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1Université de Sherbrooke
Department of Electrical and Computer Engineering

Sherbrooke, QC J1K 2R1, Canada - email: eric.plourde@usherbrooke.ca

2Neuroscience Statistics Research Laboratory
Massachusetts General Hospital, Harvard Medical School, M.I.T.

Boston, MA 02114, USA - email: enb@neurostat.mit.edu

ABSTRACT

We compare the effect of the use of three different spectro-
temporal representations of an input auditory stimulus on
the fitting of a point process model of auditory neuron fir-
ing. The three spectro-temporal representations consid-
ered are the spectrogram, a gammatone filterbank and the
Hilbert spectrum. We firstly investigate how the model
fits the recorded neuronal data when using either one of
the three representations and secondly how well do the
estimated parameters of the model correspond to their ex-
perimentally measured counterparts. It is observed that
all three representations yield a model that fits well the
recorded data. However, the characteristic frequencies ob-
tained with the spectro-temporal parameters of the model
using the gammatone filterbank corresponds better to the
experimentally measured characteristic frequency than the
characteristic frequency obtained with the models using
the other two spectro-temporal representations. There-
fore, it is concluded that the quality of the fitted parame-
ters can be affected by the choice of the spectro-temporal
representation and that, as could have been expected, the
gammatone filterbank seems to more accurately extract
the relevant spectro-temporal characteristics of the input
auditory stimulus.

1. INTRODUCTION

One approach to better understand the factors that are im-
portant for inducing neurons to spike is to derive and fit
statistical models containing the most salient factors con-
tributing to the spiking. Such point process models have
been proposed in [1, 2] where the neurons intrinsic dy-
namics and the spectro-temporal properties of the input
auditory stimulus are considered.

Several different approaches can be used to obtain a
spectro-temporal representation of the input stimulus. The
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choice of the representation could have some impact on
both the goodness of fit of the model to experimentally
recorded neural spikes and the quality of the fitted param-
eters of the model in terms of their correspondence to ex-
perimentally measured values. Here we analyze the effect
on the model fitting of three different spectro-temporal
representations, namely the spectrogram as used in [2],
a bank of gammatone filters as used in [1] and the Hilbert
spectrum. The first one is a classical spectro-temporal rep-
resentation, the second one is thought to mimic the spec-
tral decomposition performed by the ear while the third
one is designed to obtain a spectro-temporal representa-
tion of a non-linear signal such as speech. The objective
of the study is thus to investigate how important is the cho-
sen type of spectro-temporal representations in the fitting
of the model and the analysis of its fitted parameters.

It is found that the models using either of the three dif-
ferent representations fit the recorded data similarly well.
However, the characteristic frequency, i.e. the frequency
of the input signal to which the neuron responds best, ob-
tained with the spectro-temporal parameters of the model
using the gammatone filterbank more closely match the
experimentally measured characteristic frequency than the
ones obtained when using the other two spectro-temporal
representations. This could be due to the fact that the gam-
matone filterbank extracts more relevant spectro-temporal
characteristics of the input auditory stimulus than the other
two representations. The choice of spectro-temporal rep-
resentation therefore affects the quality of the fitted pa-
rameters.

The paper is organized as follows. In Section 2, we
briefly review the previously proposed statistical model.
In Section 3, the fitting of the model using the three differ-
ent spectro-temporal representations is analyzed and Sec-
tion 4 concludes the work.



2. PREVIOUSLY PROPOSED STATISTICAL
MODEL

In this section, we briefly review the point process model
proposed in [1]. The model incorporates both a spectro-
temporal representation of the input speech signal as well
as the intrinsic dynamics of the neuron through its past
spiking activity.

A point process model can be completely defined by
its conditional intensity function (CIF) λ[n|Ψ] where n is
the discrete time index and Ψ includes relevant covariates
of the model. The CIF is for a point process a history-
dependent generalization of the rate function of a Poisson
process.

Let sk,j be the value of a spectro-temporal representa-
tion of the sound stimulus with frequency band j at time
kΔ for j = 1, . . . , J . Define the relevant history of the
sound stimulus for predicting the current spiking propen-
sity as Hk,j = {sk,j , . . . , sk−L,j}, assuming a depen-
dence that goes back L time periods. Similarly, define
the relevant spiking history for predicting the current spik-
ing propensity as Hk,J+1 = {nk−1, . . . , nk−P }, assum-
ing a dependence that goes back P time periods. Let
Hk = {Hk,1, . . . , Hk,J+1}. If we assume that there is
a functional F which describes the relation between Hk

and the CIF λ(kΔ|Hk) then we can obtain the following
CIF:

λ(kΔ|Hk, β) = exp

⎧⎨
⎩β0 +

J∑
j=1

L−1∑
l=0

βl,jsk−l,j

+

P∑
p=1

βp,J+1nk−p

}
(1)

where β = {β0, β0,1, . . . , βL−1,J , β1,J+1, . . . , βP,J+1}
is the (JL + P + 1) × 1 vector of Volterra kernels. We
interpret the Volterra series expansion as the sum of the
outputs of J + 1 linear filters having Volterra kernels as
the impulse responses. The kernels βl,j are the analogs
of the Spectro-Temporal Receptive Fields (STRF) used to
characterize auditory neurons. The kernel βp,J+1 models
the effect of the spiking history and β0 governs the mean
spiking rate. The model is then regularized and fitted to
the spiking data using the TR-IRLS algorithm [1, 3] to
obtain the different parameter values.

