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Abstract—Filter bank-based multicarrier using offset
quadrature amplitude modulation (FMBC/OQAM) sys-
tems suffer from inter-symbol-interference (ISI) and co-
channel interference (CCI) if the transmission channel is
dispersive, or simply if the overall system is not synchro-
nised. This paper considers the solution to an equaliser
that can mitigate both ISI and CCI by describing the
equivalent transmultiplexed channel including the filter
banks as a polyphase matrix of transfer functions, and by
using polynomial matrix algebra to equalise this system.
We demonstrate that the reduced-rank nature of this
channel matrix requires a polynomial matrix pseudo-
inverse, and demonstrate how the overall FBMC/OQAM
system is orthogonalised, thus removing ISI and ICI.

Keywords—FMBC/OQAM; equalisation; polynomial
matrix factorisation.

I. INTRODUCTION

Multicarrier modulation techniques have been cen-
tral to the development of wideband wireless commu-
nications standards for more than a decade. Within fifth
generation communications systems, particularly filter
bank-based multicarrier (FMBC) techniques are emerg-
ing a candidates radio front-ends [1]–[3]. Such FBMC
systems are popular because offer increased robustness
against synchronisation errors compared to e.g. or-
thogonal frequency division multiplexing (OFDM) sys-
tems [4]. The approach in [1] of combining FBMC
with offset quadrature amplitude modulation (OQAM),
refered to as an FBMC/OQAM system, has attracted
attentention as it is a critically sampled transceiver
without any guard intervals, and hence theoretically is
able to maximise spectral efficiency [2].

FBMC/OQAM consists of two main blocks: a syn-
thesis filter bank (SFB) in the transmitter and an anal-
ysis filter bank (AFB) in the receiver. The prototype
filters are much more frequency-selective than e.g.
in OFDM, which can significantly reduce the out-of-
band emission and allow a flexible spectrum usage [5].
Since a critically sampled DFT-modulated filter bank
itself cannot be perfectly reconstructing, incorporating
OQAM can lead to perfect reconstruction even under

critical sampling and the lack of guard bands. The
latter enable maximum spectrum efficiency [6], but as
a consequence FBMC/OQAM must permit an overlap
of spectra between at least adjacent subcarriers.

Because of this spectral overlap, in a dispersive en-
vironment or an unsynchronised FBMC/OQAM trans-
mission, each subcarrier in the receiver is affected by
interference from at least adjacent subcarriers, resulting
not just in inter-symbol (ISI) but also inter-channel
interference (CCI). The mitigation of this interference
has received considerable attention, see e.g. [7]–[14].

This paper investigated the joint equalisation of
a FBMC/OQAM system based on the same concept
of [15], where leakage between adjacent channels ne-
cessitates the use of cross-terms rather than a pure per-
band processing. Similar to [13], [14], we use a linear
algebraic approach to the equalisation of this broadband
system, but here rely on the system description by poly-
nomial matrices, which leads us to the novel definition
of a polynomial matrix pseudo-inverse to address the
FBMC/OQAM interference mitigation.

Our paper is organised as follows: in Sec. II, a
general structure of the FBMC/OQAM system is intro-
duced. The channel polynomial matrix and its inverse
are derived in Sec. III and IV, with a rank deficient
requiring the consideration of a polynomial pseudo-
inverse in Sec. V.

II. FMBC/OQAM STRUCTURE

FMBC/OQAM consists of two main components:
an inner filter bank, and an outer OQAM system, as
shown in Fig. 1. In the inner system, a filter bank
transmultiplexes a vector u[n] ∈ CM over a channel
with impulse response c[ν] to generate a demultiplexed
output x[n], with the time index n running M

2 times
slower than the index ν. The outer system consists of
OQAM staggering and de-staggering blocks, which map
a transmit vector d[`] ∈ CM onto u[n], with index `
now running M times slower than ν, and at half the
speed of index n. The de-staggering then generates an
output d̂[`] ∈ CM from x[n].



