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Abstract-This paper provides a new regularization method 
for sparse representation based on a fixed-point iteration schema 
which combines two Lipschitzian-type mappings, a nonlinear one 
aimed to uniformly enhance the sparseness level of a candidate 
solution and a linear one which projects back into the feasible 
space of solutions. It is shown that this strategy locally minimizes 
a problem whose objective function falls into the class of the fP­
norm and represents an efficient approximation of the intractable 
problem focusing on the fO-norm. Numerical experiments on 
randomly generated signals using classical stochastic models show 
better performances of the proposed technique with respect to a 
wide collection of well known algorithms for sparse representa­
tion. 

I. INTRODUCTION 

Finding sparse solutions of underdetermined systems of lin­
ear equations is a topic extensively studied in signal processing 
[1], [2]. Even though one is dealing with systems having 
infinitely many solutions, it is shown that sufficiently sparse 
solutions may be identified uniquely [3]. 

In this paper we propose a new algorithm to promote high 
level of sparsity within underdetermined system solutions in 
which Lipschitzian mappings and fixed-point iteration schemes 
[4] play a fundamental role. In particular, we introduce the 
following two kinds of Lipschitzian maps. An asymptotically 
nonexpansive [5] parametric family of nonlinear functions able 
to select near-feasible solutions having the sparsity property. A 
nonexpansive linear map consisting on orthogonal projection 
of near-feasible points along the space of the affine solutions 
of an inhomogeneous linear system. The main purpose of this 
interaction is that of reducing the gap existing between the two 
image spaces, being the first a subspace containing sparsest 
coefficients (in the sense of the gO-norm which measures the 
total number of nonzero elements) while the second is a set 
containing infinite solutions for the problem at hand. 

By composing the two mappings we are faced with nonlin­
ear problems in Banach space for which we show the existence 
of fixed-points. Moreover we prove they may be obtained as 
the limit of a fixed-point iteration scheme defined by repeated 
images under the mapping of an arbitrary starting point in the 
space. 

A critical point in our method is to provide right values for 
the continuous parameter characterizing the nonlinear mapping 
on which depends the sparsity level gained at each iteration as 
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well as at the end of the entire process of sparsification. We 
provide a scheduling policy of incremental values in order to 
have a good chance to converge to the sparsest solution. 

To show the performances of the proposed method we 
executed a lot of numerical experiments choosing signals and 
frames of various size whose elements are all independently 
drawn using stochastic models frequently employed in these 
analysis as, for instance, the Gaussian-Bernoulli model. These 
tests have the aim of comparing our algorithm with a plethora 
of other algorithms representing the state-of-the-art of the 
strategies used in this field. 

By expressing the algorithm performances in terms of 
signal-to-noise-ratio SNR and computation time, we found 
that the proposed strategy outperforms the other algorithms 
in almost all experiments conducted, carrying out the sparsest 
solutions with arbitrary precision error and achieving a com­
parable computation time with the fastest one. 

II. SPARSE SOLUTIONS TO UNDE TERMINED SYSTEMS 

Let 8 = (81, . . .  ,8n) be a discrete-time signal of length n, 
i.e., a vector in ]Rn, and 1> = [<PI, ' . .  , <Pm] be a collection of 
m basic waveforms or vectors in ]Rn, usually called atoms of 
the dictionary 1>. Assuming m > n, the dictionary will result 
in an overcomplete frame leading to infinite solutions of the 
underdetermined linear system: 

1>a = 8, (1) 

where a E ]Rm represents the coefficients of the atoms in 1>. 
This system has more unknowns than equations, and thus it 
has either no solutions, if 8 is not in the span of the columns 
of the matrix 1>, or infinitely many solutions. In order to avoid 
the anomaly of having no solutions, we shall hereafter assume 
that 1> is a full-rank matrix, implying that its columns span 
the entire space ]Rn. 

