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Abstract—This paper describes a machine assistance 

approach to grading decisions for values that might be missing 

or need validation, using a mathematical algebraic form of an 

Expert System, instead of the traditional textual or logic forms 

and builds a neural network computational graph structure. 

This Experts System approach is also structured into a neural 

network like format of: input, hidden and output layers that 

provide a structured approach to the knowledge-base 

organization, this provides a useful abstraction for reuse for 

data migration applications in big data, Cyber and relational 

databases.  The approach is further enhanced with a Bayesian 

probability tree approach to grade the confidences of value 

probabilities, instead of the traditional grading of the rule 

probabilities, and estimates the most probable value in light of 

all evidence presented. This is ground work for a Machine 

Learning (ML) experts system approach in a form that is 

closer to a Neural Network node structure. 

Keywords—Artificial Intelligence; Knowledgebase; Expert 

Systems; Neural Network; Information Assurance. 

I. INTRODUCTION 

Intelligent reasoning is a high level human pursuit of 
truth which arguably requires developed abilities for 
objective viewpoint reasoning and creativity, and those mix 
of abilities are perhaps not naturally found in every person 
in every circumstance. Also human reasoning requires to be 
able to deal with partial, inaccurate and uncertain 
information to produce higher order knowledge and 
understanding. This is a challenge for Computational 
techniques and Neural Network approaches have been used 
in this area but arguably have application challenges for 
validation when training datasets are incomplete, do not 
exist or would of contain unexpected values [1]. Also expert 
systems are a human assistance for consistent decision 
making [2], although one of the greatest challenge is not the 
actual content of the optional decision permutations, but is 
the grading of confidence in those decision permutations [3].  
Another approach is a paper by Melen et al [4] that looks at 
machine learning for an expert system using a rule base and 
a Bayesian network for rule selection. This paper's approach 
is distinct from that and is part of a neural network approach 
using formula extraction as a compliment to rule extraction 
where the early work was published recently [5].  Outside of 
computational methods, often the grading of confidence is 
very difficult, and is often a more intensive activity then the 
understanding of the decision permutation itself, and in 
some cases, outside of computational machine assistance it 

is not invested in or relies on a voting system of human 
opinions [6].  However, within computational methods, 
approaches have used data mining within textual and 
imagery databases and can bring benefits to validation [7].  
Traditionally Expert System approaches are largely textual 
hierarchies of rules in either forward chaining as an 
Explainable Expert System (ESS) or backward chaining 
executions to arrive at a decision or the reasoning evidence 
for a decision as in the Reconstructive Explainer (Rex) [8].  
Sometimes also with scored multi-hypothesis alternatives or 
concepts of knowledge type [8, 9]. Approaches with 
statistical probabilities have been proposed in safety critical 
applications like medical [10] and military Data Fusion [11] 
and relate to a probability of decision tree rules with a single 
input instance of each input. However, this paper presents an 
algebraic form of an Expert System where a differing 
number of alternative input values will be combined, to form 
a perfected value and confidence from all of the possible 
evidence values of those inputs, rather than a probability for 
a decision tree rule being likely as in other approaches.  That 
is to say the alternative decision permutations convergence 
and distribution will modify the expert systems result, both 
in-terms of the missing values and also in resultant 
confidences for those values.  The growing development 
pace in Artificial Intelligence (AI) and Cyber poses the 
deeper reasoning approaches by safety critical systems to 
take actions based on observations with greater Information 
Assurance (IA) [12].  That adaption is also moving 
precedence for more "on the fly" (or Online) adaption with 
safety critical outcomes.  Rationally, machine reasoning has 
the greatest value when the information is uncertain, 
inaccurate, unclear, conflicting or incomplete and 
approaches have incorporated Bayesian networks [13].   

