
A prototype system for handwritten sub-word recognition:
Toward Arabic-manuscript transliteration

Reza
FARRAHI MOGHADDAM

Synchromedia Laboratory
École de Technologie Supérieure

Montreal, (QC), H3C 1K3 Canada

reza.farrahi@synchromedia.ca

imriss@yahoo.com

Mohamed CHERIET
Synchromedia Laboratory

École de Technologie Supérieure

Montreal, (QC), H3C 1K3 Canada

mohamed.cheriet@etsmtl.ca

Thomas MILO
DecoType

Amsterdam, Netherlands 1072 LL

tmilo@decotype.com

Robert WISNOVSKY
Institute of Islamic Studies

McGill University

Montreal (QC), H3A 1Y1 Canada

robert.wisnovsky@mcgill.ca

ABSTRACT
A prototype system for the transliteration of diacritics-less
Arabic manuscripts at the sub-word or part of Arabic word
(PAW) level is developed. The system is able to read sub-
words of the input manuscript using a set of skeleton-based
features. A variation of the system is also developed which
reads archigraphemic Arabic manuscripts, which are dot-
less, into archigraphemes transliteration. In order to reduce
the complexity of the original highly multiclass problem of
sub-word recognition, it is redefined into a set of binary de-
scriptor classifiers. The outputs of trained binary classifiers
are combined to generate the sequence of sub-word letters.
SVMs are used to learn the binary classifiers. Two specific
Arabic databases have been developed to train and test the
system. One of them is a database of the Naskh style. The
initial results are promising. The systems could be trained
on other scripts found in Arabic manuscripts.

Categories and Subject Descriptors
I.7.5 [Document and Text Processing]: Document Cap-
ture—Document analysis, Graphics recognition and inter-
pretation; I.2.6 [Artificial intelligence]: Learning

Keywords
Optical shape recognition, Arabic language, Databases

1. INTRODUCTION
The special feature of Arabic manuscripts is the cursive na-
ture of their scripts [1], which means that they are more ori-
ented toward sub-words (letter-blocks or connected-components:

“CCs”) than words. This is particularly true of pre-modern
manuscripts, in which there is no measurable difference in
the distances between sub-words and words. It is worth
noting that sub-words (or part of Arabic word: PAW) in
the Arabic language are any set of letters (letter-blocks)
which are disconnected at the pixel level. To add to this
complexity, the shapes of letters change according to their
position within a sub-word (that is, each letter has various
allographs). The presence of cavities inside the shapes fur-
ther increases the complexity of these scripts, and special
features are required to describe them. On top of all this,
the high degree of intra-script variation makes the task of
achieving a single solution for all Arabic scripts extremely
difficult. The main challenge confronting these methods is
the increase in their complexity when moving from a low-
complexity database, such as city names, to full set of words
in the language [2, 3].

In this work, we use sub-words in order to skip the line-
and word-segmentation problem encountered in pre-modern
Arabic manuscripts. After recognizing All sub-words of a
manuscript, its words should be reconstructed which is be-
yond the scope of this work. We provide a complete recogni-
tion chain at the sub-word level. It works directly with the
sub-words, and does not try to break them into character
segments. Therefore, we call it an Optical Shape Recogni-
tion (OSR) system. The system uses a novel concept we
call it the binary descriptor paradigm (we have also used
the binary problem paradigm notation for it [4]). In this
paradigm, a set of overlapping binary descriptors allows us
to classify all sub-word classes without segmenting the sub-
words into characters. To achieve this, we consider member-
ship functions that arise from creating a new representation
of sub-words in terms of their letters. For example, a sub-
word “bkt”, which is usually is represented by an ordered
vector (“b”, “k”, “t”), will be represented by a set of binary
descriptors {Pξ}ξ where ξ counts for all letters, and Pξ is
one of the binary descriptors used to describe the sub-words.
As can be seen from the definition, the new representation is
order-free, and therefore each descriptor Pξ can be processed
independently. It is worth noting that, although there is no

ar
X

iv
:1

11
1.

