
ParaMASK: a Multi-Agent System for the Efficient
and Dynamic Adaptation of HPC Workloads

Mateusz Guzek†, Xavier Besseron‡, Sébastien Varrette∗, Grégoire Danoy∗ and Pascal Bouvry∗
†Interdisciplinary Centre for Security Reliability and Trust

‡Research Unit in Engineering Science
∗Computer Science and Communications (CSC) Research Unit

6, rue Richard Coudenhove-Kalergi, L-1359 Luxembourg, Luxembourg
Firstname.Lastname@uni.lu

Abstract—The growing parallelism and heterogeneity of mod-
ern computing infrastructures such as High Performance Com-
puting (HPC) platforms raises new challenges to their pro-
grammers and users. Additional requirements have emerged
nowadays, such as minimizing the consumed energy, reducing
the utilized system resources, or providing built-in reliability
mechanisms. Therefore High Performance Computing (HPC)
applications require adaptation mechanisms and then must avoid
traditional monolithic centralized approaches in favor of novel
autonomous, flexible and decentralized decision systems. In this
context, we describe here a dynamic and flexible adaptation
scheme based on a Multi-Agent System (MAS) to handle parallel
or distributed executions in an HPC environment. More precisely,
we model and extend the existing HPC middleware KAAPI to
offer the power of the ParaMoise multi-agent organizational
framework. Our proposed solution, named ParaMASK, relies
on the similarities between ParaMoise workflow-based functional
specifications and the Direct Acyclic Graph (DAG) representation
of the distributed execution within KAAPI. As a result, Para-
MASK permits to analyze and reorganize the scheduling of tasks
that compose a program in an autonomous and decentralized
way, while additionally handling dynamic adaptations (using task
migration to fulfill energy consumption goals for example). The
proposed solution was implemented on top of the existing KAAPI
middleware and includes an optimized algorithm for the agent
coordination. ParaMASK has been validated with a series of
experiments on a real computational grid. Experimental results
show a good scalability and an exceptional low overhead induced
by the approach: less than 1.5% execution time increase with
periodic coordinations every 15 seconds on 2662 cores.

Keywords—Multi-Agent System (MAS); High Performance
Computing (HPC); DataFlow Graph (DFG); Kaapi; ParaMoise;

I. INTRODUCTION

With a growing concern on the considerable energy con-
sumed by High Performance Computing (HPC) systems and
data centers, research efforts are targeting toward green ap-
proaches with higher energy efficiency. In this context our
objective is to investigate novel ways to make the executed
application aware of the underlying computing platform so
as to take the best decisions as regard process migration and
scheduling, i.e., more generally, runtime adaptation. Indeed,
the quest for highly adaptable applications, where the recon-
figuration is operated using heterogeneous criteria, reveals the
need to raise the level of abstraction within the application and
in result to allow to reason with coarse-grained concepts.

Common HPC applications and middleware usually pro-
vide an highly optimized code and focus on computation
efficiency. Then one drawback appears to be the lack of
flexibility and malleability of such software. On the other hand,
the Multi-Agent System (MAS) paradigm brings new capabil-
ities to computing systems, by explicitly modeling the high-
level characteristics of the relations and interactions between
system components. One important aspect of MAS is their
ability to perform distributed decision making. We propose to
combine these two paradigms to offer in the same middleware
high performance execution together with expressiveness and
flexibility. It is of special interest for new HPC platforms,
where runtime fine-tuning is dependent on multiple changing
parameters, to optimize the system dynamically.

Our approach relies on extending an existing HPC middle-
ware KAAPI which has proved to be efficient and scalable [1].
Additionally, KAAPI represents a parallel computation as a
Direct Acyclic Graph (DAG) which serves as a portable rep-
resentation for the distributed execution of a parallel program
on a fixed input. This concept of DAG is then coupled with the
ParaMoise MAS organizational model introduced in [2], itself
based on Moise [3] and Moise+ [4]. The DAG in ParaMoise is
the core of Functional Specification, used by agents to plan and
reason about their goals and missions. At the end, our solution
called ParaMASK, unifies KAAPI and ParaMoise and offers a
flexible MAS-based middleware with performance close to the
original KAAPI even for large scale execution.

The main contributions of this paper are: 1. The model
of a distributed HPC execution as an ParaMoise-based orga-
nizational Multi-Agent System (MAS), capable of dynamic
reorganization. 2. Its implementation named ParaMASK on
top of the existing KAAPI middleware, including an optimized
agent-coordination algorithm. 3. An experimental validation of
ParaMask in a large scale, highly heterogeneous and geograph-
ically distributed environment.