II. PAPER STRUCTURE 

Section one is the introduction of the application area, 

and the novelty of modernizing the expert system approach 

to be mixed with Neural Network concepts, part of that 

novelty is that the expert system approach is grading a 

value rather than grading a rule, Section two is the paper 

structure.  In section three is the mapping of computational 

Neural Network approaches and the human intelligence 

concepts to be combined into this Expert System data 

approach. Section four is the input representation discussion 

of the benefits of a language. Section five discusses a multi 

hypothesis approach for an algebraic form of a expert 



system. Section six is an knowledgebase language syntax 

and organization. Section seven is the data structure used to 

represent the algebraic form as a computational graph. 

Section eight is the construction of the computational 

graph, and section nine the evaluation processing. Section 

ten is the estimation of a final value based on deduced 

confidences.  Section eleven structures into decision trees 

by guard equations to form valid populations of hypothesis.  

Sections twelve and thirteen are: an illustrative example 

using a prototype and the summary and conclusion. 

III. STRUCTURE OF DATA 

In human terms approaches to resolving this can be 
intellectually deductive and inductive as per Aristotle's and 
Sir Frances Bacon's reasoning [14], but may be applied to 
computational techniques like Neural Networks and Expert 
Systems.  Machine reasoning can be seen as the 
transformation of observations and with some knowledge 
can create understanding.  Although it may be that there is 
some uncertainty in those observations that may create more 
than one version of an understanding, as possible knowledge 
based permutations, based on different knowledge rules 
when applied to those observations.  When considering 
these transformations, data can be represented in three forms 
as a structured approach that bridges between Intelligence of 
humans and machine learning approaches and based on the 
Intelligence approach as a Life Cycle [15], three forms of 
data are described below: 

• Raw Data: The output from the Intelligence Life Cycle stage 
"Collection", and is the input to the "Processing" stage.  In Neural 
Networks this can be seen as the pre-processing and Input layer, as 
observations from a collection activity are presented as the evidence in 
the input layer. 

• Information:  The output of the Intelligence Life Cycle "Processing" 
stage. In Neural Networks this can be the output of the hidden layers.  It 
converted Raw Data into Information through a "Processing" activity 
prior to categorization in the output layer. 

• Intelligence: In the Intelligence Life Cycle this is the output from the 
"Analysis and Production" stage. In Neural Networks this is the Output 
layer categorization and converts Information into Intelligence. 

A. Definitions Knowledge-Base File Compartment 

These are rules that contain quantities and conventions 
that may exist to allow data to be understood generically in 
all knowledgebase compartments, and in this approach these 
are rules that contain global quantity conversions and 
standard value definitions. 

B. Raw Data Knowledge-Base File Compartment 

Raw data is often formatted in a source unique way, and 
may contain both relevant and irrelevant information 
combined.  It is processed so it can be used purposefully 
were the relevance is increased.  In a neural network 
approach this is like the pre-processing and input layer, in 
this Expert System mixed approach this is a source 
conversion layer to a generic form, where the rules can use 
scientific unit quantities defined in the definitions such that 
the subsequent hidden layer or layers can be re-used.   

C. Information Knowledge-Base File Compartment 

Information is catalogued raw data that prioritizes a 
collected raw dataset into useful information and is the 

processed form of the raw data extracts with a standard 
understood semantic and syntax. In a neural network 
approach this is like the hidden layers, in this Expert System 
mixed approach this is where the generic reusable rules can 
be fused (or "converged"), calculated and graded prior to 
final representation as Intelligence but provides reusable 
libraries of knowledge transformation. 

D. Intelligence Knowledge-Base File Compartment 

Intelligence is where the contextual understanding is 
combined to the information (processed raw data) to answer 
a specific question in exploitation, and it takes a knowledge 
context and understanding to answer a question. In a neural 
network approach this is like the output categorization layer. 
In this Expert System mixed approach it is the re-
representation in a form that would be understood by the 
user, and has applications to database data migration. 