32
81

v1
 [

cs
.C

V
]

 1
4

N
ov

 2
01

1

order in the set of binary descriptors, they can carry order
information within themselves. For example, a binary de-
scriptor could be if the second letter of the sub-word is letter
“m” or not. For the sub-word “bkt”, this binary descriptor
will give 0, because the second letter is“k”. More discussions
of the binary descriptors paradigm is provided in section 3.1.
It is worth noting that this concept has been previously pro-
posed in [4]. However, in that work, only the general idea
was discussed, and as a proof of concept, a small number
of binary descriptors (problems) which had more than 1000
positive samples was considered and learned with a promis-
ing error range. Therefore, no attempt was made to recover
the sequence of letters of a sub-word. In this work, not only
is a complete set of binary descriptors considered even if the
number of positive samples is very low, the system provides
a set of candidate sequences of letters for each sub-word by
combining the values of the binary descriptors. In order to
obtain the full text, sub-words should be combined using
language-level analysis and word distributions. This step is
beyond this work, and will be addressed in future research.

A schematic flow diagram of the proposed OSR system is
shown in Figure 1. The input document images are pre-
processed, and then the sub-words are extracted easily by
identifying CCs. The feature vector of the sub-words is cal-
culated according to their skeleton and some a priori in-
formation, such as the average stroke width (see section
2.1). The binary labels of each sub-word are obtained us-
ing trained machines, and then are combined to generate
candidate sequence of each sub-word letters. Using a dictio-
nary of sub-words, the set of candidate sequences is pruned,
and the final set of candidate sequences for each sub-word
is provided as the output of the system. We use the ter-
minology “string” for the sequence of sub-word letters to
avoid confusion with the labels of the binary descriptors.
Also, it is worth noting that by “Arabic-scripted language”,
we refer to all languages whose scripts are based on the
Arabic script, including not only Arabic but the Persian,
Urdu and Ottoman-Turkish languages. In other words, we
do not limit the scope of letters to a specific language. How-
ever, the scope will be automatically limited in the train-
ing stage for each language and selected script and style.
Script, style and language identification steps are ignored in
this work. By training our system on different scripts, styles
and languages, and adding associated identification steps, it
can be used to read manuscripts from those languages and
scripts. Databases are the building blocks of recognition
systems [3–7]. For example, a database for the recognition
of legal amounts and Arabic sub-words on Arabic checks
has been developed [6] which contains 1547 legal amounts
and 23325 sub-words. We used two databases in this work:
i) an Arabic language database created from a real histori-
cal manuscript, and ii) a synthesized archigraphemic-Arabic
language database in Naskh style. Archigraphemic-Arabic
ignores notation of dots. Therefore, letters with the same

archigrapheme, such as bā’ and tā’ , appear exactly
the same, and are represented by the dot-less bā’ . Be-
cause differentiation between these letters needs language-
level analysis which is not included in the current system, the
output of system will also be in archigraphemes. It is also
worth noting that an archigraphemic-Arabic system can be
used to recognize normal Arabic manuscripts by stripping
out the dots before feeding the manuscript to the system,

and then using a dot analysis which recovers Arabic letters
from the Arabic archigraphemes using the dot information.
A snapshot of the user interface of our system is shown
in Figure 2. The user can easily click on a sub-word and
the ground-truth sequences and the first-rank recognized se-
quence will be shown. The databases are discussed further
in section 2.

We use support vector machines (SVMs) as the learning
machines. They are trained as follows. Having the ground
truth sequence of all the sub-words, the labels of the binary
descriptors are generated and fed into the SVMs. An op-
timization of the SVM parameters is also performed. We
used two databases that are available to us for training and
testing the proposed system. The first is the IBN SINA
database [4] and the second is a new database that we have
developed using a font system for Arabic scripts1 [8]. The
same procedure was applied to both databases, the main
difference being that archigrapheme encoding is used in the
second database in place of the grapheme encoding used in
the IBN SINA database. An archigrapheme is the bundle
of shared features between two or more graphemes, minus
their distinctive features (diacritics) [9]. Particularly for the
Arabic script, an archigrapheme is a diacritics-less ductus
of its associated graphemes [10]. The archigraphemes are
shown in Figure 5.

