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Abstract—Oversampled adaptive sensing (OAS) is a recently
proposed Bayesian framework which sequentially adapts the
sensing basis. In OAS, estimation quality is, in each step, mea-
sured by conditional mean squared errors (MSEs), and the ba-
sis for the next sensing step is adapted accordingly. For given
average sensing time, OAS reduces the MSE compared to non-
adaptive schemes, when the signal is sparse. This paper studies
the asymptotic performance of Bayesian OAS, for unitarily in-
variant random projections. For sparse signals, it is shown that
OAS with Bayesian recovery and hard adaptation significantly
outperforms the minimum MSE bound for non-adaptive sens-
ing. To address implementational aspects, two computationally
tractable algorithms are proposed, and their performances are
compared against the state-of-the-art non-adaptive algorithms
via numerical simulations. Investigations depict that these low-
complexity OAS algorithms, despite their suboptimality, out-
perform well-known non-adaptive schemes for sparse recovery,
such as LASSO, with rather small oversampling factors. This
gain grows, as the compression rate increases.

I. INTRODUCTION

In oversampled adaptive sensing (OAS) [1], K sensors

observe N signal samples linearly. The projections from the

samples to the observations are modifiable and corrupted

with noise. The array is supposed to sense the signal within

a fixed time duration of length Ts. The main objective

is to design a sensing procedure, such that the signal is

recovered from observations with high fidelity. This is a

classical problem and has been widely studied in various

contexts [2]–[5]. The conventional approaches proposed in

signal processing and information theory are formulated in

the following generic form:

(a) The required number of observations L is determined

based on prior information on the signal. For example,

L = N when the signal is assumed to be uniformly dis-

tributed. For sparse signals, however, L < N .

(b) The oversampling factor is calculated as M = ⌈L/K⌉.

The array needs to sense the samples M times, in order

to collect as much observations as required.

(c) Sensing duration Ts is divided into M subframes each

of length Tm = Ts/M . The array observes the samples

in each of these subframes using different projections.

(d) The samples are estimated via a recovery scheme from

the MK collected measurements.

This work has been accepted for presentation in the 18th IEEE Inter-
national Symposium on Signal Processing and Information Technology
(ISSPIT) 2018 in Louisville, Kentucky, USA. The link to the final version
in the Proceedings of ISSPIT will be available later.

For this classical framework, theoretical discussions are

roughly divided into two main directions: 1) A body of work

investigates the number of required observations which

guarantees a certain level of estimation quality; see for ex-

ample discussions in [3]–[6]. 2) Another group of analytic

studies characterize theoretical bounds on the performance

of various recovery schemes, e.g. [7]–[10]. Algorithmic ap-

proaches, on another hand, mainly focus on the design of

computationally tractable recovery algorithms and on the

construction of linear mixing for efficient observation.

A. Sequential Sensing via OAS

OAS deviates from the classic framework by developing

an adaptive technique for sequential sensing. In this scheme,

the signal is oversampled by an arbitrary factor, and linear

projections are updated in each step via conditional pos-

terior distortions calculated in the previous subframe. This

sequentially adaptive approach was widely believed to be

ineffectual for M > ⌈L/K⌉ following the fact that the

growth in oversampling factor reduces the duration of each

subframe, i.e. Tm, and hence increases the noise power in

each individual sensing. Investigations have demonstrated

that while this belief is true for signals with absolutely

continuous priors, sequential adaptation is in fact beneficial

when the signal has a mixture prior; see discussions in [1]

and [11]. This is illustrative by considering an example from

sparse recovery. When the signal is sparse, zero samples

are recovered with high reliability in initial subframes and

canceled out in subsequent subframes by adaptation. This

reduces the dimensionality of the problem in the subsequent

subframes and improves the performance.

B. Contributions

The initial study on OAS in [1] considered scenarios with

orthogonal and deterministic projections. Such an assump-

tion was primarily taken for sake of analytical tractability.

Nevertheless, practical scenarios often deal with conditions

in which observations are acquired through non-orthogonal

random projections. We address this issue by investigating

the performance of OAS for unitarily invariant random pro-

jections. In this respect, the main contributions are

1) Asymptotic characterization of OAS: Using the decou-

pling property of Bayesian estimators, we characterize

the performance of OAS for unitarily invariant matrices
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in the large-system limit. The analytic result enables us

to quantify the gain over non-adaptive schemes.