These structured data compartments presented here 
forms a kind of bridge between human organizational use 
for analysis techniques used in the Intelligence life cycle, 
computational approaches like neural networks and the 
structure proposed in this Experts System approach.  
However, within these organizational knowledgebase 
compartments there is also a requirement for a knowledge 
definition  representation that is consistent between them. 

IV. THE INPUT REPRESENTATION 

Representing knowledge creates the need for a 
representation that is flexible to not compromise the 
semantics of the knowledge by making it fit a standard 
model unless it is suitably flexible and easy to use. That 
model needs to represent the knowledge with low 
compromise and with low abstraction, and resultant 
knowledge of the understanding that can be evaluated for 
confidence.  Traditionally the Relational Database 
Management System (RDBMS) and eXtensible Markup 
Language (XML) are forms that involve a configurable 
complexity to provide enough flexibility in a fixed data 
structure, but has a drawback of representing a data centric 
view, rather than logic models like are used with machine 
operations and in algorithms.  However, the database and 
XML representations have high syntactic value for raw data, 
but may have in conversion lost some semantics in 
conversion.  In fact in may be argued that there is a need for 
a language syntax form to capture both data values and 
machine logic operations together.  Furthermore, the 
conversions between Raw Data, Information and 
Intelligence may change confidences or combine sources 
where as the Raw form may be more well understood. So 
these sources and confidences require to be tracked from the 
Raw Data to the intelligence conversions in terms of security 
source caveats and confidence weightings. Such that the 
output can report and express security source caveats and 
confidences as metadata in the resultant output estimations. 

V. THE MULTIPLE HYPOTHESIS APPROACH 

Considering that a system taking observations of raw 
data and using rules of established data conversions to 
calculate possible missing data (i.e. values or understandings 
that were not observed), Then this could be considered as a 



multiple hypothesis approach when there are alternative 
valid rules. Where those multiple hypothesis are captured as 
rules and alternative data values from separate sources, then 
all the rule permutations may be applied to all source data 
values from each of the sources to calculate all the possible 
combinations of values. Then a confidence may be derived 
from how well the multiple hypothesis rule and value 
combinations results numerically match together.  These can 
also be scaled by the source confidence and the population 
of results, such that the confidences are commutable with 
other rules sets that have a different number of rule 
hypothesis.  To capture both the knowledge conversions as 
rules and possible observation values, a consideration of a 
knowledgebase representation can be considered in a 
mathematical algebraic form. 

VI. KNOWLEDGE REPRESENTATION 

A representation is required to capture knowledge in a 
form where conversion can be evaluated.  The illustrated 
form captures mathematical relationships using an algebraic 
equation form such that different known data (atoms) can be 
fed into the knowledgebase rules (axioms) and will include 
guard equations, security caveats and rule confidence 
weightings.  To parse these axioms and atoms, a language 
format with low abstraction in the representation is required 
and has the following formal Backus Nour Form (BNF) 
syntax expression (see Figure 1): 

<KnowledgeBase> ::=  <AxiomAtom> ";" [<KnowledgeBase>] ; 
<AxiomAtom> ::= <Symbol> "=" <Expression>  

[ "When" <Expression> ]  

[ "Security" <Integer> ]  
[ "Confidence" <Expression> ] ; 

<Symbol> ::= <Identifier> ; 

<Literal> ::= <Real> | <Integer> ; 
<Expression> ::= <Term> [ <Relation> <Expression> ] ; 

<Relation> ::= "<" | "<=" | "==" | ">=" | ">" | "!=" ; 

<Term> ::=  <Factor> [ <Operator> <Expression> ] ; 
<Operator> ::= "+" | "-" ; 

<Factor> ::= <Quantity> [ "*" | "/" <Expression> ] ; 

<Quantity> ::= <Value>  [ "&&" | "||" <Expression> ] ; 
<Value> ::= [ <Operator> ] <Parameter> ; 

<Parameter> ::=   <Symbol> | <Function> | <Literal> |  

"(" <Expression> ")" ; 
<Function> ::= <Symbol> "(" [ <ParameterList> ] ")" ; 

<ParameterList> ::= <Expression> [ "," <ParameterList> ] ; 

Fig 1 BNF Expression of Knowledgebase Language 

The BNF expressions can be used with both: Atoms 
(observational facts) and Axioms (knowledge rules), and 
they are separated into different files to be parsed using the 
BNF, so their difference can be recorded in a symbol table. 