The organization of the paper is as follows. In section 2,
more detail on the materials used in the development of the
databases is provided. The procedure that we followed for
training the SVMs and building the database dictionary is
described in section 3. The performance of the whole system
on the databases is presented in section 4. Finally, a discus-
sion, our conclusions, and future prospects are provided in
sections 5 and 6.

2. TWO ARABIC SUB-WORD DATABASES
Two databases were used in this work. The first is the IBN
SINA database built based on manuscript images provided
by the Institute of Islamic Studies (IIS), McGill University,
Montreal. The author of the manuscript is Sayf al-Din
Abu al-Hasan Ali ibn Abi Ali ibn Muhammad al-Amidi (d.
1243A.D.). The title of the manuscript is Kitab Kashf al-
tamwihat fi sharh al-Tanbihat (Commentary on Ibn Sina’s
[i.e., Avicenna, d. 1037A.D.] al-Isharat wa-al-tanbihat). Of
all of his philosophical works, Ibn Sina’s al-Isharat wa-al-
tanbihat received the most attention from later philosophers
and theologians. The database consists of 51 folios, and
contains 20722 sub-words.

The second dataset is based on Arabic Calligraphic Engine
(ACE), which is a font-layout engine. ACE is developed to
approach Arabic computer typography in complete analogy
with pre-typographic text manufacture, and is the proof-of-
concept for modern smart-font technology. Currently, only
sub-words containing up to 3 letters have been added to
the database, which from now on will be called the Naskh-
3 database. In contrast to the IBN SINA database, in the
Naskh-3 database, archigraphemes are the smallest unit to
be recognized. As discussed in the introduction, our aim
with this choice was to try an alternative recognition, in

1Tasmeem: http://www.decotype.com/

Figure 1: The flow diagram of the proposed OSR system. The structure of data is shown at each step in
shaded boxes.

which archigraphemes are recognized first, and then they
are relabeled with their grapheme in a second round. In
this way, the high complexity of scripts can be addressed in
two steps. Note that we target only the first step in this
work, i.e., the recognition of archigraphemes.

It is worth noting that our databases are diacritics-less, i.e.,
diacritical marks do not exist in them. In the case of the IBN
SINA database, this is due to the nature of the manuscript
used. We did not include diacritics in Naskh-3 database,
in order to keep it simple. Developing a system that pro-
cesses manuscripts with diacritics is beyond this work. Also,
touching of sub-words is not applicable to our databases be-
cause of the high-quality writing hands of their associated
document images.

2.1 Skeleton-based features
We generate the skeleton-based features of each sub-word.
A sample sub-word and its skeleton are shown in Figure
3. Starting with the skeleton of a sub-word, its end points
(EPs), branch points (BPs) and dots or singular points (SPs)
are identified. Then, some features are assigned to each of
these points depending on their connectivity to the others,
in order to include the topology of the skeleton in the fea-
tures. Some other features are assigned as well, to capture
the geometrical relationship between the points. These fea-
tures can be represented as a set of transformations from the
skeleton image space to some associated feature spaces. Let
us consider u and uskel to be the images of a sub-word (CC)
and its skeleton respectively, where uskel : Ωskel → {0, 1},
and Ωskel = Ωu ⊂ Ω ⊂ R2. Ω is the domain of the whole
page that is hosting the sub-word under study. Let us call T
the set of our transformations that maps uskel to the proper
spaces: T = {Ti|Ti : Ωskel → (Rmi)ni , i = 1, · · · , nT } , where
nT is the number of transforms and mi depends only on the
transformation Ti, while ni depends on the complexity of

uskel as well:

uskel
T→ v = {fi}nT

i=1 , (1)

(Rmi)ni,uskel 3 fi = Ti (uskel) = {φi,j}
It is worth noting that the transformation T varies according
to the complexity of the sub-word. In other words, the di-
mensions of the target feature spaces are not constant. The
list of the features can be found in Figure 1. The details are
as follows:

1. T1 extracts features from BPs:

• BHoleCon is 1 if the BP is connected to a hole,

• BEPCon is 1 if it is connected to an EP, and

• BBPCon is one if it is connected to another BP.