This paper is organized as follows. Section II reviews the
related work as regards state-of-the-art approaches to cover
runtime adaptation in the literature. Then, Section III describes
the background knowledge, while the modeling and implemen-
tation of a ParaMASK system is presented in Section IV. The
validation of the approach on concrete applications is explained
in Section V which details and discusses the experimental
results obtained. Finally, Section VI concludes the paper and
provides some future directions and perspectives opened by
this study.

II. STATE OF THE ART

The problematic of dynamic adaptation in HPC work-
loads is obviously not a new topic as it has already been
tackled in many middleware. For instance AFPAC [5] and
ASSIST [6] are based on the parallel component model and
provide a framework for generic adaptation. However, these
are limited by the capabilities of the underlying application
they control. ASSIST applies only to SPMD (Single Program,
Multiple Data) programs and master-slave models, and AFPAC
is limited to SPMD applications. Regarding the MPI imple-
mentations, AMPI [7], Starfish MPI [8], GrADS [9] propose
a dynamic adaptation of the application but only consider
adding, removing or migrating processes. However, they use
an ad-hoc method which is strongly tight to their internal
implementation. It means that their approach is not generic
enough and thus they can hardly be extended to other kinds
of adaptions.

The agent paradigm, and more precisely organized multi-
agent systems, have thus been considered to address these
limitations and bring the expressiveness and power of organi-
zations to coordinate and control autonomous agents. A large
number of organization modeling languages and “organization-
oriented” frameworks have been proposed in the MAS liter-
ature, but only few of them actually permit to model and/or
implement highly parallel HPC programs in an adaptive way.
For instance, the JaCaMo multi-agent programming frame-
work [10], brings the power of Moise [3] with its three
specifications (structural, functional and deontic) for program-
ming MAS organizations and reorganizations. However its
usage for executing HPC programs is limited because of
the single agent responsible for reorganization that results in
a sequentially executed implementation plan. Moreover, the
organization needs to be stopped for the reorganization, which
may be unfeasible in a real scenario.
Some other organizational MAS frameworks have thus been
developed specifically to manage executions in such distributed
environments. For instance, Al-Jaroodi et al. [11] propose a
Java-based middleware that permits to run user applications
implemented in Java on a distributed environment. The core
of the concept is a hierarchical structure of agents. Leader
agents are superior over the agents in lower layers, while being
equal among other leaders in the same layer. The system is
presented to the end user as an infrastructure and offers func-
tionalities such as resource, request, and security management,
class loading or scheduling. The available reorganizations are
only on the Organization Entity (OE) level, meaning that the
structure of the system is fixed. Additionally, the organization
and its functioning are problem specific, which limits the
flexibility and generality of this system. Martin and Barber
[12] empirically prove the usability of an adaptive decision
scheme and its superiority in a dynamic MAS setting over
static organizations. Kota et al. [13] propose a MAS with
decentralized decision making, designed as a framework that
runs service instances in a distributed computing environ-
ment. The solution enables to define the relations between
agents either as superior-subordinates, peers or acquaintances.
Because of that, the possible reorganizations are limited to
transitions between these relations and less focus is put on their
implementation. Moreover, the possible changes in the system
are only creating/dissolving the relations or load management
functions. As a result, this approach does not introduce fine-

grain, general model that could be further extended and fully
explain its functionality (e.g. load management functions are
separate from the organization management functions). The
experiments prove the applicability and the benefit of the
approach, concluding that its performance is close to the
centralized solution or an oracle.

Wang et al. propose [14] a trust-based system for plan
management in multi-agent systems. The objective of the work
is to maximize the probability of success of the execution.
The methodology is based on the additional control loop
that adapts the schedule, directed by each agent’s levels of
trust, resulting in increased robustness and predictability. The
proposed solution is problem specific and does not propose a
generalized organizational framework.

To summarize, these dedicated MAS frameworks do not
fully exploit the organizational modeling power, i.e. not all
dimensions in the organization and reorganization. Moreover,
the reorganization process is done offline or its performance is
neglected. On the other hand, stat-of-the-art HPC middlewares
can exploit the resources of computing platforms, however they
lack dynamic adaptation and reorganization capabilities. In this
work we therefore propose ParaMASK, which demonstrates
how the ParaMoise model can bring explicit, high-performance
organization and reorganization capabilities at runtime to a
parallel execution middleware, i.e. KAAPI.