VII. ALGEBRAIC REPRESENTATION 

To represent an algebra within a computer requires 

consideration of an abstraction to nodes with relationships 

that may form hierarchical structures much like a Neural 

Network Computational Graph.  A node may result in a 

value like either: Symbol which is a reference to an 

identifier of a variable parameter, a Literal value which is a 

real or integer constant value, a Function with an associated 

Parameter List. A node can also be a machine operation 

like a Operator, Factor, Term or Equals.  As nodes need to 

form hierarchical tree structures, they need tree pointers to 

form the links to related nodes, and as a basic mathematical 

operator has an action and two operands a binary tree 

structure seems appropriate. Although in the case of a 

function call it should not be limited to two parameters. So 

the tree pointers relate to a below level, and a below then 

same level ordering of nodes. As such the nodes show the 

required parameter list at the same level for a node, and at 

the below levels the relationships of connected chains of 

dependant operations for those parameters that were at the 

function's below and same level node's parameter list. In 

this way a computational graph is built into atomic 

operations in each related node and forms the relationship 

dependencies.  This form of a binary tree of dependant 

computational chains maps onto the Reverse Polish 

Expression stack based execution model for evaluating 

results.  As there may be many rules and many values each 

node needs to capture a list of values that will be computed, 

and so that values for rules and observational evidence can 

have differing confidences and security caveats. Each node 

needs to track these with the value list as they are combined 

in nodes during evaluation.   

VIII. BUILDING THE COMPUTATIONAL GRAPH 

In terms of execution order, and using recursion on each 

node a depth first then breadth node order would compute 

each depended chain before each parameter is required and 

can be converted to a Reverse Polish Expression for 

evaluation, that is executing in turn from the leaf nodes 

upward to the root node.  A fact value can be added as an 

assignment and will allow many fact values to combine 

alternative values. Each rule and fact tree can be added as a 

tree from the same level pointer of the root node, to 

compose a single tree for the whole knowledgebase. A 

computational graph structure is built in three parts: a 

symbol table, a hierarchical node structure and value list. 

Each node is added to a symbol table during the parsing. 

The Hierarchical tree points to the symbol table which has 

the initial values with their parse time known values, in the 

case of literal values it is added to the hierarchical node 

structure's literal node as a single value. Security caveats 

and confidences are added to the upper most node in the 

hierarchical node structure for that rule or fact.  If the 

Security Caveat is not defined in the knowledgebase then it 

is assumed to be 0x00000000, and as it is a bit field this 

means No Caveat, these are the defaults for all other nodes.  

Also if the confidence is not defined in the knowledgebase 

it is assumed to be the value 1.0 (100%).  Each node is 

inserted above the last node but where an operator has an 

operator precedence then the node is added below so it will 

execute first but that is dependent on the relative operator in 

the last node.  Brackets are implemented as functions and 

functions are added below, with their parameter list 

computational graph structures added on the same level of 

the function node's below node.  Each of the four data 

compartments (Defines, Input, Hidden and Output layers) 

are loaded in order, building the complete knowledgebase, 

but their structure allows reuse. 