2. T2 extracts features from EPs:

• EBPCon is 1 if the EP is connected to a BP,

• EEPCon is 1 if it is connected to another EP, and

• ERelVertCMEP is positive if it is above the ver-
tical center of mass of the sub-word.

3. T3 extracts dot-related features of a BP:

• BDotUpFlag is one if there is a dot above the BP,
and

• BDotDownFlag is one if there is a dot below it.

4. T4 extracts dot-related features of a EP: EDotFlag is
1 if there is a dot assigned to the EP.

5. T5 extracts dot-related features of a dot: DRelVertCM-
Dot is positive if the dot is above the vertical center of
mass of the sub-word.

6. T6 extracts dot-related features of an EP branch:

Figure 2: A snap-shot of the system’s user-interface.
By clicking on the sub-words, their sequences ap-
pear on the image in Finglish. Unicode fonts will be
integrated to the interface soon.

• ESShapeFlag is 1 if the branch is S-shape,

• EClockwise is positive if it is clockwise,

• EAboveItsBP is 1 if its EP is above its BP, and

• EBelowItsBP is 1 if its EP is below its BP.

Also, 8 global features are assigned which we consider them
as TG (see Table 2). The details are as follows:

1. AR is Aspect ratio.

2. HorizFreq is the number of peaks in the horizontal pro-
file of the sub-word.

3. VertCMRatio is the ratio of the vertical center of mass
to the sub-word height.

Figure 3: A sample sub-word from the IBN SINA
database and its skeleton image. The branch points
(blue), end points (red), and singular points (green)
are also shown on the skeleton image.

4. # SPs is the number of singular points in the sub-word.

5. Heightratio is the ratio of the sub-word height to the
average text height.

6. HoleFlag is 1 if there is a hole in the sub-word.

7. # EPs is the number of end points in the sub-word.

8. DottedFlag is 1 if there is a dot in the sub-word.

In order to have a coherent set of features for all the shapes,
a limit on the number of different points, lpoint, is assumed.
In this way, if, for example, there are more than lpoint EPs
for a sub-word, then all EPs after lpoint are dropped. If the
number of points is less than lpoint, the rest of the vector
will be filled with zeros. As Arabic manuscripts are written
from right to left, the first lpoint points from the right side
of a sub-word is considered. In this work, we assume that
lpoint = 6, which means that 84 skeleton-based features are
assigned to each shape. Adding the 8 global features, this
brings the total number of features assigned to each shape to
92: xi = {xi,ω}92ω=1, where xi is one of the features vectors,
and ω is the index. A typical feature vector is shown in
Table 3. It starts with the global features that are followed
by the six occurrences of each Ti, i = 1, · · · , 6.

TG
1 AR 5 Heightratio

2 HorizFreq 6 HoleFlag
3 VertCMRatio 7 # EPs
4 # SPs 8 DottedFlag

Table 2: The 8 global features of a sub-word.

Here, we provide a short discussion of the encoding system
used. It is worth noting that the encoding system does not
have a direct impact on the performance of systems. In the
IBN SINA database, Finglish has been used (See Figure 4).
We also used a more standard encoding system: Unicode2.
For example, the Latin letter“a”which stands for the Arabic
letter ālif in Finglish is replaced by the UTF-8 representer
of ālif which has the Hex index 0627 in the Unicode table.
As previously mentioned, we follow the archigrapheme en-
coding in the Naskh-3 database (shown in Figure 5). In this
encoding, dots are ignored. It is worth noting that dash and
brackets referred to in this table will not appear in an ac-
tual transliteration. Similarly, these Latin representers are
replaced by Unicode representers. For example, Unicode

representer 066E is used for the dot-less bā’ (B in archi-
grapheme encoding) which represents all bā’-like letters in
archigrapheme encoding (see Figure 6 to see the correspon-
dence between dot-less bā’ and bā’-like letters).