III. BACKGROUND

A. ParaMoise

ParaMoise [2] is an organizational model based on the
Moise+ [4] framework, from which it inherits the division
of an organization into three specifications: Structural (roles,
groups, and relations between them), Functional (goals, mis-
sions, and corresponding relations) and Deontic (obligations
and permissions in MAS). The three specifications form the
Organizational Specification (OS), which is a meta-description
of a MAS, and Organizational Entity (OE), which is a de-
scription of an instance of a MAS following a specific OS.
The main objective of ParaMoise is the efficient execution
in distributed systems, introducing the concept of Workflow
Specification (WFS) into the Functional Specification. A WFS
is a Direct Acyclic Graph (DAG), with nodes representing
agents’ goals and edges representing precedence constraints
between goals. It is possible to nest WFS, i.e. encapsulate a

6

7 8

16 17 18 19

21 22

24 25

Alternative
edges
Active
Edge

Waiting
Goal

Possible
Goal

Executing
Goal

Achieved
Goal

Discarded
Goal

Discarded
Edge

m1

m1 m1

m2 m3 m4 m5

m2 m3

m4 m5

Suspended
Goal

Inactive
Edge

Figure 1. An example of Workflow during execution [2].

WFS in another WFS as a goal. An instantiation of WFS is
called Workflow (WF). A WF includes an additional labeling
of links and nodes, which is used to track and synchronize
operations of the MAS. Each goal is associated with a mission.
A mission can be therefore seen as a subset of goals. Missions
are binded with roles from the Structural Specification in the
Deontic Specification that includes permissions and obligations
of the roles in a system. Figure 1 presents an example of
a ParaMoise WF during its execution. WFS and WF are
explicitly defined as a part of the OE, thus they can be
modified during a reorganization process. The properties of
a WF ensure progress and basic coordination, while additional
read and write locks ensure non-destructive modifications of
an organization at runtime. The reorganization is performed
by a specialized group of agents (ReorgGr), governed by
multiple Organization Managers (OrgManagers). As a result,
a ParaMoise-based system is able to concurrently execute
multiple reorganizations, if they are not conflicting. The re-
organization process performance and reliability is enhanced
by the multiplicity of OrgManagers.

The ParaMoise is a theoretical model, but its possible
implementation decisions were also discussed [15], indicating
that an efficient implementation of the ParaMoise-based system
is dependent on the properties of the distributed system,
characteristics of its dynamics and its environment. The first
introduction of the concept of a joint usage of ParaMoise
and KAAPI is related to an energy-aware computing envi-
ronment [16], however the general execution framework, its
implementation details, and its validation have not yet been
presented and remain the object of this paper.

B. Data Flow Modeling & the KAAPI Runtime Middleware

KAAPI [1] is a high performance middleware that allows
to execute parallel applications on a distributed platform, e.g.
a grid or a cluster. It offers a high-level programming interface
called Athapascan [17] that allows to describe an application
as a DataFlow Graph (DFG) independently of the execution
platform. The DFG of the application is based on two simple

(c)

Print

res

Fibo(1)

res1 res2

Sum

Fibo(0) Fibo(1)

res1 res2

Sum

Fibo(2)

Fibo(3)

res

Print Print

res

Fibo(1)

res1 res2

Sum

Fibo(2)

Fibo(3)

(a) (b)

Figure 2. Example of the DataFlow Graph (DFG) representation in KAAPI
for a simple recursive Fibonacci application. [18]

concepts: shared data and tasks. A shared data is a data
in global memory that a task can produce or consume. A
task is an instruction set that declares an access mode to a
shared data (read or write). DFG is formally defined as a
directed graph G = (V , E), where V is a finite vertex set
(tasks and shared data) and E is an edge set (precedence
constraints) between the vertices. With this description, KAAPI
can execute the tasks of the application according to the
precedence constraints which are dynamically detected. The
DFG is called the abstract representation of the application.
This representation is causally connected to the (execution of
the) application: any new execution of an API instruction is
reported by the creation of new vertices in the DFG; and
any modification in the DFG is rendered in a modification
in the application execution. Practically, it means that the state
of the application can be dynamically inspected or modified
at runtime to adapt the execution of the application (to take
scheduling decisions for example).
Figure 2 shows an example of the data flow representation
for the simple recursive Fibonacci application. The Fibo tasks
are recursive, so the execution of Fibo(3) actually creates two
additional Fibo tasks and one Sum task. This operation creates
parallelism in the application and the concurrent branches in
the graph can be distributed among processors to perform a
parallel execution. An approach to distribute the parallelism on

res

res1 res2

Sum

Fibo(2)Fibo(1)

res2

Signal

Print

Fibo(2)