2) Algorithmic approaches: We propose computationally

tractable algorithms for OAS in which conditional dis-

tortions are derived with low complexity. Even though

these low-complexity implementations degrade the per-

formance, the algorithms are shown to outperform the

state-of-the-art non-adaptive schemes, even for rather

small oversampling factors.

C. Notation

We represent scalars, vectors and matrices with non-bold,

bold lower case and bold upper case letters, respectively. A

K ×K identity matrix is shown by IK . AT indicates the

transpose of A. The set of real numbers is denoted by R.

The expectation operator is identified by E . We use the

shortened notation [N ] to represent {1, . . . , N}.

II. BAYESIAN OAS FRAMEWORK

We consider a generic form of OAS as follows:

(a) The vector x ∈ X
N is sensed M times.

(b) In step m, the matrix of stacked observations Ym is

Ym := [y1, . . . ,ym] (1)

where ym ∈ R
K for m ∈ [M ].

(c) The vector of measurements in step m ∈ [M ] reads

ym = AmWmx+ zm (2)

where Am ∈ R
K×N denotes the linear projection, and

Wm ∈ R
N×N is a diagonal matrix containing adapta-

tion coefficients in subframe m. zm moreover denotes

measurement noise and is assumed to be independent

and identically distributed (i.i.d.) Gaussian with mean

zero. Denoting the noise variance for sensing duration

Ts with σ2, the variance in each subframe is Mσ2;

hence, zm ∼ N
(

0,Mσ2IK
)

.

(d) The n-th sample, i.e. xn, is recovered in step m from

Ym via a Bayesian estimator. Denoting the recovered

sample by rn (Ym), this means that

rn (Ym) = E {xn|Ym} (3)

for some postulated prior distribution q (x). This esti-

mator reduces to several recovery algorithms, e.g. the

linear estimator, LASSO and optimal Bayesian estima-

tor, for specific choices of q (x).
(e) In step m, the conditional average distortion of sample

n, with respect to distortion function D[·; ·], is

dn (Ym) := E xn|Ym
D [xn; rn(Ym)] . (4)

(f) Wm is determined as a function of the conditional av-

erage distortions in step m− 1, i.e.

Wm = fTh (d1 (Ym−1) , . . . , dN (Ym−1)) . (5)

Examples for fTh(·) are hard and soft adaptations.

A. Performance Analysis

We consider the case in which K and N grow large such

that the inverse load, i.e. ρ = N/K , remains constant. It is

moreover assumed that 1) Wm is constructed by hard adap-

tation, meaning that diagonal entries are either one or zero.

2) Am is bi-unitarily invariant, meaning that it has the same

joint distribution as UAmV, for any unitary matrices U and

V, such that U, V, and Am are jointly independent.

To quantify the performance, we consider the average

per-sample distortion as the measure which is defined as

Davg =
1

N
E

N
∑

n=1

D [xn; rn(YM )]

for the given distortion function D[·; ·].
B. Some Definitions

For sake of brevity, we define the following parameters.

• Mm ⊆ [N ] contains the indices of all non-zero diago-

nal entries in Wm. In other words, Mm is an index

set of the samples which are sensed in subframe m.

• The indexer function in (·) is defined as

in (m) =

{

m if n ∈ Mm

ǫ if n /∈ Mm

, (6)

for some error symbol ǫ.
• Un (m) ⊆ [m] contains the subframes in which xn is

sensed, i.e., Un (m) = {u ∈ [m] : in (u) 6= ǫ}.

III. ASYMPTOTIC CHARACTERIZATION OF OAS

The direct approach for the analysis of OAS requires con-

ditional average distortions to be derived explicitly for each

subframe. This is not tractable for various choices of the

prior distribution. We hence invoke the decoupling property

of Bayesian estimators following discussions in [7], [9], [12]

and the references therein.

A. Decoupling Principle

The decoupling principle states that (rn (ym) , xn) for n ∈
Mm converges in distribution to (rn (yn[m]) , xn) where

yn [m] = xn + zn [m] . (7)

with zn[m] ∼ N
(

0,Mσ2
m

)

. Here, σ2
m is the effective noise

variance for sensing duration Ts with sensing matrix Am.