The general goal would be to find a highly sparse decom­
position of the signal 8, that is, one with very few nonzero 
terms in a. This can be rephrased into the following NP-hard 
combinatorial optimization problem: 

min II a 110 subject to 1>a = 8, (PO) 
a 

where II a 110 = I {k : ak i- O}I denotes the gO-norm. The set 
S(a) = {k : ak i- O} is also called support of a. Moreover, a 
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signal s is called k-sparse if it admits a representation which 
combines at most k atoms of the dictionary 1>. 

Owing to the intractability of problem (PO) [6], many re­
searchers have developed alternatives to the exhaustive search 
which consider in many cases a relaxation to the £l-norm I 

allowing to recast (PO) as convex optimization solvable by 
linear programming [3]. 

A different approach has been developed in [7]. The main 
idea is to approximate the eO-norm by a smoothing function 
and then following a graduated non convexity [8] approach to 
avoid to get trapped into local minima. At the end of each step 
along the gradient ascent of a suitable objective function, the 
approximate solution found is projected back into the feasible 
region. 

The approach followed in this paper represents an alterna­
tive minimizer to that proposed in [7]. It is based on a suitable 
sparseness measure which represents a sort of measure falling 
in between the £0 and £1 norms [9]. 

III. SPARSITY PROMOTION MAPPINGS 

The aim of this section is to show a fundamental asymptotic 
fixed-point property for a uniformly Lipschitzian mapping 
based on a family of nonlinear maps F = {f>.. I A E lIt+}, 
where the choice of A is important in controlling the sparsity 
effects. A nonexpansive orthogonal operator built on the 
Moore-Penrose pseudo-inverse is then applied in order to 
restore the solution feasibility. 

Let f>.. : lit -+ lit be a function depending on a real parameter 
A > 0, defined as 

(2) 

The function f>.. is odd, continuous and differentiable in lit with 
positive and even derivative f�(x) = (Alxl - l)e-A1xl + l. 
Since we have that sUP

xEIR If�(x)1 = 1 + e-2, as a direct 
consequence of the intermediate value theorem from calculus 
it holds that If>..(x)-f>..(y) I :s; (1+e-2)lx- yl, for each A >  0 
and x, y E lit. Thus, mapping (2) is uniformly Lipschitzian 
with respect to A with Lipschitz constant 1 + e-2. Moreover, 
given that If�(x)1 < 1 on the interval ( -I/A, I/A) , the 
mapping (2) is contractive within that interval with fixed-point 
at the origin [4]. For a sketch of the function (2) and its first 
derivative see Fig. 1. 

In order to understand the meaning of f>.., it should be 
observed the role played by the mapping x f--t f>..(x)/x, 
which behaves like a symmetric sigmoid function, where larger 
values of A give sharper sigmoids, in the limit becoming a 
Heaviside step function. Roughly speaking, this asymptotic 
behavior has shrinking effects for values near zero, where the 
function f>.. becomes a contraction (see derivative in Fig. 1 
which is less then 1 for x < 1/ A) and behaves as a second­
order infinitesimal operator, while far from the origin it is 
asymptotic to the identity function, being limA--++oo If>.. (x) I = 
x for all x E lit. 

978-1-4673-0753-6/11/$26.00 ©2011 IEEE 

hex) 

f�(x) 

1 
X 

Ixl 

\ 

2 
X 

Fig. I. The graph of function (2) and its first derivative. 
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To deal with high dimensional data, we extend mapping (2) 
to many dimensions via the elementwise Hadamard product 
of vectors, obtaining the one-parameter family of nonlinear 
functions F = {f>.. : lItm -+ lItm I A E lIt+} where each 
component of F extends (2) as follows 

f>..(x) = x 0) (1 - e-A1xl) ,  (3) 

where 0) denotes the Hadamard product. 
As previously noted, from the geometric point of view the 

vector [f>.. (al) / aI, ... , f>.. (am) / am] represents a symmetric 
sigmoid function in m dimensions, where larger values of A 
give sharper sigmoids, in the limit becoming a Heaviside step 
function. 