Work−Stealing

Transformation

Stolen

Waiting

Waiting

Ready

Victim Dataflow Graph

Ready

Waiting

New Dataflow Graph

Print

res

res1 res2

Sum

Fibo(2)

Initial Kaapi Dataflow Graph

Fibo(1)

Ready

Waiting

Waiting

Ready

Figure 3. A work-stealing operation in KAAPI: two independent DFGs are
created to allow distributed execution. [18]

different processors and schedule the tasks is the work-stealing.
When a processor is idle, i.e. when it has no work assigned,
it will try to steal work from another busy processor. The
DFG on the victim processor is then split into two independent
DFGs. A communication task (Signal) is created to maintain
the precedence constraint and sends the data to the other DFG.
This distribution of the work on two DFG is illustrated on
Figure 3. The initial DFG, before the work-stealing operation,
is showed on the left; the split DFG, after work-stealing is on
the right. This last notion is of importance for the migration
process implemented in the ParaMASK framework.

IV. PROPOSED MODEL AND ORGANIZATION

The presented ParaMoise framework and the KAAPI ex-
ecution environment were designed using similar concepts
to address similar issues. This work leverages on the com-
plementarity: KAAPI is used as an engine and foundation,
encapsulating the organization and reorganization capabilities
of the ParaMoise model. As a result, the ParaMoise Multi

Agent System in KAAPI (ParaMASK) was designed and
implemented. This section presents this solution in details.

A. Modeling Kaapi runtime using ParaMoise.

Table I presents a proposed mapping that unifies vary-
ing terminologies. The mapping is not exact, therefore it is
necessary to explain it in more details. The basic actors,
i.e. agents, are not explicitly defined in ParaMoise, while in
KAAPI they are modified POSIX threads. Notions of Goal
and Task are quite similar: they are notions of workloads, that
should produce results. In both frameworks there are two levels
of execution description. WFS and Abstract Representation
are used to model a general plan of execution, while their
corresponding instantiations are WF and DFG. However, the
mapping on both levels is not straightforward. To map an
Abstract Representation to a WFS, the shared data nodes must
be reduced by transforming them into edges. Reverse mapping
involves designing shared data structures required during ex-
ecution. Analogical transformations can be performed on the
WF and data flow graph. An example of the transformation of
the data flow graph from Figure 2 is presented in Figure 4.

B. ParaMASK - ParaMoise MAS in KAAPI.

We propose ParaMASK (ParaMoise MAS in KAAPI), a
system which uses the ParaMoise organizational framework,
adapted to the needs of KAAPI. ParaMASK is able to execute
KAAPI-compatible programs and to dynamically reorganize
the middleware modeled as a ParaMoise MAS. To reflect the
specifics of KAAPI, a novel, specialized Structural Specifica-
tion is proposed (Figure 5). The ReorgGroup is extended in
comparison to standard ParaMoise definitions by the addition
of a LocalManager. The main roles for the system are
OrgManager, LocalManager, and Worker. A sample
presentation of a deployed system is presented in Figure 6.

OrgManagers have an authority over all roles in the
organization (inter-group link between OrgManager and
soc, the root of all roles), including LocalManagers.
OrgManagers are used as the highest level entities that

Table I. MAPPING BETWEEN PARAMOISE AND KAAPI CONCEPTS.

ParaMoise Kaapi
Agent Thread
Goal Task
WFS Abstract Representation
WF DFG

WF/WFS Nesting Recursive Execution
LocalManager KAAPI process

0 1

1 S

S

P

Precedence

Fibo(n)

Key

Fibo(2)

Fibo(3)

n

SumS

PrintP

Tasks:

Figure 4. WF representation of a simple recursive Fibonacci application
presented in Figure 2. All tasks belong to the same mission.

govern the organization and enforce reorganizations.
LocalManagers form an intermediary layer in the hierar-
chy. To optimize the management of the Worker agents,
each physical node has an associated group with a sin-
gle LocalManager and all Workers of the node. The
LocalManager of a Worker Group (WorkerGr) has au-
thority over Workers in the group. LocalManagers can
communicate between themselves, which is used during the
coordination process. Because there is always exactly one
LocalManager per KAAPI process, they are mapped as cor-
responding entities, however technically a LocalManager,
being an agent, is still a thread.
Workers are the responsible for processing the DFG. To
balance the load, they perform work stealing operations. To
achieve this, each Worker can communicate with its peers.
Because of that, a Worker asks other agents to find work
instead of parsing the DFG. In case of successful work stealing,
the assignment of the involved agent to the targeted goals is
changed.