3. TRAINING AND BUILDING THE PRO-
POSED OSR SYSTEM

According to Figure 1, the sub-word labels are first con-
verted to binary descriptors, and then SVMs are used for
learning their behavior. The details are provided in the fol-
lowing subsections.

2http://unicode.org/charts/PDF/U0600.pdf

Transformation T1 T2 T3 T4 T5 T6

elements 3 3 2 1 1 4

1 BHoleCon EBPCon BDotUpFlag EDotFlag DRelVertCMDot ESShapeFlag
2 BEPCon EEPCon BDotDownFlag EClockwise
3 BBPCon ERelVertCMEP EAboveItsBP
4 EBelowItsBP

Table 1: The various feature vectors associated to BPs, EPs, and SPs of a sub-word.

(
AR, HorizFreq, VertCMRatio, · · · , DottedFlag, BHoleCon1, BEPCon1, BBPCon1,

BHoleCon2, BEPCon2, BBPCon2, · · · , BHoleCon6, BEPCon6, BBPCon6,
EBPCon1, EEPCon1, ERelVertCMEP1, · · · , EBPCon6, EEPCon6, ERelVertCMEP6,

BDotUpFlag1, BDotDownFlag1, · · · , BDotUpFlag6, BDotDownFlag6,
EDotFlag1, · · · , EDotFlag6, DRelVertCMDot1, · · · , DRelVertCMDot6,

ESShapeFlag1 EClockwise1 EAboveItsBP1 EBelowItsBP1 · · · ,
ESShapeFlag6 EClockwise6 EAboveItsBP6 EBelowItsBP6

)

Table 3: A typical sub-word feature vector composed of feature vectors in Tables 1 and 2. It has 92 elements.

Figure 4: The Finglish encoding table.

Figure 5: The archigrapheme encoding used in this
work. A dash before a Latin letter in this table
means that that letter could only appear at the end
of a sub-word. Brackets around a letter indicates
that this letter also has the same form in the middle
of a sub-word.

Figure 6: An example of archigrapheme encoding:
Archigrapheme dot-less bā’ replaces all bā’-like let-
ters shown on the right side.

3.1 Conversion of string labels to binary de-
scriptors

The binary-descriptor concept refers to a new way of ad-
dressing the highly multi-class nature of sub-word labeling
by defining a set of letter binary descriptors to redefine the
labeling problem. Figure 7 illustrates this concept. If we
assume the alphabet has just three letters, ālif, bā’ and tā’,
the possible combination of these letters (ignoring the or-
der) can be visualized as the parts of the leaves in the fig-
ure. Non-overlapping parts indicate single-letter sub-words,
while overlapping parts correspond to sub-words composed
of associated letters. In the binary-descriptor concept, each
leaf is considered as a single binary descriptor. Therefore,
the original highly multi-class problem can be replaced by
an ensemble of binary descriptor classifiers which are easier
to learn thanks to the existence of various state-of-the-art
classification methods, such as SVMs, for binary descriptors.
In [4], only the binary descriptors that check for the presence
of letters in sub-words were considered. In this way, the or-
der is completely ignored. In this work, in order to increase
the accuracy in recovering the correct order of letters, we
add additional binary descriptors to generate implicit clues
to the order of letters in the sub-word. For example, in addi-
tion to the binary descriptors of the presence of letters in the
sub-words, a similar figure to Figure 7 can be considered but
now for the first letter of sub-words. The corresponding bi-
nary descriptors will learn the presence of letters as the first
letter of the sub-words. The same process can be performed
for the second, the third, etc. letters of the sub-words. We
use six different types of binary descriptors:

1. PL,w: For each letter w, PL,w determines if that letter
is present in the sub-word or not.

2. PT,w: For each letter w, PT,w determines if more than
one instance of that letter is present in the sub-word
or not.

3. P1,w: For each letter w, P1,w determines if that letter
is the first letter of the sub-word or not.

4. P2,w: For each letter w, P2,w determines if that letter
is the second letter of the sub-word or not.

5. P3,w: For each letter w, P3,w determines if that letter
is the third letter of the sub-word or not.

6. PS,s: For digit s, PS,s determines if that digit is 1 or
not in the binary representation of the length of the
sub-word. For example, for a sub-word with 3 letters,
the binary representation is 11. Therefore, PS,1 = 1,
PS,2 = 1, PS,3 = 0, and so on. In this work, only
s = 1, · · · , 4 are considered.