Let us now consider an orthogonal projector aimed to map 
every point falling in the range of (3) into the nearest point in 
the affine space A<l>,s = {a E lItm : 1>a = s} (supposed not 
empty) given by equation (1). 

Denote by 1>t = (1)T1>)-l1>T the Moore-Penrose pseudo­
inverse of a full-rank matrix 1> and by v = 1> t s the c1osed­
form least-squares solution, i.e., those heaving minimum £2_ 
norm. Given an approximate solution a of system (PO), in 
order to minimize the euclidean norm of the residual vector 
s - 1>a, or equivalently, the distance between a and the set 
of feasible solutions A<l>,s, we use orthogonal projections as 
given by the following mapping: 

a f--t a + 1>t(s - 1>a) = Pa + v, (4) 

where P = 1- 1> t 1> is the orthogonal projector onto the kernel 
of 1>. 

174 



Putting all together, a new map T).. : ]Rm ---+ A<l>,s, obtained which implies 
by combining nonlinear mappings falling in the family F and 

rm 1 
the orthogonal projector (4), is given by II ak 8 e-)..klakl II::; e

m 
Ak' 

T).. (a) = PJA(a) + v. (5) 

Also for mapping (5) we can provide an estimate of the 
Lipschitzianity by recalling that the operator P is orthogonal 
(and then firmly nonexpansive), which allows to derive: 

II T).. (a) - T).. ((3) II = II PJA(a) -PJA((3) II 
::; II JA(a) - JA((3) II 
::; Vm ( 1 + e-2) II a - (311 . (6) 

Therefore the Lipschitz constant rm (1 + e-2) depends sub­
linearly on the greatest dimension of the spaces involved in 
(PO). 

Here, we show that a fixed-point iterative schema involving 
mappings like (5), where the nonlinear function belongs to F, 
becomes an effective procedure to find the sparsest solution 
of the linear system (1), provided that a suitable sequence of 
values would be supplied to the parameter A. 

Thus, fixed a positive sequence {An}n?:O, the iterates are 
inductively defined as 

(7) 

In order to study the convergence of the sequence {an}n?:O, 
we first provide an inductive form of the general term an. 

Let {an} be the sequence in A<l>,s generated by the operator 
T).. ( - ) in (7). Then it can be verify that 

a1=Pa-P [a8e-)..olal] + v  (8) 

a2 = Pa -P [a 8 e-)..olal + a1 8 e-)..1Ia11 ] + v 

an = Pa -P ['I: ak 8 e-)..klakl] 
k=O 

+ v . 

Thus, it is easy to see that the sequence converges when 

Pa + v = (I -.pt.p)a + .pts = a, 
or equivalently, when 

P [f ak 8 e-)..klakl] = 0 
k=O 

(9) 

that is, if and only if P maps the point 2:%':0 ak 8 e-)..klakl 
onto the null vector. 

Proving that {anln?:o converges in norm, implies to show 
that the series 2:��0 ak8e-)..klakl appearing in (8) converges 
in norm when n ---+ +00. But the proof can be easily derived 
by recalling that 

1 x M Ixle-)..Ixl < -- eA' 
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Hence, by assuring a bound on the sum of reciprocals of {An}, 
i.e., when 2:�=0 1/ An < +00, it must be stated that 

(10) 

IV. THE ALGORITHM LIMAP S 

Stating the role of the parameter A in the family of 
Lipschitzian-type mappings F, we call it sparsity ratio be­
cause it determines how strong the overall increment of the 
sparsity level should be within each step of the iterative 
process. In fact, when applied iteratively, for small A this kind 
of mappings should promote sparsity by forcing the magnitude 
of all components ai to become more and more close to zero 
(recall that the map is contractive within ( -1/ A, 1/ A) ). On 
the other hand, for high values of A, the chance to reduce the 
magnitudes of the ai diminishes, fixing its value over the time. 
Hence, for gaining sparsity, the scheduling of sparsity ratio A 
should start from small values and then increase according to 
the iteration step n. 