IX. COMPUTATIONAL GRAPH EVALUATION 

On evaluation the hierarchical nodes are computed, but 

depending on the node type the machine operation is 

different: 

Literal values are taken from the symbol table and 

loaded in to the hierarchical node's value list for further 

computation by nodes connected to them, as in Figure 2.  ܸ݈ܽ݁ݑ ൌ .݈ܾ݈݁ܽܶ݋ܾ݉ݕܵ ݂݁ܿ݊݁݀݅݊݋ܥ ݁ݑ݈ܸܽ ൌ .݈ܾ݈݁ܽܶ݋ܾ݉ݕܵ ݕݐ݅ݎݑܿ݁ܵ 1.0ሻ	ݐ݈ݑሺ݂݀݁ܽ	݂݁ܿ݊݁݀݅݊݋ܥ ൌ .݈ܾ݈݁ܽܶ݋ܾ݉ݕܵ  00000000ሻݔ0	ݐ݈ݑሺ݂݀݁ܽ	ݕݐ݅ݎݑܿ݁ܵ
Fig 2 Literal Type Node Computation 

Operators take the list of values from the child node 

(Below) and the child node's same level node 

(Below.Same), the operator defined in the semantic field is 

used to calculate all resultant values mixes, and are added 

to the value list of that operator node. The confidence is 

calculated from multiplying each of the operand values' 

confidences. The security caveats are tracked by taking the 

BINARY OR of the security caveats from both operands 

for each individual value calculated (see Figure 3). ܸ݈ܽ݁ݑ ൌ .ݓ݋݈݁ܤ .ݓ݋݈݁ܤ	〈࢘࢕࢚ࢇ࢘ࢋ࢖ࡻ〉	݁ݑ݈ܸܽ ܵܽ݉݁. ݂݁ܿ݊݁݀݅݊݋ܥ ݁ݑ݈ܸܽ ൌ .ݓ݋݈݁ܤ ݂݁ܿ݊݁݀݅݊݋ܥ ൈ .ݓ݋݈݁ܤ ܵܽ݉݁. ݕݐ݅ݎݑܿ݁ܵ ݂݁ܿ݊݁݀݅݊݋ܥ ൌ .ݓ݋݈݁ܤ .ݓ݋݈݁ܤ	ࡾࡻ	ݕݐ݅ݎݑܿ݁ܵ ܵܽ݉݁.  ݕݐ݅ݎݑܿ݁ܵ
Fig 3 Operator Type Node Computation 

Functions are the same as operators although the 

number of child same level nodes are dependent on the 

number of function parameters used. 

Variables get all the possible values for every matching 

variable name in the tree, then sets the confidences from the 

product of the minimum ratio between each other value 

combinations, divided by the population and scaled by this 

variable nodes own confidence if it was set in the parse 

time, for that knowledgebase rule's root node. Security 

Caveats are the security caveats from the variable's search 

values as in Figure 4. ܸ݈ܽݏ݁ݑ ൌ .݄ܿݎܽ݁ܵ ݂݂݅ܦ ݏ݁ݑ݈ܸܽ ൌ ݉݅݊ ቆ݄ܵ݁ܽܿݎ. .݄ܿݎሻܵ݁ܽݔሺ݂݁ܿ݊݁݀݅݊݋ܥ ሺyሻ݂݁ܿ݊݁݀݅݊݋ܥ , .݄ܿݎܽ݁ܵ .݄ܿݎሻܵ݁ܽݔሺ݂݁ܿ݊݁݀݅݊݋ܥ ݂݁ܿ݊݁݀݅݊݋ܥ ሺxሻቇ݂݁ܿ݊݁݀݅݊݋ܥ ൌ 	 .ሼ0݂݂݅ܦሺ݀݋ݎ݌ . ሽሻܲ݊݋݅ݐ݈ܽݑ݌݋ ∙ ݕݐ݅ݎݑܿ݁ܵ ݈݂݃݊݅ܽܿܵ݊݋ܥ݁݀݋ܰ݊ݓܱ ൌ .݄ܿݎܽ݁ܵ  ݕݐ݅ݎݑܿ݁ܵ
Fig 4 Variable Type Node Computation 

The nodes are processed in a recursive fashion until all 

nodes are computed, the computation does imply that all 

input values need to be calculated first for the tree searches 

to have all the values loaded, but the compartmentalized 

knowledgebase file structure should support this. 

