of the original speech in two different ways.
Case I: Pearson correlation coefficient, r between the individual MFCC of
the original and the downsampled speech signals, namely, Φm and Φ′m, m =
1, 2, · · · , F is calculated. The variation of the squared Pearson correlation co-
efficient, r2 over individual MFCC (F = 30) for the 6 types of Mel filter bank
constructs is shown in Figure 3.
Case II: The F MFCC vectors are concatenated to form a single vector and
the r between the two vectors corresponding to the original speech and the
downsampled speech is computed. The Pearson correlation coefficient, r for the
6 methods is shown in Table 1 for three different 16 kHz, 16 bit speech samples.

Table 1: Pearson correlation (r) between the MFCC of original speech and the
downsampled speech

Speech A B C D E F
Sample 1 0.978 0.945 0.941 0.908 0.844 0.821
Sample 2 0.976 0.947 0.943 0.914 0.889 0.877
Sample 3 0.973 0.947 0.944 0.916 0.895 0.878

As observed from Figure 3 and Table 1, the Type A of constructing Mel filter
bank for the down sampled speech gives the best correlation between the MFCC
parameters of the original speech and that of the downsampled speech.

5 Conclusion

The effect of resampling of speech on the MFCC parameters of speech has been
presented. We have demonstrated that it is possible to extract MFCC from
a downsampled speech by constructing an appropriate Mel filter bank. We
presented six methods of computing MFCC of a downsampled speech signal
by transforming the Mel filter bands used to compute MFCC parameters. The
choice of various transformation of Mel filter bank was based on the relationship
between the spectrum of the original and the resampled signal (Equation 6).
We have shown that the Pearson correlation coefficient between the MFCC
parameters of the original speech and the downsampled speech shows a good
fit with a downsampled version of the Mel filter bank (Type A). We believe the
results presented in this paper will enable us to experiment and measure the

4Pearson correlation coefficient between two vectors ~X and ~Y each of length n is given by

r =

∑ ~X~Y − 1
n

∑ ~X
∑ ~Y√

(
∑ ~X2 − 1

n
(
∑ ~X)2)(

∑ ~Y 2 − 1
n

(
∑ ~Y )2)

.
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Figure 3: Pearson correlation (r2) between the MFCC of original speech and
downsampled speech (for speech sample 3).

performance of a speech recognition engine (statistical phoneme models derived
from original speech) on subsampled speech (time compressed speech).
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