The Deontic Specification that constitutes the foundation
of the KAAPI system is relatively simple. All Workers have
the obligation to process tasks. In case no task is assigned to
a Worker, the Worker is obliged to steal work. In case it is
impossible, the Worker becomes idle, periodically checking if
it can contribute. The parts of Deontic Specification concerning
managers roles are problem-dependent and thus not described
here. However, it is crucial that all agents respect the authority
relations.

C. Implementation details & Agent coordination

ParaMASK is implemented in C++ as an extension to
KAAPI. Management Layer agents are implemented as ded-
icated system threads that run concurrently to Workers (i.e.
KAAPI threads, which are modified POSIX threads) and the
KAAPI communication layer. This specialized thread offers
a general agent interface, which can encapsulate an arbitrary
code responsible for the behavior of an agent. Technically an
agent can be assigned to multiple roles, however because of
the low overhead of agents, each agent adopts only a single
role in the implemented system, as presented in Figure 6.
Agents can be responsible to perform different kinds of oper-
ations: Work-Stealing, Checkpoint/Restart, Migration, etc. For
example, the Work-Stealing operation involves two Worker

Key

Org

OrgManager

Monitor

Monitored

SelectorDesigner

Reorg

Communication link

Compatibility link

role

InheritanceAuthority link

Group

soc

Composition

abstract role

ReorgGr

System

Worker

LocalManager

WorkerGr

Inter-group link

Intra-group link

1

Figure 5. The ParaMASK organizational roles.

Key

 O

L

W W W

L

W W W

L

W W W

...

Node 1

Node 2 Node 3 Node n

Management Layer

KAAPI Layer

O LOrgManager LocalManager WorkerW
Work stealing
Coordination
Authority

Figure 6. An example of a deployed ParaMASK system.

agents and requires a coordination only between these two
agents. This operation, although not formalized using the
agent concept, was already available in the initial KAAPI [1].
Other operations like Checkpoint/Restart or Migration require
stronger coordination between the processes to maintain a
consistent state of the application. In ParaMASK, the role
responsible for coordination is LocalManager, as it has
direct authority over Workers in its WorkerGr. Because there
is a unique LocalManager per process, we propose a
mapping between these two entities.

The coordination of the threads is important as it guarantees
that a distributed operation, like a Checkpoint or Migration will
operate on a global consistent state [19] of the application.
Such a coordination usually ensures two aspects [18]. First,
the state of the communication must be taken in account (in
progress messages must be recorded or delivered). Secondly,
the distributed operation has to appear as applied at the same
time on all the processes (the operation cannot be applied
before the emission of a given message and after the reception
of the same message on the other process). Multiple coor-
dination algorithms [19], [20] have been proposed to build
a consistent global state between distributed processes and
solve these issues. To coordinate agents in ParaMASK, we
generalize the coordination protocol proposed in [20], [18] to
apply to any kind of operation. Then, we have two coordination
schemes available. The Full coordination corresponds to a
naive algorithm which involves communications between all
pairs of processes. It has been implemented to serve as a
reference for our experimental evaluation.

The Optimized coordination algorithm is inspired from
the protocol described in [21]. It leverages the knowledge
of the application, via its abstract representation (a DFG), to
flush communication channels only between processes that can
actually communicate. This allows to considerably reduce the
number of messages required for the coordination from O(N2)
to (N) with N being the number of involved processes [18].
The overhead induced by the ParaMASK framework during
agent coordination is therefore largely reduced.

V. VALIDATION AND EXPERIMENTAL RESULTS

The experimental tests performed as part of the current
study have been carried out on the Grid’5000 platform [22]
which provides a fully customizable testbed to perform ad-
vanced experiments in all areas of computer science related to
parallel, large-scale or distributed computing and networking.
Grid’5000 is a distributed heterogeneous computing platform
featuring clusters located in nine geographical sites – eight
in France (Bordeaux, Grenoble, Lille, Lyon, Nancy, Reims,
Rennes, Sophia, Toulouse) and one in Luxembourg. It of-
fers therefore a flexible environment of choice to validate
the framework presented in this article. We evaluate our
ParaMASK framework with the N-Queens application. The
application counts the number of solutions to the N-Queens
problem and is written as a recursive DFG. Executed with the
KAAPI runtime, it is able to scale to many thousand of cores.