This behavior is exhibited by the algorithm LlMAPS (which 
stands for LIPSCHITZIAN MAPPINGS FOR SPARSITY), whose 
pseudo-code is sketched in Algorithm 1. 

Algorithm 1 LIMAPS 

Require: 

I: t+-O 
2: a+- 1/ 

- a dictionary <I> E jRnxm 

- its pseudo-inverse <I> t 
- a signal s E jRn 

- a sequence {At}t�O 

3: while [cond] do 

4: A +-At 
5: !3+-J>.(a) 
6: a+-!3-<I>t(<I>!3-s) 
7: t +-t + 1 
8: end while 

Ensure: a fixed-point a = Pa + 1/ 

<sparsity ratio update> 
<increase sparsity> 

<orthogonal projection> 
<step update> 

Remark 1 As said informally above, its ability to find de­
sired solutions is given by wise choices which will be adopted 
for the sequence {At}t?:o, together with choosing a good 
dictionary. Among many candidates respecting the constraints 
imposed by (10), one of the most promising sequences, at least 
on empirical grounds, is the geometric progression whose t-th 
term has the form 

for t � 1, 
where AO = e and I are positive and fixed constants. 

Remark 2 The stop condition of the while loop (line 3: 
of Algorithm 1) may capture different events leading to a 
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correct termination of the iterative system to a solution having 
minimum error and, hopefully low sparsity. Even if to satisfy 
the ideal condition (9) may require infinite steps, in realistic 
computations, when the algorithm reaches values near machine 
precision we found solutions with very small error. Possible 
choices may include to bound the difference between two 
successive iterates, that is, until II an - an-l II ;::: c, or the 
discrepancy between the value II p [2::%:0 ak 8 e-.\k,ak' l ll 
and zero. 

V. SPARSITY MINIMIZATION 

The main goal of every sparsity recovery method is to find 
sub-optima to the hard problem (PO) in a fast way. In this 
work we face this problem in two stages: 

1) relaxing the combinatorial objective function II . 11 0 to a 
continuous surrogate function characterized by a gradual 
approximation of the eO-norm leading to an asymptotic 
convergence with the latter during the process minimiza­
tion; 

2) optimizing such a relaxed objective function by invoking 
the nonlinear operator (5) which gives rise to a fixed­
point algorithm for finding accurate solutions under 
plausible hypothesis of sparseness. 

To make the discussion more formal, we follow the spirit 
of paper [9] in which a large class of admissible sparseness 
measures is introduced and characterized. This class include 
£P-norms (0 ::; p ::; 1) as a special case. 

A meaningful functional directly linked to the sparsity 
promotion mapping (3) and approximatively measuring its 
support is the functional g.\ : JRm ---+ JR, we call "g.\-norm", 
given by 

m m 
g.\ ( lal) = 

L (1- e-.\Iail) = m - L e-.\Iail
, (11) 

i=l i=l 

where the sharpness parameter ), is assumed to be positive. 
Its importance derives from the fact that g-norm behaves like 
the £P-norm for p = 1/), < 1 and becomes II a 11 0 as), tends 
to +00, as stated in the following properties: 

g.\ ( lal) � II a II� (with p = 1/), < 1) 

lim g.\ ( lal) = II a 11 0 (asymptotically) . 
.\-++00 

As far as the second stage is concerned, it would seem very 
natural to attempt to solve a new regularization problem of the 
form: 

min IIal19 subject to 1>a = s 
a 

(PI) 

by applying the mapping (5) and by letting)' tend to infinity. 
This approach leads to a family of fixed-point algorithms that 
starting by an arbitrary point in JRm converges to a solution 
of the problem (PI) by locally minimizing the g-norm. 