An explicit derivation of σ2
m in terms of σ2 and the statistics

of Am is given in [7], [9].

Symbol yn [m] is often called the decoupled output and

is a visualization of asymptotic Gaussianity of interference.

The decoupled scalar Bayesian estimator, i.e.

rn (yn[m]) = E {xn|yn[m]} , (8)

recovers sample xn by postulating that yn[m] is related to

xn via (7), and that sample xn is distributed with q (x). The

decoupling principle implies that as N and K grow large,

the distribution of the true recovered sample, i.e., rn (ym),
conditioned to xn converges to that of the sample recovered

from the n-th decoupled output, i.e., rn (yn[m]).



B. Asymptotics via the Decoupling Principle

Using the decoupling property of Bayesian estimators,

we derive a heuristic bound on the asymptotic performance

of OAS. To this end, consider an OAS setting with M sub-

frames. At subframe m, we define for n ∈ [N ]

yn[m] = [yn [in(1)] , . . . , yn [in(m)]]
T

(9)

where yn[in(m̂)] for n ∈ Mm̂ is generated according to (7)

and yn[ǫ] := 0. yn[m] contains the decoupled outputs of the

n-th sample, up to sensing step m, from those subframes in

which xn is sensed. We now define the stacked decoupled

system in subframe m as follows:

Definition 1: For m ∈ [M ], the stacked decoupled system

in subframe m consists of signal samples xn, observations

ȳn[m] =

m
∑

u=1

yn[in(u)] =
∑

u∈Un(m)

yn[u], (10)

and recovered symbols rn (ȳn[m]), for n ∈ [N ].

Proposition 1 indicates that OAS is asymptotically char-

acterized via the stacked decoupled system. To state this re-

sult, let us define the degraded version of an OAS setting.

Definition 2 (Degraded OAS setting): Consider a Bayesian

OAS setting in which sample n in each subframe is recon-

structed by recovery algorithm rn (·), and the conditional

distortion is determined via D[·; ·]. The degraded version of

this OAS setting adapts Wm+1 using

d̂n (Ym) := E xn|rn(Ym)D [xn; rn(Ym)] . (11)

The degraded setting assumes that rn (Ym) is a sufficient

statistics for estimating D [xn; rn(Ym)]. This assumption

in general can degrade the estimation performance. Hence,

the average distortion of this setting, in general, bounds the

average distortion of the original OAS setup from above.

Noting that d̂n (Ym) is only a function of rn (Ym), one

can use the decoupling principle as show that the marginal

distribution of d̂n (Y1) does not depend on n; see [12]. We

further consider the following conjecture:

Conjecture 1: As N ↑ ∞, {d̂n (Y1) : n ∈ [N ]} is ergodic.

Conjecture 1 assumes that the empirical average over a

function of d̂n (Ym) converges to the expectation over the

marginal distribution1. Assuming this conjecture to hold, we

state Proposition 1 as follows:

Proposition 1: Assume Conjecture 1 holds for recovery al-

gorithm rn (·) and distortion function D[·; ·]. Let x be i.i.d.

with xn ∼ qX (x) and OAS employ hard thresholding with

threshold DTh for adaptation, i.e., at each subframe, those

samples are sensed whose conditional distortions are more

than DTh. Then, in subframe m, the performance of the

1The validity of the conjecture is straightforwardly verified for some par-
ticular Bayesian estimators.

degraded OAS is equivalent to OAS performing over the

stacked decoupled system with distortion function D[·; ·].
Sketch of the Proof. Due to the page limit, we only give a

brief sketch of the approach here and leave the details for the

extended version of the manuscript. The proof follows from

induction: Starting from m = 1, we have M1 = [N ]. Hence,

the n-th conditional distortion of the degraded setting reads

d̂n (Y1) =

∫

D [xn; rn(y1)] dP (xn|rn (y1)) (12a)

:= F (rn (y1)) (12b)

where F (·) is a deterministic function. In the stacked de-

coupled setting, ȳn[1] = yn[1] for n ∈ [N ]. Thus,

d̂n (ȳn[1]) =

∫

D [xn; rn(yn[1])] dP (xn|rn (yn[1])) . (13)

The decoupling principle indicates convergence of the two

settings in distribution. This implies that

dP (xn|rn (y1)) = dP (xn|rn (yn[1])) . (14)

Consequently, we conclude that d̂n (ȳn[1]) = F (rn (yn[1]))
with F (·) being defined in (12b).