A. Scalability of the MAS

We performed a first experiment to evaluate the scalability
of our ParaMASK implementation. The scenario is to consider
the global coordination of all of the LocalManagers to
obtain a global consistent state of the distributed execution
of DFGs. For this study, we use an empty reconfiguration,
i.e. no operation is performed by the LocalManagers,
except synchronizing the state of the subordinate Worker,
while their states are coordinated. In order to obtain a larger
number of LocalManagers in this experiment, we run a
ParaMASK with one LocalManager and one Worker per
core. Effectively, they can run concurrently on the same core,
as the LocalManager is lightweight in comparison to the
Worker. The ParaMASK N-Queens application has been
deployed and run up to 1172 cores (154 nodes from 7 sites of
Grid’5000). The details of the nodes from Grid’5000 used to
run this experiment are given in the table II.

We measured the coordination time of all
LocalManagers for an increasing number of agents
involved. The coordination time includes the time to
synchronize all LocalManagers and to build a consistent
state of their subordinate Workers (i.e. computation
is stopped and communication channels are flushed).
It is measured by the OrgManager that triggers the

0 200 400 600 800 1000 1200

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

● ● ●

●

●

●

Number of Agents (1 agent and 1 computing process per core)

C
oo

rd
in

at
io

n
T

im
e

(s
)

●

Coordination scheme

Optimized
Full

Reims Nancy Lyon Grenoble Rennes Lille Lux.

Figure 7. Coordination time of all computing processes using ParaMASK.

Table II. OVERVIEW OF THE INVOLVED SITES AND COMPUTING
RESOURCES FOR EACH CONSIDERED EXPERIMENT.

Experiment 1
Site Cluster # nodes # cores
Reims StRemi 5 120
Nancy Graphene 42 168
Nancy Griffon 23 184
Lyon Sagittaire 18 36
Lyon Taurus 3 36
Grenoble Adonis 1 8
Grenoble Edel 13 104
Grenoble Genepi 5 40
Rennes Paradent 15 120
Rennes Parapide 6 48
Rennes Parapluie 7 68
Lille Chimint 4 32
Lille Chinqchint 3 24
Luxembourg Granduc 6 48
Luxembourg Petitprince 3 36
Total 154 1172

Experiment 2
Site Cluster # nodes # cores
Reims StRemi 19 456
Nancy Graphene 55 220
Nancy Griffon 39 312
Lyon Sagittaire 31 62
Lyon Taurus 7 84
Lyon Orion 1 12
Lyon Hercule 1 12
Grenoble Edel 27 216
Grenoble Genepi 10 80
Rennes Paradent 25 200
Rennes Parapide 10 80
Rennes Parapluie 13 312
Lille Chimint 7 56
Lille Chinqchint 17 136
Lille Chirloute 1 8
Luxembourg Granduc 6 48
Luxembourg Petitprince 7 84
Sophia Helios 17 68
Sophia Sol 22 88
Sophia Suno 16 128
Total 331 2662

coordination and waits for the termination signal from all the
LocalManagers. We compare our Optimized coordination
scheme with the Full coordination approach which just
flushes naively the communication channels between all
pairs of LocalManagers. Our Optimized algorithm extracts
dynamically the communication pattern of the application to
flush the communication channels only between the pairs of
LocalManagers which subordinate Workers can actually
communicate. Figure 7 shows the average coordination
time for different number of LocalManager agents.
The average value is calculated with at least one hundred
values. We clearly see the benefit of using the optimized
coordination algorithm, especially in the case where agents
are distributed over multiple sites. The noticeably longer
coordination time between experiments run on one site (less
than 120 cores on Figure 7) and multi-site experiments
can be explained by a larger network latency of inter-site
network links in comparison with intra-site network links.
Our optimized coordination algorithm is able to coordinate
1172 agents distributed on 7 sites of Grid’5000 in less than
120 milliseconds.

B. Overhead of the MAS

In the second experiment, we measured the overhead of
the ParaMASK system against a reference execution with
standard KAAPI. We used the N-Queens application and

solve the problem of size 21. We performed this experiment
on 2662 cores distributed on 331 nodes of Grid’5000 (see
table II). Contrary to the previous experiment, there were
deployed one LocalManager per node, and one Worker
per core. For the reference time, we use the execution time
using the original KAAPI, i.e. with no agent layer, and we
noted an average execution time of 44.63 seconds.
During the execution global coordinations of the
LocalManagers are triggered periodically by
OrgManager in order to build a consistent state of the
Workers, which enables the measurement of the overhead
of the ParaMASK. No modification of the application state is
made while the LocalManagers coordinate. The average
execution time is measured and averaged for different
frequency of global coordinations. The overhead compared to
the reference is reported in Figure 8.