A. Offset QAM

The functions of the OQAM system are carried out
by two blocks: OQAM pre-processing in the transmitter
and OQAM post-processing in the receiver. The input
to the OQAM pre-processing are M parallel QAM
signals d[`], where M is the number of subchannels.
The complex-valued QAM symbols in d[`] are de-
multiplexed into their real and imaginary components
alternatingly, as shown in Fig. 2. The sequence of the
components is dependent on the subchannel index, and
alternates between adjacent channels.

The reverse process is executed by the OQAM post-
processing, where the signals in y[n] are demultiplexed
and imaginary and real components are alternatingly
discarded. The discarding operation again depends on
the subchannel index, as shown in Fig. 2.

B. Filter Bank Multicarrier System

The inner component of the FBMC/OQAM
transceiver is an M -channel DFT filter bank operated as
a transmultiplexer, with the analysis filter bank (ASB)
on the receiver side and the synthesis filter bank (SFB)
in the transmitter as shown in Fig. 1. Since the input
u[n] ∈ CM and output x[n] ∈ CM are operated
at an M

2 -fold slower time index than the multiplexed
data transmitted over the channel c[ν], we choose a
polyphase representation below.

In the receiver, the analysis filter bank (ASB) is
formed by a DFT filter bank. In polyphase notation,
the input is first demultiplexed by a serial to parallel
converter (s/p) before feeding into a polyphase analysis
matrix H(z) : C → CM×M/2, as seen in Fig. 3. This
matrix consists of a multiple-input multiple-output sys-
tem, which can be factored into a network of polyphase
components of the filter bank’s prototype filter, followed
by the modulating transform, i.e. a DFT matrix.

In the transmitter, a matching DFT synthesis filter
bank can also be expressed in polyphase notation. Here,
the upsampling by M

2 is swapped with the filtering
operation, such that a polyphase synthesis matrix first
operates on the M inputs of u[n], before M

2 outputs are
multiplexed by a parallel to serial converter, to generate
the signal to be transmitted over the channel c[ν]. The
polyphase synthesis matrix is HP(z) : C → CM/2×M ,
which relates to the polyphase analysis matrix by a
parahermitian operation, wherebyHP(z) = HH(1/z∗),
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Fig. 1. FBMC-OQAM system model with equaliser W[n].
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Fig. 3. Inner components of the FBMC/OQAM system with synthesis
and analysis filter banks and the channel impulse response c[ν].

i.e. consisting of a Hermitian transposition and time
reversal.

The design of the prototype filter plays a crucial
role in generating the sub-channels filters in both SFB
and AFB [16]. The prototype filter used in this paper
is based on the design presented in [17], which due to
its high frequency selectivity, ensures that the crosstalk
between non-adjacent subchannels is kept sufficiently
small. Aliasing between adjacent subchannels cannot
be entirely suppressed by the DFT filter bank, but is
removed due to the OQAM arrangement. However,
any delay or time-dispersion of the channel c[ν] will
destroy orthogonality and result in inter-symbol (ISI)
and co-channel-interference (CCI) in the output d̂[`].
We therefore explore a synchronisation and equalisation
approach next.

III. EQUALISATION OF FBMC SYSTEM

A. Equivalent Transmission System

We first aim to describe the subchannel transfer
functions of the inner FBMC system in in Figs. 1
and 3 which can be represented as a polynomial matrix
F (z) : C → CM×M •—◦ F[n]. Considering the chan-
nel impulse response c[`] together with the multiplexer
and demultiplexer in Fig. 3, this subsystem can be
characterised by a pseudo-circulant polyphase matrix



C(z) : C→ CM/2×M/2 [18],

C(z)=


C0(z) C1(z) · · · CM

2 −1(z)

z−1CM
2 −1(z) C0(z) · · · CM

2 −2(z)
...