In this paper, we fit the statistical model to neural spik-
ing activity recorded in the auditory nerves of anesthetized
cats following the presentation of an input sentence spo-
ken by a male voice and sampled at 10 kHz [4]. We use
a generalized linear model (GLM) in a ridge regression
framework to address properly the ill-posed inverse na-
ture of this estimation problem and avoid overfitting [1].
The dataset is composed of the spike train responses of 55
distinct neurons each recorded across R = 20 trials. As in
[1], we use values of P = 40, L = 104, and J = 25.

3. COMPARISON OF THE THREE DIFFERENT
SPECTRO-TEMPORAL REPRESENTATIONS

Any spectro-temporal representation of the input auditory
stimulus could theoretically be used in the proposed model
as the sk,j’s. In this section we investigate the use of three
different spectro-temporal representations in the model:
the spectrogram as used in [2], a gammatone filterbank
as used in [1] and the Hilbert spectrum. In particular,
we present the effect of this choice on the goodness of fit
of the model and the quality of the estimated parameters
where the quality is defined as the degree of correspon-
dence between the estimated parameters and their experi-
mentally measured counterpart.

3.1. Description of the spectro-temporal representa-
tions

Spectrogram
The discrete-time short-time Fourier transform (STFT)
of the input stimulus is obtained by successively
applying overlapping finite windows on the input
signal and performing a Fourier transform on each
windowed signal. Taking the magnitude squared of
the result yields the spectrogram of the input stim-
ulus. A size N = 128 discrete-time Fourier trans-
form is used here.

Gammatone filter bank
This representation is obtained by applying a filter
bank to the input speech signal. The filter bank con-
sists of adjacent bandpass gammatone filters [5], the
later having been designed to mimic the filtering
performed by the cochlea. The bandwidth of the
filters are chosen according to [6] in order to rep-
resent adequately the processing performed in the
cat’s cochlea. Table 1 presents the center frequency
and bandwidth of each filter in the filter bank.

Hilbert spectrum
The Hilbert spectrum [7] is obtained by first per-
forming an empirical mode decomposition (EMD)
on the stimulus, applying a Hilbert transform on
each mode of the decomposition and then comput-
ing the instantaneous frequency for every time step.
The combination of the instantaneous frequencies
present in all modes at a certain time thus gives a
representation of the frequency content of the stim-
ulus at that time. The advantage of this spectro-
temporal representation is that it does not assume
that the data is piecewise stationary as in the STFT
case. It attempts to yield an instantaneous account
of the frequencies in the signal.

Some further processing of these spectro-temporal rep-
resentations are necessary to use them in the model as
sk,j’s (see Fig. 1). Firstly, in order to limit the number
of parameters to estimate, it is necessary to limit the num-
ber of frequency bands present in the different represen-
tations. This can be done either by choosing the spectro-
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Fig. 1. Normalized spectro-temporal representation.

Filter Center Bandwidth
number frequency [Hz] [Hz]

1 20 55
2 52 63
3 88 72
4 130 82
5 176 94
6 229 108
7 288 124
8 355 142
9 431 163
10 516 185
11 612 211
12 721 240
13 844 272
14 984 307
15 1141 346
16 1318 390
17 1518 438
18 1745 491
19 2000 550
20 2289 615
21 2615 687
22 2983 766
23 3400 854
24 3870 952
25 4400 1060

Table 1. Gammatone filter bank center frequencies and band-
with.

temporal transform parameters appropriately or by group-
ing different adjacent frequency bands together. Secondly,
the neural responses are captured at a resolution of 1 ms, if
not accounted for during the spectro-temporal transform,
the representation must thus be downsampled to such a
time resolution. Finally, we would like to compare the
parameters corresponding to the different frequency bins
against each other in order to assess how much each fre-
quency contributes to the spiking. Therefore, their cor-
responding representation needs to be normalized in some
sense. For each frequency bin, the spectro-temporal repre-
sentation is thus normalized by its Euclidean norm, yield-
ing the desired normal basis (albeit not necessarily orthog-
onal). The different processing steps leading to the sk,j’s
are illustrated in Figure 1.

3.2. Goodness of fit

To evaluate the model goodness-of-fit, we used the time
rescaling theorem with rescaled times computed from the
estimated CIF [3]. If the latter is a good approximation to
the true CIF of the point process, then the rescaled times
will be independent and uniformly distributed on the in-
terval [0, 1).