For example, for a sub-word “lkm”, PL,l = 1, PL,k = 1,
PL,m = 1, P1,l = 1, P2,k = 1, P3,m = 1, PS,1 = 1, PS,2 = 1,
and all the other descriptors are negative. In this example,
Latin letters are used for the sake of simplicity.

Figure 7: Concept of redefining the sub-words in
terms of the letter binary descriptors.

It is worth noting that for some binary descriptors the num-
ber of positive samples is very small. However, in order to
have a complete system, we trained SVMs on all the bi-
nary descriptors. We are working to increase the size of
the databases, especially the Naskh database, to include all
possible sub-words of any possible length.

3.2 Training of SVMs
SVMs classifiers are used to learn the behavior of the bi-
nary descriptors. They are a particular type of linear classi-
fier based on the margin-maximization principle [11]. They
are powerful classifiers, and have been used successfully in
many pattern recognition problems [12]. In [4], we have used
SVMs to learn a few binary descriptors with high number of
positive samples. Here, we use the same approach to all bi-
nary descriptors, trying to strike a balance between positive
and negative populations.

A radial basis function (RBF) kernel is used: k(xi, xj) =
exp(−γ‖xi − xj‖2) where xi and xj are two typical feature
vectors and γ is the kernel parameter. Because all the binary
descriptors we have are unbalanced, we use different hyper-
parameters: C for controlling the training error impact; C+

for positive samples; and C− = C+/Cj for negative samples,
where Cj = n−/n+, with n+ and n− representing the num-
ber of positive and negative samples respectively [13]. The

SVM parameters are optimized on the training set to select
the best model.

Also, in order to have a probability distribution of the out-
puts, the following distribution is fitted on the outputs of
the trained SVMs:

y′ = 1/(σay + σb)

where y′ is distributed between 0 and 1.

3.3 Reconstructing the sequence of letters from
the binary labels

With the trained SVMs, the system can generate the binary
labels of each sub-word. The next step in the recognition
process is to reconstruct the candidate sequences out of these
labels. First, a set of sequences is built based on the outputs
of the PL,w and PT,w descriptors by permuting the positive
letters. Then, only those sequences that are compatible with
the first letters indicated by the P1,w descriptors are kept.
The PS,s are used to select the most probable letters from
PL,w and PT,w, in order to build the sequences.

The next step is to prune the candidate sequences based on
a dictionary. The dictionary for each database was built
by extracting all the strings associated with the database
sub-words. Therefore, the size of dictionary is equal to the
number of unique sub-words (Basis CCs; the BCCs) in the
database. It is worth noting that, for the Naskh-3 database,
the dictionary is based on archigraphemes. In future, we
will use one of the Arabic corpora (for example, the freely
available corpus [14]) to build the dictionary.

4. EXPERIMENTAL RESULTS
Because of the unbalanced number of positive and negative
samples for each descriptor, the classic error rate (ER) is not
a suitable measure. Instead, we used the balanced error rate
(BER), which is the average of the misclassification rates on
examples drawn from positive and negative classes. The
BER is defined as follows:

ER =

(
FN + FP

TP + FN + FP + TN

)

BER =
1

2

(
FN

TP + FN
+

FP

FP + TN

)

where FN, TP, FP, and TN represent false negative, true
positive, false positive, and true negative respectively. In
each run, the samples are divided into training and testing
subsets. Eighty percent of the samples are considered to
be in the training set. Because of the limited number of
samples, cross validation has been used and the SVMs are
trained to reduce the BER of the test set. The model with
the minimum BER is kept as the output of the training
process.