X. ESTIMATION OF VALUES 

To make an estimate of a perfected value and also to be 

consistent with probability trees the addition operation is 

used in a histogram of the values, with the cumulative 

summation of confidence for each value in the respective 

bin. So a centre of gravity can be taken to arrive at a 

perfected value and a perfected confidence for that value.  

The variable node in the hierarchical tree provided the 

scaling of the confidences to normalize the confidence 

consistently such that they are commutable.  A histogram is 

compiled from: a dataset length (NoOfValues), the max and 

min values in that dataset that are MaxValue and MinValue, 

see Figure 5. ܸ݈ܽݏܴ݁݁ݑ	 ൌ 	 	݁ݑ݈ܸܽݔܽܯ െ ሻ݁ݖ݅ܵݐݏ݅ܪݔܽܯ,ݏ݁ݑ݈ܸ݂ܱܽ݋ሺ݉݅݊ሺܰݔܽ݉݁ݑ݈ܸܽ݊݅ܯ	 െ 1, 1ሻ	 ݀ ൌ 	 ඄൬݁ݑ݈ܸܽݔܽܯ	 െ 	ݏܴ݁݁ݑ݈ܸܽ݁ݑ݈ܸܽ݊݅ܯ	 ൰ඈ ݉ݑ݈ܵݑܥ		 ൌ 	෍൫ሺሼ0. . ݀ሽ ∙ 	ݏܴ݁݁ݑ݈ܸܽ ൅ ሻ݁ݑ݈ܸܽ݊݅ܯ	 	 ∗ .ሾ0ݐݏ݄݅	 . ݀ሿ൯ ܸ݈ܽ݉ݑܵ݁ݑ	 ൌ 	෍ሺሼ0. . ݀ሽ ∙ 	ݏܴ݁݁ݑ݈ܸܽ ൅ 	݉ݑܵݐݏ݅ܪ ሻ݁ݑ݈ܸܽ݊݅ܯ	 ൌ .ሼ0ݐݏ݄݅∑	 . ݀ሽ                   ܹ݄݁݅݃݁ݑ݈ܸܽݐ	 ൌ 	஼௨௟ௌ௨௠ு௜௦௧ௌ௨௠ ݕݐ݊݅ܽݐݎ݁ܥ	 ൌ 	 ൬ ݉ݑ݂ܵ݊݋ܥ	݉ݑ݈ܵݑܥ ∙ ൰		݉ݑܵݐݏ݅ܪ 	 ∙ 	100	 
Fig 5 Centre of Gravity from Histogram 

Although a histogram has a bin resolution (ValueRes) 

the centre of gravity process will provide a sub bin 

resolution.  The centre of gravity process provides a 

perfected value that takes the distribution and the relative 

confidences in that distribution into account.  So that taking 

all the processing into account the final value is a perfected 

value based on all the confidences from every valid rule 

permutation, because the confidences were set based on 

how many alternative answers there where and how close 

they matched in value from separate rule or value 

permutation routes. That is to say they measure how well 

matched the resultant values are that came from alternative 

rules or known observations as a match to known 

understanding in the knowledgebase.  This is true so long as 

all the rules that are accessible are all valid for the 

conditional circumstance, so a guard equation is provided to 

each rule to control the population of answers to a set that 

are valid. 

XI. POPULATION VALIDITY DECISION TREES 

So that the population of values used in the knowledge 

base are valid a guarded equation can be used to wire out 

rules under conditions set in the rules or in input values, in 

much the same way as existing Expert Systems structure 

their knowledge in the knowledgebase to form decision 

trees.  The guard equation can be activated via the "When" 

clause and include or exclude rules to control the valid 

population of alternative answers under a condition 

deduced from the rules in the knowledgebase.  If a value is 

set to unknown rather than a specific value, then the 

population of rules can include results for all conditions or 

be limited to some values, making the estimated perfected 

value and its' confidence reflective of only the valid 

answers. 