In order to explain such a behaviour that appears to be 
characteristic of the iterative schema given in the previous 
section, due to space limit we do not report a formal rigorous 
analysis concerning the pseudo-norm minimization, but we 
highlight empirically the trend of the g-norm against various 
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more or less sparse instances. In Fig. 2 we report the plottings 
of g-norm for random instances of size n = 200 and randomly 
generated Gaussian dictionary with m = SOO atoms, limiting 
to 2000 the number of iterations of the fixed-point schema. 
Such a metric provides a clear dichotomic behavior of the 
algorithm: when it converges to the optimum value k of a 
given k-sparse signal the g-norm values tends to k (e.g., see 
the plottings for k E {1O, 20, ... , 70}), otherwise they tend 
to diverge, as in cases of plottings for k E {SO, 90, 100}. It 
can be noted that this dichotomy also allows to detect, after a 
small iteration number, whether the process converges or not 
to a good solution. 
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Fig. 2. Plotting of the 9,,-nonn functional versus iterations of the while loop 
of Algorithm 1. 

VI. NUMERICAL RESULTS 

To show the effectiveness of our algorithm we directly 
compared it with some algorithms for sparsity recovery well­
known in literature, as Matching Pursuit (MP) [10], Orthog­
onal Matching Pursuit (OMP) [11], Stagewise Orthogonal 
Matching Pursuit (StOMP) [12], LASSO [13], LARS [13], 
Smoothed LO (SLO) [7] and Improved SLO (ISL02) [14]. 

In all tests, the frames 1> and the optimum coefficients a* 
are randomly generated using the noiseless Gaussian-Bernoulli 

2In order to make the algorithm behavior more stable, in our ISLO 
implementation we used the explicit pseudo inverse calculation instead of 
the conjugate gradient method, so penalizing its time performances in case of 
big size instances. 
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stochastic model, i.e., for all i,j E [1, . . .  , m] : 

1>ij rvN(0, n-1) and a: rv Xi ·N(O, (J), 

where Xi rv Bern(p). In this way each coefficient a: has 
probability p to be active and probability 1 - p to be inactive. 
When the coefficient a: is active, its value is randomly drawn 
with a Gaussian distribution having zero mean and standard 
deviation (J. Conversely, if the coefficient is not active the 
value is set to zero. As far as the parameters are concerned, 
we fix Ao = 10-3 and "( = 1.01 because they have given 
good results in all considered instances, coming out essentially 
independent from the size n x m of the frames and size m of 
the coefficient vectors. 

We evaluate the performances of the algorithms measuring 
relative error and computation time: 

1) as errors we consider the Signal-to-Noise-Ratio (SNR) 
and the Sum of Squares Error (SSE) of an approximate 
solution found a with respect the optimum a*

, defined 
as usual: 

Ii a
ll SNR = 20log10 Ii a _ a* II ' SSE = li s - 1>&11 2; 

2) as computation time we take the CPU time spent in 
the execution of the algorithm cores, without including 
the computation of instances generation or the pseudo­
inverse matrix of the dictionary in our and SLO algo­
rithms. 

The simulations were performed on AMD Athlon II 
X4 630 Processor 64 bit, 2.8 GHz processor with 
4 GB of memory, using MATLAB with SparseLab 
(http://sparselab.stanford.edu) and Toolbox Sparse Optimiza­
tion (http://www.ceremade.dauphine.fr/tJeyre/matlabl) for al­
gorithms implementation. The algorithm LtMAPS is available 
online at the URL http://dalab.dsi.unimi.it/limaps. 

Among the many experiments done, in Figure 3, Figure 
4 and Figure 5 we report the average SNR, times and the 
relative number (in %) of correctly recovered atoms values 
respectively, obtained from executions on instances of n = 200 
equations and m ranging from 300 to 1400 variables, moving 
the percentage of sparsity k from 10% to 50% over n. For 
each n, m and k 100 instances of dictionary and coefficients 
were randomly generated. 