Some of the statistics of the two databases are provided in
Table 6. The performance of some of the individual binary
descriptors for the IBN SINA database is provided in Table
4. The corresponding Latin letters from the Finglish en-
coding table are also provided in the FNC (Finglish code)
column. As can be seen from the table, the complexity of
the problem varies for different letters. Also, the number of

Descriptor Name FNC BER ER Cj

PL,0627 a 0.18 0.20 1.64
PL,0628 b 0.40 0.58 18.29
P1,0628 b 0.36 0.70 30.61
P2,062B c 0.06 0.12 206.06

Table 4: The performance statistics of some of the
SVMs trained on the IBN SINA dataset.

Descriptor Name ARC BER ER Cj

PL,0627 A 0.018 0.034 14.11
PL,066E B 0.063 0.10 4.14
P1,066E B 0.055 0.10 11.49
P2,0635 C 0.019 0.034 14.27

Table 5: The performance statistics of the SVMs
trained for some of the binary descriptors for the
Naskh-3 dataset.

samples influences the performance of the SVMs. It is worth
noting that the number of positive samples is considerably
smaller for the first-letter descriptors P1,w compared to PL
descriptors.

Having the trained SVMs, the OSR system is applied to the
sub-words of the database according to Figure 1. The per-
formance of the system is provided in Table 6. The error of
letters set (ELS) calculates the average error of the recog-
nized sub-word with respect to the ground truth, ignoring
the position of letters in the sequence:

ESL = averagei [0.5 {ESL(si, ŝi) + ESL(ŝi, si)}]
where si and ŝi are a recognized sub-word and its associ-
ated ground truth of the ith sub-word in the manuscript.
ESL(s1, s2) gives the error of the letters-set of s1 with re-
spect to s2. In contrast, the recognition rate calculated
provides the percentage of correctly labeled sub-words in
the test set. The recognition rate of the first rank is equal
to the all-ranks recognition rate thanks to the presence of
first-letter descriptors in the system. The performance of
the OSR system on the Naskh-3 database is also provided
in Tables 5 and 6. The archigrapheme codes are shown in
the ARC (archigrapheme code) column. We are working to
achieve high performance by adding sub-words containing
more than 3 letters to the database.

5. DISCUSSIONS

Dataset Name IBN SINA Naskh-3

Number of sub-words (CCs) 27709 2920
Size of sub-words dictionary 1629 2887
Error in letters set (ELS) 2.54 0.18

Recognition rate: first rank(∗) 45.74 51.83
Recognition rate: first rank 88.28 95.59
Recognition rate: all ranks 89.66 96.26

Table 6: Statistics and performance of the proposed
sub-word OSR system for the IBN SINA dataset and
the Naskh-3 dataset. (∗)Without considering first-,
second- and third-letter descriptors.

We can conclude from Tables 4, 5 and 6 that the binary
labels have been learned with a high level of performance
(especially in the case of the Naskh-3 database, with as low
as 0.034 percent error in letter recognition). Although the
performance on the IBN SINA database is good, its lower
performance may be associated with degradation of the in-
put images, and also the limited number of samples. Im-
provement of the skeleton-based features would provide a
better description of the sub-words, potentially reducing the
possibility of error at the letter-recognition level.

Because the first-, second- and third-letter binary descrip-
tors are used, there is less difference between the first rank
and all rank scores. It is worth noting that in the Arabic lan-
guage proper, a word’s initial letter or letters often serve as
grammatical markers, while the subsequent letters are usu-
ally markers of the word’s particular root meaning of the
word.

Finally, it should be noted that, although we use the first-
letter binary descriptors in our set of descriptors, the com-
plete set of features of each sub-word is used to learn and
identify them. Therefore, the system is free of character-
segmentation, and completely different from OCR methods.