XII. AN ILLUSTRATIVE EXAMPLE 

Using a software prototype, an illustrative example: 

SpeedOfLight = 299792458.0; which is an assignment of a 

value is explained.  In this example if a definition of the 

speed of light was used then the symbol table would contain 

the atom variable, the equation operator and the literal value 

for the assignment as this form is representing both data 

values and machine operations within the symbol table.  

The content of the symbol table is in Table 1: 
        Symbol Name    Type     Value

  VAR00|SpeedOfLight     Var NotSetYet



Equal01|           =   Equal NotSetYet

VALUE02|       float Literal 299782458.0 
Table 1 Symbol Table Example 

The symbols within the symbol table (Table 1) are 

loaded in as nodes (aNode) in an ordered binary tree as a 

fast reference indexing system, see graphical depiction in 

Figure 6:  

 
Fig 6 Symbol Table Structure 

Each node (aNode) within the symbol table contains the 
information in Table 2 as a data structure for each node: 

Structure Item Structure Item Description 

Ref Name Unique Symbol name reference. 
Type Symbol node type. 

Semantic Semantic function indicator. 

Value Ptr Initial value in the linked list. 

Security Security tracking value loaded. 

Confidence Graded confidence value loaded. 

Left, Right  aNode Tree pointers. 

Table 2 Symbol Table Node Structure (aNode) 

As there are multiple hypothesis values a link list of 
values provides a variable number of values at each node 
with a backward pointing reference of origin to collate 
security caveats and combine confidences inherited. The 
value linked list node structure is as in Table 3: 

Structure Item Structure Item Description 

The Value Value of this permutation. 

Confidence Confidence of this Value 

Security Security Caveats Tracking 

Origin 1 Where value was calculated from. 

Origin 2 Where value was calculated from. 

Next Pointer to the Next value in the linked list

Table 3 Value Linked List Node Structure 

Each symbol table node (aNode) can be referenced from 
a hierarchical tree node (aHierarchicalNode).  The 
hierarchical tree is a binary tree of references into the 
symbol table tree and is an algebraic hierarchical structure 
that holds the computational graph structure, which 
references the: values, equals, operators and functions that 
are constructed into a Reverse Polish form in their 
hierarchical structure.  The hierarchical tree node data is in 
Table 4 and provides the reference to the symbol table entry 
through the member pointer. 

Structure Item Structure Item Description 
Value List Ptr     Calculated values linked list. 
Member Ptr      Pointer to Symbol table (aNode).

Guard Hierarchal Guard Equation aHierarchicalNode

Below, SameLevel aHierarchicalNode tree pointers. 

Table 4 Hierarchical Node Structure (aHierarchicalNode) 

The guard equation is also referenced into a separate 
hierarchical tree structure for the ultimate evaluation of 
whether to include or exclude the rule structures hypothesis 

permutation.  This allows rule and value structures to be 
included or excluded based on deduced values using logic 
terms to form decision trees and enforce that the population 
of hypothesis rule permutations is controlled and valid. 
Using the earlier example the hierarchical tree node 
relationships for that form are as in Figure 7 and are mapped 
to the original symbol table tree form: 

 
Fig 7 Hierarchical Node Structure Indexing to the Symbol Table 

Note that the hierarchical tree nodes forms a reverse 

Polish expression that is a useful form that allow stack-based 

calculations.  But this can be a calculation using operators 

and follow a form of values and operators. Where the 

algorithm will load the value onto the stack with the current 

stack value and then performs that operation on the stack it 

leaves the result on the stack for the next operation.  This 

sequence is repeated until all operator and values are used 

leaving the final value.  To support BODMAS (Brackets, 

Order, Divide, Multiply, Add and Subtract) the operator and 

hierarchical tree need to be populated in a form that builds 

the right hierarchical tree.  For example a = 1+2/3, the 

hierarchical tree of operators and functions observing 

BODMAS are converted into a hierarchical tree in Figure 8 

in a graphical form: 