Noting that x is i.i.d., we can infer that {rn (yn[1])} for

n ∈ [N ] is i.i.d., too. This implies that {d̂n (Y1)} are identi-

cally distributed. Moreover, Conjecture 1 indicates that the

empirical distribution of {d̂n (Y1)} converges to the dis-

tribution of d̂ (rn (yn[1])). Considering this conclusion, the

strong law of large numbers implies that the frequency of

entries whose conditional distortions are more than DTh is

the same in both settings. Hence, in the asymptotic regime,

both settings choose the same number of samples for sens-

ing in the next subframe.

Now consider subframe m, and assume Mm in both set-

tings contains the same number of indices. In this case,

d̂n (Ym) = F (rn (ȳm)) (15)

with ȳm = [yT
1 , . . . ,y

T
m]T. d̂n (Ym) is the conditional dis-

tortion of a cascaded setting whose sensing matrix is

Ām =
[

(W1A1)
T

. . . (WmAm)
T

]T

. (16)

This cascaded setting can be grouped into m sub-settings,

each describing one of the previous subframes. The dimen-

sions of these sub-settings grow large proportional to N .

Thus, the decoupled setting in this case is described via the

set of decoupled outputs of each sub-setting; see discussions

in [13]. As a result, (rn (ȳm) , xn) converges in distribution

to (rn (yn[m]) , xn). By a similar approach as for m = 1,

we could conclude that for n ∈ [N ]

d̂n (yn[m]) = E xn|rn(yn[m]) {D [xn; rn (yn[m])]} (17)

is i.i.d. whose distribution is identical to that of d̂n (Ym).
The Fisher–Neyman factorization theorem [14] states that

ȳn[m] is a sufficient statistics of yn[m]. Thus, d̂n (yn[m]) =
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Fig. 1: MSE vs the inverse load. Signal samples are sensed by i.i.d.
random matrices and recovered by optimal Bayesian estimator. The
source is considered to be sparse Gaussian with sparsity δ = 0.1.
The OAS is adapted by hard thresholding with logDTh = −26.5
dB. The noise variance is set to σ2 = 0.01. The dashed red line
denotes the MMSE for non-adaptive optimal Bayesian recovery.

d̂n (ȳn[m]). Taking the assumption of ergodicity, it is finally

concluded that Mm+1 in the both settings contains asymp-

totically the same number of indices.

C. Gain over Non-adaptive Sensing

Proposition 1 is utilized to characterize the performance

of OAS with unitarily invariant projections and a Bayesian

estimator. In this respect, in each subframe, the stacked

decoupled system is realized independently. Although these

realizations do not result in exact conditional distortions

in each subframe, the average per-symbol distortion is

asymptotically equal to the one determined in the degraded

OAS setting. Noting that this distortion is an upper-bound

on the average distortion of the OAS setting, it is concluded

that the gain reported via the stacked decoupled setting is in

general a lower-bound on the actual gain acquired by using

a Bayesian OAS setting.

In Fig. 1, the mean squared error (MSE) is plotted versus

inverse load ρ considering i.i.d. sensing matrices and the

optimal Bayesian estimator. The MSE is determined by set-

ting D [xn; rn] = (xn − rn)
2

in (6). The signal samples are

i.i.d. Bernoulli-Gaussian, meaning that xn = bntn with bn
being δ-Bernoulli, i.e. Pr {bn = 1} = 1−Pr{bn = 0} = δ,

and tn ∼ N
(

0, σ2
t

)

. In the figure, δ = 0.1 and σ2
t = 1.

The noise variance is set to σ2 = 0.01. The adaptation is

done by hard thresholding with logDTh = −26.5 dB. For

sake of comparison, the minimum MSE (MMSE) for non-

adaptive1 sensing is plotted, too. As the figure depicts, at

larger inverse loads, the OAS significantly outperforms the

MMSE bound for non-adaptive sensing.