We used the autocorrelation function (ACF) of the trans-
formed rescaled times to assess their independence. ACF
results (not presented here) have shown that the rescaled
times computed from the CIFs estimated using each of the
three different spectro-temporal representations where in-
deed all independent.

To assess the uniformity of the rescaled times, we used
a cumulative function based on the normalized Kolmogorov-
Smirnov (KS) statistic. The normalized KS statistic is
given by:

D̂ = sup

∣∣∣∣∣ F̂ (x)− F (x)

B̂

∣∣∣∣∣ (2)

where F (x) is a cumulative distribution function of rescaled
spiking times obtained from the fitted CIF, F̂ (x) is an em-
pirical uniform distribution function and B̂ is the 95 %
confidence bound. A cumulative function C(D̂), based
on the normalized KS statistic, can be defined as follows:

C(D̂) =

No∑
i=1

ID̂i<D̂ (3)

where No is the total number of neurons in the dataset, D̂i

is the normalized KS statistics of the ith neuron and

ID̂i<D̂ =

{
1 if D̂i < D̂

0 otherwise.
(4)

The best model will thus be the one with the steepest con-
vergence of C(D̂) to No and more so if D̂ < 1.

Fig. 2 shows the cumulative function C(D̂) for mod-
els fitted with the three different spectro-temporal repre-
sentations: spectrogram, Hilbert spectrum and gamma-
tone filter bank. As can be observed, the fitting obtained
with the three representations are quite good and very sim-
ilar. The results obtained here thus suggest that as long as
information regarding the spectrum is present in one form
or another, the proposed model can achieve a good fitting.

3.3. Baseline and history parameters (βo, βp,J+1)

The baseline (βo) and history (βp,J+1) parameters of the
models fitted with the three proposed spectro-temporal rep-
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Fig. 2. Cumulative function C(D̂) for the following spectro-
temporal transforms: spectrogram, Hilbert transform and gam-
matone filter bank.

resentations were compared. The value of these parame-
ters (not presented here) were found to be extremely simi-
lar when using either one of the different spectro-temporal
representations.

3.4. Spectro-temporal parameters (βl,j)

We now look at the fitted values of the spectro-temporal
parameters, i.e. βl,j , for the three spectro-temporal repre-
sentations of the input stimulus studied here.

Figures 3-5 show the scatter plots of the frequency cor-
responding to the parameter βl,j with the highest value,
indicated here as the fitted characteristic frequency (CF),
vs. the experimentally measured CF of the corresponding
neuron. The characteristic frequency of an auditory neu-
ron is the stimulus frequency to which it responds best.
As can be observed, there is a better correlation of the fit-
ted CF with the experimentally measured CF when using
a gammatone filter bank (Fig. 4) as the spectro-temporal
representation than when using either a spectrogram (Fig.
3) or a Hilbert spectrum (Fig. 5). This is quantitatively
confirmed by the computed root mean square error (rmse)
between the different points and the diagonal, indicated
at the bottom right of each figure. This could be due to
the fact that the gammatone filterbank extracts more rele-
vant spectro-temporal characteristics of the input auditory
stimulus than the other two representations. The quality
of the βl,j parameter thus depend on the chosen spectro-
temporal representation of the input sound stimulus. In-
stead of simply considering the parameter βl,j with the
highest value to assess the fit and compute the rmse, one
could have chosen other means such as the center of mass
of the βl,j’s. However, as can be observed in [1], the cen-
ter of mass of the fitted βl,j’s is generally quite close to
the βl,j with the highest value and, therefore, the rmse re-
sults should be similar. It is relevant to note that we only
report here the correspondance of the fitted characteristic
frequency to the experimentally measured one. In fact, we
did not comment on the other dimension of the fitted βl,j
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Fig. 3. Scatter plot of the frequencies corresponding to the pa-
rameter βl,j with the highest value (i.e. the fitted CF) vs. the
experimentally measured CF of the corresponding neuron when
using the spectrogram as the spectro-temporal representation of
the input stimulus. The diagonal line indicates a perfect corre-
spondence.

parameters, corresponding to time, for which we did not
have an experimental equivalent.

4. CONCLUSION

In this paper, we analyzed the effect of using three dif-
ferent spectro-temporal representations on the fitting of
a point process model of auditory nerve data. It is ob-
served that the three different spectro-temporal represen-
tations studied achieve equally well fitted models indicat-
ing therefore that they represent equally well the recorded
spikes. However, it is found that there is a better corre-
spondence between the experimentally measured charac-
teristic frequency and the one obtained from the model
when using the gammatone filterbank than when using
the other two representations. This could be due to the
fact that the gammatone filterbank extracts more relevant
spectro-temporal characteristics of the input auditory stim-
ulus. Therefore, it is concluded that the quality of the es-
timated parameters can be affected by the choice of the
spectro-temporal representation but not so much the good-
ness of fit of the model.
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