 
Fig 8 BODMAS Example Hierarchical Tree 

This hierarchical tree can be evaluated from the leaf 
node on the right upwards towards the root node on the left. 
A depth, then breadth transversal provides the first value to 
be pushed on the stack and is the literal value 2, then literal 
value 3 is pushed and applies the operator '/' to calculate the 
value 0.66667.  Then the literal value 1 is pushed onto the 
stack and the operator '+' is applied calculating the value 
1.66667 which is assigned to the variable 'a', the Reverse 
Polish Expression that is formed is 2 3 / 1 + = a [1.66667]. 
Adding nodes to the Hierarchical tree requires to be done in 
BODMAS compliant order while preserving a Reverse 
Polish Expression hierarchy.  When an operator is added it 



adds the denominator to the node below and the numerator 
at the same level node, this chain allows multiple same level 
nodes for operations like a function parameters lists that may 
have more than two subsequent chains as a parameter list.  
In the case if the Add/Subtract and Multiply/Divide the 
nodes are rearranged to place higher operator precedence 
below so they are evaluated before the addition. In the 
operator precedence Functions and Brackets are evaluated 
first and for this reason the brackets, power orders and 
Binary operators are represented as functions, as are also 
binary operators like AND and OR, which are used in the 
Guard Equations.  The tree is evaluated from leave to root 
and forms the Reverse Polish Expression execution order. 

XIII. SUMMARY AND CONCLUSIONS 

It may be noted that the way that the hierarchical tree is 

populated may seem less obvious, as the two operand literal 

values: 2 and 3 are both below the operator “/” rather than 

one at the same level and the other one below. The reason 

for this is to allow function nodes to have more than two 

parameters and also allow the structure of the whole 

expression to be contained in one structure that is a forest of 

trees rather than as a number of individual trees.  This also 

provides tree scope to be combined if a number of 

successive knowledgebase axiom rule-sets that are used 

separately are combined for successive deduction reasoning 

levels of logic like in a neural network layer with multiple 

hidden layers (as in Deep Learning).  Also if there is 

“known data values” (as atom facts) then the axioms (rules) 

calculated values can be performed and confidences in each 

value set based on the nearness to the other values and the 

axiom estimate confidence as a ratio (which is simply 

represent-able as a percentage to the user).  This does mean 

the confidences are not confidences of truth but confidences 

of a fit to established axiom rules and other values, or rather 

a match to an established understanding captured in the 

knowledgebase.  However, this also means that if the values 

are represented in a histogram them adding the confidences 

of equal values is permissible as it is consistent with a 

probability tree approach, thus the highest score will result 

from converging or matching answers.  In conclusion the 

knowledgebase can be used to infill missing data for less 

observable data and also be used for data migration in 

support of databases. The layer structure of the 

knowledgebase is a similar concept to the neural network 

approach, and maps those layers to the input, hidden and 

output layers. Some rule exclusivity is introduced by the 

support of decision trees structures using guarded equations. 

Some rules can provide calculated results that may be 

invalid, so these rules inclusions can be controlled by and 

equation guard and these equation guards may separate rules 

to decide if a rule is valid given a control definition within 

the knowledgebase. This research has perhaps modernized a 

concept of Expert Systems with a Computational Graph 

approach to implement an algebraic form of a Expert 

System that is closer to a Neural Network concept. Forming 

a best answer in sight of the evidence using a confidence 

that is based in probability trees.  This provides a forward 

chaining execution policy to combine with a neural network 

rule extraction method [5] in solving intractable problems. 
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