None 20 s 15 s 10 s 8 s 5 s 2 s 1 s

0
5

10
15

20
25

<0.1 %
 1.29 % 1.41 %

 2.20 % 2.29 %
 3.63 %

 9.94 %

22.99 %

O
ve

rh
ea

d
on

 th
e

E
xe

cu
tio

n
T

im
e

(%
)

Time between Global Coordinations

Figure 8. Overhead of periodic coordination of ParaMASK compared to a
standard KAAPI execution.

When no global coordination is performed during the exe-
cution (the ’None’ bar), there is no significant overhead. This
effect is expected because the LocalManagers are started
but do not coordinate, which results in negligible overhead.
The overhead increases when the global coordinations are more
frequent. The highest overhead, 22 % is measured when a
global coordination of the processes is triggered every second,
which is a high and not realistic frequency in the context
of dynamic adaptation of a parallel application, as it would
correspond to approximately 55 coordination events. With
lower coordination frequency, the overhead is more acceptable.
The proposed implementation allows LocalManagers to
coordinate all of the 2662 Workers of the application every
20 seconds with less than 1.3 % of overhead. It is important to
note that such a global coordination is only required when a
change of configuration of the application is triggered by the
dynamic adaptation mechanism that would affect the entire
organization, which is usually expected to occur at a much
lower rate.

VI. CONCLUSION

In this work, we present a dynamic Multi-Agent System
(MAS) capable of runtime reorganizations, with an explicit
organizational model, named ParaMASK. The theoretical as-
pect of the study includes the mapping between ParaMoise
and KAAPI entities. We further explain the implementation of

the system in a high performance computing application. As a
result, the ParaMoise organization is embedded in a distributed
computing engine. The resulting ParaMASK system enables
the control of the distributed processes via an organizational
framework, which simplifies the achievement and formulation
of the auxiliary goals of a system.

The system is benchmarked and validated using general,
system-wide coordination events during the execution of a
standard application. The experimental validation presents the
superiority of using the data flow specifics over a naive, flat
coordination scheme. An optimized coordination mechanism
has lower complexity, which results in a speedup measured in
orders of magnitude for large-scale deployments. It allowed to
coordinate in less than 120 milliseconds for a system with 1172
LocalManagers. The application execution time overhead
of ParaMASK is dependent on the frequency of coordinations
and it is acceptable for reasonable range of values, e.g. 1.41 %
for coordination every 15s.

The future work induced by this study includes the imple-
mentation of the problem specific roles with corresponding
Functional Specification, to enable system-wide objectives,
such as energy-saving, improved reliability, or dynamic system
monitoring and visualization for end users. The scalability of
the approach could be more throughly validated via large-scale
experiments. A practical consequence is an implementation
with multiple OrgManagers, which would need in turn
to coordinate their actions. The system could exploit more
heterogeneity by allowing the support of specialized hardware
(e.g. General Purpose GPUs, coprocessors), or low-power
systems on a chip. Finally, because of the very promising
scalability tests, the ParaMASK systems could be applied to
other problems, acting as a universal MAS framework.

Acknowledgments: This work was completed with the support
of the INTER/CNRS/11/03/ Green@Cloud Project. M. Guzek
acknowledges the support of the National Research Fund of
Luxembourg (FNR) and Tri-ICT, with the AFR contract no.
1315254. Experiments presented in this paper were carried
out using the Grid’5000 experimental testbed, being developed
under the INRIA ALADDIN development action with support
from CNRS, RENATER and several Universities as well as
other funding bodies (see http://www.grid5000.fr).

REFERENCES

[1] T. Gautier, X. Besseron, and L. Pigeon., “KAAPI: a Thread Schedul-
ing Runtime System for Data Flow Computations on Cluster of
Multi-Processors.,” in Workshop on Parallel Symbolic Computation’07
(PASCO’07), (London, Ontario, Canada), ACM, 2007.

[2] M. Guzek, G. Danoy, and P. Bouvry, “ParaMoise: Increasing Capa-
bilities of Parallel Execution and Reorganization in an Organizational
Model,” in Proc. of the 12th Intl. Conf. on Autonomous Agents and
Multiagent Systems, AAMAS’13, pp. 1029–1036, IFAAMAS, May 2013.

[3] J. Hübner, J. Sichman, and O. Boissier, “A model for the structural,
functional, and deontic specification of organizations in multiagent
systems,” in Advances in Artificial Intelligence (G. Bittencourt and
G. Ramalho, eds.), vol. 2507 of Lecture Notes in Computer Science,
pp. 439–448, Springer Berlin / Heidelberg, 2002.