6. CONCLUSIONS AND FUTURE PROSPECTS
A prototype Optical Shape Recognition system is developed
that can provide the labels at the sub-word level. The sys-
tem is able to recognize Arabic sub-words of the scripts
on which the system has been trained. In order to avoid
line/word segmentation, and also to avoid highly multi-class
classification, equivalent binary descriptors are used. SVMs
are trained to learn and classify these descriptors, and the
outputs of the trained SVMs are combined to recover the
original sequence of each sub-word letters. Also, the skeleton-
based features used to describe the sub-words are robust
with respect to possible variations in the size and direction of
the strokes. The system has been separately trained/tested
on two databases of different scripts. The second database
is a synthesized database based on output from the ACE
font layout engine for the Naskh style.

Generalization of the system to generate the manuscript text
is under consideration. We are also working on completing
the Naskh-style database. Investigation of more descriptive
skeleton-based features is yet another goal. We are also con-
sidering combining our system with others, such as HMM
and two-dimensional measures, in order to benefit from dif-
ferent paradigms and improve the system. Evaluation of
the method on other databases, such as IFN/ENIT, is un-
der progress.

Acknowledgment
The authors thank NSERC of Canada for their financial
support.

7. REFERENCES
[1] A. Gacek, Arabic Manuscripts: A Vademecum for

Readers, ser. Handbook of Oriental Studies. Section 1
The Near and Middle East, 98. Leiden; Boston:
Brill, 2009, iSBN-10: 90 04 17036 7.

[2] M. Khorsheed, “Offline recognition of omnifont Arabic
text using the HMM toolkit (HTK),” Pattern

Recognition Letters, vol. 28, no. 12, pp. 1563–1571,
Sep. 2007.

[3] L. Lorigo and V. Govindaraju, “Offline Arabic
handwriting recognition: a survey,” IEEE
Transactions on Pattern Analysis and Machine
Intelligence, vol. 28, no. 5, pp. 712–724, 2006.

[4] R. Farrahi Moghaddam, M. Cheriet, M. M. Adankon,
K. Filonenko, and R. Wisnovsky, “IBN SINA: a
database for research on processing and understanding
of Arabic manuscripts images,” in DAS’10. Boston,
Massachusetts: ACM, 2010, pp. 11–18.

[5] H. Alamri, J. Sadri, C. Suen, and N. Nobile, “A novel
comprehensive database for Arabic off-line
handwriting recognition,” in ICFHR’08, 2008.

[6] Y. Al-Ohali, M. Cheriet, and C. Suen, “Databases for
recognition of handwritten Arabic cheques,” Pattern
Recognition, vol. 36, no. 1, pp. 111–121, Jan. 2003.

[7] J. Chan, C. Ziftci, and D. Forsyth, “Searching off-line
Arabic documents,” in CVPR’06, vol. 2, 2006, pp.
1455–1462.

[8] T. Milo, Writings and writing: From another world
and another era (in honor of Prof. J.J. Witkam).
Cambridge: Archetype, 2010, ch. Towards Arabic
Historical Script Grammar: through contrastive
analysis of Qur’ān manuscripts, pp. 249–292.

[9] ——, “Oriental manuscripts and new information
technologies,” Manuscripta Orientalia, vol. 8, pp.
49–61, 2002.

[10] ——, “Arabic script: Structure, geographic and
regional classification,” in 33rd Internationalization
and Unicode Conference (IUC), San Jose, CA, USA,
October 14–16 2009.

[11] V. Vapnik, Statistical Learning Theory. New York:
John Wiley & Sons, 1998.

[12] M. M. Adankon and M. Cheriet, Encyclopedia of
Biometrics. Springer, 2009, ch. Support Vector
Machine, pp. 1303–1308.

[13] K. Morik, P. Brockhausen, and T. Joachims,
“Combining statistical learning with a
knowledge-based approach – a case study in intensive
care monitoring,” in ICML’99, 1999.

[14] A. AbdelRaouf, C. Higgins, T. Pridmore, and
M. Khalil, “Building a multi-modal Arabic corpus
(MMAC),” IJDAR, vol. 13, pp. 1–18, 2010.