. . .
...

z−1C1(z) · · · z−1CM
2 −1(z) C0(z)

 ,
which comprises the M

2 polyphase components Cµ(z)
of the channel transfer function C(z) •—◦ c[`]. These
are defined as

C(z) =

M
2 −1∑
µ=0

Cµ(z
M
2 ) z−µ (1)

or alternatively can be obtained from the channel im-
pulse c[`] via Cµ(z) =

∑
` c[

M
2 `+ µ] z−`.

Using the polyphase synthesis and analysis matrices
for the FBMC system shown in Fig. 3, the equivalent
system F (z) can be obtained as

F (z) = H(z)C(z)HP(z) . (2)

If Fij(z) is the element in the ith row and jth column of
F (z) in (2), it represents the transfer function between
the jth signal in the input vector u[n] and the ith signal
in the output vector y[n]. Thus, the diagonal elements
Fmm(z), m = 1 . . .M , represent the per-subchannel
transfer functions, while due to the frequency selectivity,
cross-talk is restricted to adjacent bands only such that

Fij(z) ≈ 0, ∀ |modM i−modM j| > 1 ,

i, j = 1 . . .M . (3)

The structure of F (z) is therefore tri-diagonal, includ-
ing non-zero corner elements irrespective of the channel
polyphase matrix C(z).

Example. An example of F (z) for a distorted
FBMC/OQAM system with M = 4 subchannels is
obtained for an arbitrary channel c[`] of length 4.
The components of F (z) are determined by channel
sounding, and are depicted in Fig. 4.

B. Equalisation of FBMC System

Because the first stage of the OQAM postprocessing
in Fig. 2 alternatingly discards the real and imaginary
parts of ym[n], m = 1 . . .M , achieving a transparent
system such that d̂[`] = d[`] in Fig. 1 does not
necessarily require y[n] = u[n]. However, a sufficient
criterion for the overall synchronisation and equalisation
of the FBMC/OQAM system is achieved if

y[n] ≈ u[n− 2∆τ ] , (4)

where ∆τ ∈ N represents an arbitrary delay. Note that
ultimate delay between y[n] and u[n] must be even to
guarantee synchronisation with d̂[`] ≈ d[` −∆τ ]. The
condition (4) does not exploit the alternate discarding
of real and imaginary parts of y[n] in the OQAM post-
processing, but leads to a simple solution below.

time index n
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ij
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]|

Fig. 4. Example of a 4× 4 polynomial channel matrix F (z).

Since an equaliser must cancel ICI, it requires
crosstalk terms akin to F (z). Therefore, in this paper we
propose a polynomial matrix equaliser W (z) inserted
between the AFB and OQAM post-processing in the
receiver, as shown in Fig. 1. This assumes that F (z)
is available — it can either be obtained via chan-
nel sounding directly, or synthesised according to (2)
based on the measured channel impulse response c[ν]
with H(z) known. By calculating a polynomial sin-
gular value decomposition (PSVD, [19]–[21]) F (z) =
U(z)Σ(z)V P(z), we can determine W (z) as

W (z) = F−1(z) = V (z)Σ−1(z)UP(z) , (5)

where U(z) and V (z) are paraunitary matrices such
that e.g. U(z)UP(z) = UP(z)U(z) = I. The matrix
Σ(z) is diagonal,

Σ(z) = diag{σ1(z) . . . σM (z)} , (6)

and contains the polynomial singular values σm(z),
m = 1 . . .M . Therefore, the inversion of F (z) reduces
to the calculation of its PSVD, and the inversion of the
singular values.

IV. POLYNOMIAL MATRIX INVERSION VIA PSVD

To calculate W (z) = F−1(z), we first determine
the PSVD of F (z). Three general options have been
discussed in the literature: there is a direct itera-
tive calculation [19], an iterative calculation using a
polynomial QR approach [20], and the route via two
polynomial eigenvalue decompositions (PEVDs) [21].
We here choose the later due to the availability of
enhanced PEVD algorithms such the sequential matrix
diagonalisation (SMD) approach [22].