1This means M = 1

IV. LOW-COMPLEXITY ALGORITHMS FOR OAS

The computational complexity of OAS is mainly domi-

nated by the task of calculating conditional distortions. This

task is intractable for the optimal Bayesian approach. In the

sequel, we propose suboptimal low-complexity algorithms

for OAS and compare their performances against the state of

the art. It is shown that, despite the suboptimality, the al-

gorithms still outperform the non-adaptive benchmark.

A. OAS via Orthogonal Observations

In this approach, the sensing matrix in each subframe is

generated randomly according to the Haar distribution2. Due

to orthogonality of the sensing weights, the observations are

simply decoupled, and hence the conditional distortions are

calculated tractably via Bayes’ theorem. The approach is il-

lustrated in Algorithm 1. For adaptation, the worst-case hard

adaptation is employed. This means that in each subframe,

the K signal samples with largest conditional distortions in

the previous subframe are sensed.

Derivation of the Algorithm: Let Mm = {j1, . . . , jK} be

the set of K samples sensed in subframe m. We generate a

Haar matrix Um ∈ R
K×K and construct Am by setting its

jk-th column to the k-th column of Um. AmWm is hence

a K ×M matrix whose columns are equal to the columns

of Um, if indexed by Mm, and zero otherwise.

To decouple the observations, we multiply them with the

transposed projection. In this case, for k ∈ [K], we have

yjk [m] = [UT

mym]k = xjk + z̃jk (m) (18)

where z̃ (m) = UT

mzm. Since UT

m is orthogonal, we can

conclude that z̃jk (m) ∼ N
(

0,Mσ2
)

.

The stacked decoupled output in this case reads

ȳjk [m] = |Ujk (m)| xjk + z̃jk (m) (19)

where z̃jk (m) ∼ N
(

0, |Ujk (m)|Mσ2
)

. Consequently, the

Bayesian estimator for xn is given by

rm (Ym) =

∫

xn p (ȳn[m]|xn) q (xn) dxn, (20)

and the conditional distortion is determined by [1]

dn (Ym) =
∂

∂ȳn[m]
rn (Ym) . (21)

Numerical Investigations: Fig. 2 shows the performance

of Algorithm 1 for recovery of N = 200 sparse Gaussian

samples with δ = 0.1 and σ2
t = 1. The noise variance is

set to σ2 = 0.01. The performance is compared against the

asymptotics of non-adaptive LASSO when a row-orthogonal

random matrix is employed for sensing; see [7], [10]. As the

figure depicts, for rather small choices of M , the algorithm

outperforms non-adaptive LASSO within a large range of

ρ. This gain increases significantly as M grows.

2A Haar matrix is uniformly distributed over the orthogonal group.



Algorithm 1 OAS via Orthogonal Observations

Initiate Set dn (Y0) = +∞, ȳn[0] = 0, and cn[0] = 0.

for m = 1 : M do

Generate Um ∈ R
K×K from the Haar distribution.

Set Am ∈ R
K×N arbitrarily and Wm = {0}N×N

.

Find {j1, . . . , jN}, such that

dj1 (Ym−1) ≥ . . . ≥ djN (Ym−1) . (22)

for k ∈ [K] do

Set Am (:, jk) = Um (:, k) and Wm (jk, jk) = 1
Set cjk [m] = cjk [m− 1] + 1

end for

Sense x via AmWm, i.e. ym = AmWmx+ zm.

for k ∈ [K] do update ȳjk [m]

ȳjk [m] = ȳjk [m− 1] + [UH

mym]k, (23a)

ejk (x|ȳjk [m]) = exp

{

− (ȳjk [m]−cjk [m]x)
2

2cjk [m]Mσ2

}

. (23b)

Update recoveries and conditional distortions as

rjk (Ym) =

∫

x ejk (x|ȳjk [m]) q (x) dx
∫

ejk (x|ȳjk [m]) q (x) dx
. (24a)

djk (Ym) =
∂

∂ȳjk [m]
rjk (Ym) . (24b)

end for

end for

B. OAS via Matched Filtering

Algorithm 1 requires an independent orthogonal basis in

each subframe. This can be further avoided by matched fil-

tering. In this approach, samples are sensed by i.i.d. weights,

and the calculation of conditional distortions is simplified by

postulating the impairment of other samples to be Gaussian.