As can be noted, our algorithm outperforms all the others 
with regard to the reconstruction quality, reaching arbitrary 
precision and keeping a CPU execution time comparable with 
the others. The most interesting results are obtained with the 
sparsity levels between the 30% and the 50% over n, where 
our algorithm keeps a good accuracy in terms of SNR. 

A second kind of experiment was aimed to study the 
algorithm behavior when the sparsity level k is low (e.g., 
50% over n), that is when algorithms find more difficulties in 
general to converge toward the sparsest solution. To this end, 
we have generated random instances of dimensions n = 400 
and m = 800 with a sparsity level k = 200, doing also for 
this case 1000 trials. The results are outlined in Table I, listed 
by error averages /LSSE, /LSNR and time averages /Ltime together 
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Fig. 3. Averages SNR of the algorithms vs. sparsity, expressed in percentage 
of the number of equations n. 

TABLE I 
AVERAGES AND STANDARD DEVIATIONS OF THE RESULTS OBTAINED BY 
THE ALGORITHMS FROM 1000 TRIALS WITH INSTANCES OF DIMENSIONS 

m = 800, n = 400 AND k = 200. 

J.LSSE <7SSE J.LSNR <7SNR /Ltime O"time 

LIMAPS 1.5e-24 1.3e-24 249.8 1 14.9 0.79 0.23 

SLO 4.8e-24 7.6e-25 24.7 38.3 0.15 0.0 1  

ISLO 4.3e- 16 3.7e- 15 82.7 89.5 9. 10 12.70 

LASSO l.3e+02 I. le+03 8.3 2.0 1.79 0.20 

LARS 2.3e- I 0 2.3e-09 6.3 2.2 0.79 0.07 

MP 2.4e+04 4.3e+03 1.9 0.7 0. 18 0.0 1  

OMP 2.4e+00 2.8e-0 I 1.6 5.5 1 1.4 0.79 

StOMP 3.8e+05 1.4e+05 2.4 0.7 0.02 0.0 1  

with their relative standard deviations (J. Again LtMAPS gives 
the best results in terms of SNR and of SSE with lower 
standard deviations while the times remain comparable with 
other algorithms. Finally, it must be noted that the SSE of 
solutions found by LIMAPS vanishes at each iteration of while 
cycle (statement 1: in Algorithm 1) since they are remapped 
every time onto the feasible space of (PO). 

VII. CONCLUSIONS 

We developed a new heuristic to solve efficiently the spar­
sity coding of signals described by underdetermined linear 
systems. It consists on alternating two lipschitzian maps: one 
promotes the sparsity of each near-feasible solution (or point) 
falling outside the affine space associated with the linear 
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Fig. 4. Averages computational times of the algorithms vs. sparsity, expressed 
in percentage of the number of equations n. 

transformation and the other remaps such a point in the nearest 
solution of the feasible space. 

The so derived heuristic consists on a fixed-point iteration 
scheme which converges to a good solution coinciding, in 
many cases, with the sparsest (or optimum) solution admitted. 
The trajectory followed by the system evolution is leaded by 
a unique parameter which assumes growing values given by 
empirical analysis. To make the sparsification request effective, 
we introduce a new metric into the search space with two aims: 
to measure the goodness of the sparsity level reached and to 
act as objective function directly implied in the optimization 
process. Such a critical aspect of the framework proposed 
deserves a deeper analysis in order to make the search strategy 
more efficient, reducing the number of iterations of the main 
cycle and avoiding to get stuck into local minima as well. 

With the experimental results we highlight the high solution 
quality and a good average time complexity in practice, com­
parable with the fastest well-known reconstruction algorithms; 
in particular, such technique is promising because it exhibits 
very good performances (high SNR) also in case of very low 
sparsity (near n/2), values for which many others fail. 
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