Like other PEVD algorithms, SMD is applicable
to polynomial matrices A(z) that possess the paraher-
mitian property, such that A(z) = AP(z). We form
two such parahermitian matrices, and can calculate their



their approximate PEVDs using the SMD algorithm:

R1(z) = F (z)FP(z) ≈ U(z)S1(z)UP(z) , (7)

R2(z) = FP(z)F (z) ≈ V (z)S2(z)V P(z) . (8)

This determines the two paraunitary matrices for (5). If
F (z) is square, we expect Σ(z) = S1(z)SP

1(z) =
S2(z)SP

2(z). However, unless Σ(z) is constrained
(e.g. to be minimum phase), it cannot be directly
extracted from S1(z) and S2(z), and we instead need
to calculate

Σ(z) = V (z)F (z)UP(z) (9)

in order to determine the polynomial singular values in
Σ(z).

To determine Σ−1(z) requires the inversion of
the polynomial singular values in (6). Since σm(z),
m = 1 . . .M is generally non-minimum phase, zeros
of σm(z) inside the unit circle will lead to causal
components of σ−1

m (z), while roots of σm(z)outside
the unit circle will result in anti-causal components
of σ−1

m (z). The inversion can be performed by several
approaches, akin to the inversion of polynomial eigen-
values in [23], such as by calculating the roots of σm(z),
determining their residues for a partial fraction expan-
sion, and then approximating the poles by appropriately
truncating their causal or anti-causal geometric series
representations. Here, for an inverse wm(z) = σ−1

m (z)
of length L, we require σm(z)wm(z) ≈ z−∆, where
∆ is a suitable delay, with a rule of thumb for inverse
system identification recommending ∆ = L

2 [24].

To use a least squares approximation, we define a
vector σm ∈ CK to hold the K coefficients of σm(z),
m = 1 . . .M . We aim to find a vector wm ∈ CL
holding the L coefficients of wm(z) such that

wm,opt = arg min
wm

‖
[
IL−K+1 ⊗ (σT

mJL)
]
wm − p‖2 ,

(10)
with JL an L×L reverse identity matrix, ⊗ denoting a
Kronecker product, and p ∈ NL−K+1 a pinning vector
containing zeros except for a one in the ∆th position.
A solution can be found by a pseudo-inversion of the
convolutional matrix

Am = IL−K+1 ⊗ (σT
mJL) , (11)

such that wm,opt = A†mp [25]. Alternatively, an itera-
tive method such as the recursive least squares (RLS)
algorithm can be invoked [26].

Example. Applying a polynomial singular value decom-
position as laid out above to the earlier example of an
M = 4 FMBC/OQAM equivalent transmission matrix
F (z) in Fig. 4 yields the matrix Σ(z) characterised
in Fig. 5. The matrix is sufficiently diagonalised, but
reveals a rank deficiency of F (z), as half of the singular
values are zero. Inspecting the source model for F (z) in
(2), since the inner factorC(z) is an M

2 ×
M
2 polynomial

matrix, the overall rank cannot exceed M
2 . To avoid

time index n

|σ
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]|

Fig. 5. Example of 4 × 4 diagonal matrix Σ(z), containing its
diagonal terms σm[n] •—◦ σm(z), with all cross-terms zero or very
nearly so.

the inversion of singular values that are either zero
everywhere, or have zeros within a vicinity of the unit
circle, we next consider a polynomial matrix pseudo-
inverse.

V. POLYNOMIAL MATRIX PSEUDO-INVERSE

Within this paper, the aim has been to invert a
square polynomial F (z). To add both robustness to the
inversion approach but also to include more general,
rectangular matrices F (z) : C → CN×M , we now
discuss a polynomial pseudo-inverse as an extension of
the pseudo-inverse of matrices containing scalar values
only [25]. For general N × M matrices, the PEVD
steps (7) and (8) will yield paraunitary matrices U(z) :
C → CN×N and V (z) : C → CM×M . However,
we will not directly invert the diagonal components of
Σ(z) : C→ CN×M as suggested earlier, but select

Σ−1(z) = diag
{
w1(z), . . . wmin(M,N)(z)

}
, (12)

where wm(z) now is the inverse of σm(z) for finite
σm(z), and wm(z) = 0 if σm(z) = 0 ∀z = ejΩ, Ω ∈ R.