This OAS approach is given in Algorithm 2. The algorithm

employs hard thresholding for adaptation meaning that, in

each subframe, samples whose conditional distortions in the

previous subframe are more than a threshold are sensed.

Derivation of the Algorithm: Let Am have i.i.d. entries

with zero mean and variance 1/
√
K. In subframe m,

ym=AmWmx+zm=xnwn (m)an (m)+ z̃n (m) (25)

where aj (m) is the j-th column of Am, wj (m) represents

the j-th diagonal entry of Wm and

z̃n (m) =

N
∑

j=1,j 6=n

xjwj (m)aj (m) + zm. (26)

Matched filtering assumes that z̃n (m) is an i.i.d. Gaussian

vector independent of xnwn (m)an (m). Although such an

assumption is not valid in general, it lets us calculate con-

ditional distortions tractably. By the standard approach,

E{z̃n (m) z̃n (m)
T} = σ2

MFIK , (27)
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Fig. 2: MSE vs ρ = N/K for Algorithm 1. Signal samples are
sparse Gaussian with sparsity δ = 0.1, and sensed by orthogonal
random matrices. OAS is adapted by worst-case hard adaptation.
The noise variance is set to σ2 = 0.01. The dashed red line denotes
asymptotic performance for non-adaptive LASSO recovery.

where σ2
MF := ρmσ2

x +Mσ2. Here, ρm = (|Mm| − 1) /K
denotes the inverse load in subframe m, and σ2

x = Ex2
n.

Assuming Gaussian impairment, recovery of each sample

is a scalar estimation problem. The Fisher–Neyman factor-

ization indicates that aTn (m)ym/‖an (m)‖2 is a Bayesian

sufficient statistics of ym for estimating xn. Hence, when

xn is sensed in subframe m, i.e. for n ∈ Mm, we approxi-

mate the decoupled symbol with

yn[m] =
1

‖an (m)‖2 a
T

n (m)ym = xn + zn (m) (28)

where zn (m) := aTn (m) z̃n (m) /‖an (m)‖2 is distributed

as N
(

0, σ2
MF/‖an (m)‖2

)

. Consequently,

ȳn[m] = |Un (m)| xn + z̃n (m) (29)

where z̃n (m) ∼ N
(

0, σ2
n (m)

)

with

σ2
n (m) = σ2

MF

∑

u∈Un(m)

1

‖an (u)‖2
. (30)

Finally, the Bayesian estimator and conditional distortions

are derived as in (20) and (21).

Numerical Investigations: The MSE for Algorithm 2 is

sketched versus the inverse load in Fig. 3. The figure shows

a degraded performance compared to Algorithm 1. This

is due to the fact that observations in Algorithm 1 are

decoupled deterministically in each subframe using orthogo-

nality of the projecting vectors. For sake of comparison, the

asymptotic performance of LASSO, as well as the MMSE

bound, for non-adaptive sensing with an i.i.d. matrix is

plotted, too. As it depicts, by M = 12 subframes, OAS with

matched filtering outperforms LASSO for ρ ≥ 1. Despite its

suboptimality, this approach outperforms the non-adaptive

MMSE bound for large inverse loads.
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Fig. 3: MSE vs inverse load for Algorithm 2. Here, N = 200
sparse Gaussian samples with sparsity δ = 0.1 are sensed by i.i.d.
random matrices. The OAS is adapted via hard thresholding with
logDTh = −26.5 dB, and σ2 = 0.01. The dashed lines denote
asymptotic performance for non-adaptive LASSO and conditional
mean estimation.

V. CONCLUSION

Asymptotics of Bayesian OAS with generic random pro-

jections was left unaddressed, due to the computational in-

tractability. This study has characterized the performance of

OAS in the large-system limit by means of the decoupling

property of Bayesian estimators. The results have depicted

significant enhancement achieved by OAS with hard adap-

tation compared to the non-adaptive MMSE bound. For

sake of implementation, two computationally tractable al-

gorithms based on orthogonal sensing and matched filtering

have been proposed. These algorithms outperform non-

adaptive LASSO and the MMSE bound even for small

oversampling factors.

Analytic derivations of this study can be further employed

to investigate impacts of different adaptation strategies on

the performance of OAS. Design of low-complexity OAS

algorithms based on ℓ1-norm minimization is another direc-

tion for future work.
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