[4] J. F. Hübner, J. S. Sichman, and O. Boissier, “Developing organised
multi-agent systems using the Moise+ model: Programming issues at
the system and agent levels,” International Journal of Agent-Oriented
Software Engineering, vol. 1, no. 3/4, pp. 370–395, 2007.

[5] J. Buisson, F. André, and J.-L. Pazat, “Afpac: Enforcing consistency
during the adaptation of a parallel component,” Scalable Computing:
Practice and Experience, vol. 7, pp. 83–95, Sept. 2006.

[6] M. Aldinucci, M. Coppola, M. Danelutto, M. Vanneschi, and C. Zoc-
colo, “ASSIST as a research framework for high-performance grid pro-
gramming environments,” in Grid Computing: Software environments
and Tools, pp. 230–256, Springer, 2005.

[7] C. Huang, G. Zheng, and L. V. Kalé, “Supporting adaptivity in MPI
for dynamic parallel applications,” tech. rep., Parallel Programming
Laboratory, Department of Computer Science, University of Illinois at
Urbana-Champaign, 2007.

[8] A. Agbaria and R. Friedman, “Starfish: Fault-tolerant dynamic MPI
programs on clusters of workstations,” Cluster Computing, vol. 6,
pp. 227–236, July 2003.

[9] S. S. Vadhiyar and J. Dongarra, “Self adaptivity in grid computing,”
Concurrency and Computation: Practice and Experience, vol. 17,
pp. 235–257, 2005.

[10] A. Sorici, G. Picard, O. Boissier, A. Santi, and J. F. Hübner, “Multi-
Agent Oriented Reorganisation within the JaCaMo infrastructure,” in
Proceedings of The Third International Workshop on Infrastructures
and tools for multiagent systems: ITMAS 2012, (Valencia, Espagne),
pp. 135–148, 2012.

[11] J. Al-Jaroodi, N. Mohamed, H. Jiang, and D. Swanson, “Middle-
ware infrastructure for parallel and distributed programming models
in heterogeneous systems,” Parallel and Distributed Systems, IEEE
Transactions on, vol. 14, no. 11, pp. 1100–1111, 2003.

[12] C. Martin and K. Barber, “Adaptive decision-making frameworks for
dynamic multi-agent organizational change,” Autonomous Agents and
Multi-Agent Systems, vol. 13, no. 3, pp. 391–428, 2006.

[13] R. Kota, N. Gibbins, and N. R. Jennings, “Decentralized approaches
for self-adaptation in agent organizations,” ACM Trans. Auton. Adapt.
Syst., vol. 7, pp. 1:1–1:28, May 2012.

[14] M. Wang, K. Ramamohanarao, and J. Chen, “Robust scheduling and
runtime adaptation of multi-agent plan execution,” in Proceedings of
the 2008 IEEE/WIC/ACM International Conference on Web Intelligence
and Intelligent Agent Technology - Volume 02, WI-IAT ’08, (Washing-
ton, DC, USA), pp. 366–372, IEEE Computer Society, 2008.

[15] M. Guzek, G. Danoy, and P. Bouvry, “System design and implemen-
tation decisions for paramoise organisational model,” in Computer Sci-
ence and Information Systems (FedCSIS), 2013 Federated Conference
on, pp. 999–1005, 2013.

[16] S. Varrette, G. Danoy, M. Guzek, and P. Bouvry, “Using data-flow
analysis in mas for power-aware hpc runs,” in High Performance
Computing and Simulation (HPCS), 2013 International Conference on,
pp. 158–160, 2013.

[17] F. Galilée, J.-L. Roch, G. Cavalheiro, and M. Doreille, “Athapascan-1:
On-line building data flow graph in a parallel language,” in PACT’98,
1998.

[18] X. Besseron, Tolérance aux fautes et reconfiguration dynamique pour
les applications distribuées à grande échelle. PhD thesis, Université de
Grenoble, Grenoble, France, Apr. 2010.

[19] E. N. Elnozahy, L. Alvisi, Y.-M. Wang, and D. B. Johnson, “A
survey of rollback-recovery protocols in message-passing systems,”
ACM Computing Surveys, vol. 34, no. 3, pp. 375–408, 2002.

[20] X. Besseron, L. Pigeon, T. Gautier, and S. Jafar, “Un protocole de
sauvegarde / reprise coordonné pour les applications à flot de données
reconfigurables,” Technique et Science Informatiques (TSI), vol. 27,
2008.

[21] R. Koo and S. Toueg, “Checkpointing and rollback-recovery for dis-
tributed systems,” IEEE Transactions on Software Engineering, vol. 13,
pp. 23–31, Jan. 1987.

[22] “Grid5000.” http://www.grid5000.fr.