For a numerical evaluation, we collate the L co-
efficients of wm(z) in the vector wm, and with the
earlier definitions of the singular value vectors σm,
the convolutional matrix Am, and the pinning vector
p determine

wm =


0 , ‖σm‖2 ≤ ε1 ,
AH
m

(
AmAH

m+

+ε2IL−K+1)
−1

p , ‖σm‖2 > ε1 .
(13)

The small constant ε1 > 0 determines a threshold below
which a singular value is treated as numerically zero.
A second constant, ε2, implements a regularisation to
mitigate spectral zeros in σm(z) or zeros close to the
unit circle. A larger value for ε2 may result in faster
decaying responses in wm(z), but also introduces a bias
into the original solution in (10).
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Fig. 6. Example for the joint channel transmission matrix F (z)
and its pseudo-inverse F †(z) for an M = 8 channel FMBC/OQAM
system including a dispersive channel c[ν] of length 4.

time index `

|G
[`
]|

Fig. 7. Example for G[`], which comprises of the OQAM-
transmultiplexed channel transmission matrix F (z) and its pseudo-
inverse F †(z) for an M = 8 channel FMBC/OQAM system
including a dispersive channel c[ν] of length 4.

Example. For an M = 8 channel FBMC/OQAM system
with a dispersive channel c[ν] of length 4, the system
F (z) is of rank M

2 = 4. For the resulting pseudo-
inverse, the M

2 finite singular values do not possess
zeros close to the unit circle, such that the impact of
ε2 is insignificant. The resulting multiplication of F (z)
with its pseudo-inverse W (z) = F †(z) is shown in
Fig. 6; the result is not an identity matrix due to the
rank deficiency of F (z). However, when including the
OQAM pre- and post-processing, and considering the
MIMO channel matrix between the input d[`] and d̂[`],
such that d̂[`] = G[`] ∗ d[`], the system in Fig. (7)
emerges, which is now free of ISI and ICI.

VI. CONCLUSIONS

We have analysed an FBMC/OQAM system, which
is known to suffer from ISI and ICI between at least

adjacent subchannels in presence of a dispersive chan-
nel impulse response. We have proposed a polynomial
matrix formulation for an equivalent channel transfer
function, which includes the filter bank components and
channel, and attempted the equalisation of this system
by means of polynomial matrix algebra. Since the
matrix is rank deficient by default, we have introduced a
polynomial pseudo-inverse to address this problem. The
equalisation leads to solution, that together with OQAM
pre- and postprocessing can eliminate ISI and ICI.

REFERENCES

[1] P. Siohan, C. Siclet, and N. Lacaille. Analysis and design
of OFDM/OQAM systems based on filterbank theory. IEEE
Transactions on Signal Processing, 50(5):1170–1183, May
2002.

[2] M. Schellmann, Z. Zhao, H. Lin, P. Siohan, N. Rajatheva,
V. Luecken, and A. Ishaque. FBMC-based air interface for
5G mobile: Challenges and proposed solutions. In 9th IEEE
International Conference on Cognitive Radio Oriented Wireless
Networks and Communications, pp. 102–107, Oulu, Finland,
June 2014.

[3] C. Kim, Y. H. Yun, K. Kim, and J.-Y. Seol. Introduction to
QAM-FBMC: From waveform optimization to system design.
IEEE Communications Magazine, 54(11):66–73, Nov. 2016.

[4] B. Farhang-Boroujeny. OFDM versus filter bank multicarrier.
IEEE Signal Processing Magazine, 28(3):92–112, Mar. 2011.
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