
This is a repository copy of An algebraic expert system with neural network concepts for
cyber, big data and data migration.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/155134/

Version: Accepted Version

Proceedings Paper:
Rudd-Orthner, R. and Mihaylova, L. (2020) An algebraic expert system with neural network
concepts for cyber, big data and data migration. In: Proceedings of 2019 IEEE
International Symposium on Signal Processing and Information Technology (ISSPIT). 19th
IEEE International Symposium on Signal Processing and Information Technology (ISSPIT
2019), 10-12 Dec 2019, Ajman, United Arab Emirates. IEEE . ISBN 9781728153421

https://doi.org/10.1109/isspit47144.2019.9001880

© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other users, including reprinting/ republishing this material for advertising or
promotional purposes, creating new collective works for resale or redistribution to servers
or lists, or reuse of any copyrighted components of this work in other works. Reproduced
in accordance with the publisher's self-archiving policy.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

An Algebraic Expert System with Neural Network

Concepts for Cyber, Big Data and Data Migration

Richard N M Rudd-Orthner1,2

1 Department of Automatic Control and Systems Engineering

University of Sheffield, Sheffield, UK,

RNMRudd-Orthner1@sheffield.ac.uk
2 MASS KSA (a Cohort plc company), Riyadh, KSA.

rruddorthner@mass.co.uk

Lyudmilla Mihaylova

Department of Automatic Control and Systems Engineering

University of Sheffield

Sheffield, UK.
L.S.Mihaylova@sheffield.ac.uk

Abstract—This paper describes a machine assistance

approach to grading decisions for values that might be missing

or need validation, using a mathematical algebraic form of an

Expert System, instead of the traditional textual or logic forms

and builds a neural network computational graph structure.

This Experts System approach is also structured into a neural

network like format of: input, hidden and output layers that

provide a structured approach to the knowledge-base

organization, this provides a useful abstraction for reuse for

data migration applications in big data, Cyber and relational

databases. The approach is further enhanced with a Bayesian

probability tree approach to grade the confidences of value

probabilities, instead of the traditional grading of the rule

probabilities, and estimates the most probable value in light of

all evidence presented. This is ground work for a Machine

Learning (ML) experts system approach in a form that is

closer to a Neural Network node structure.

Keywords—Artificial Intelligence; Knowledgebase; Expert

Systems; Neural Network; Information Assurance.

I. INTRODUCTION

Intelligent reasoning is a high level human pursuit of
truth which arguably requires developed abilities for
objective viewpoint reasoning and creativity, and those mix
of abilities are perhaps not naturally found in every person
in every circumstance. Also human reasoning requires to be
able to deal with partial, inaccurate and uncertain
information to produce higher order knowledge and
understanding. This is a challenge for Computational
techniques and Neural Network approaches have been used
in this area but arguably have application challenges for
validation when training datasets are incomplete, do not
exist or would of contain unexpected values [1]. Also expert
systems are a human assistance for consistent decision
making [2], although one of the greatest challenge is not the
actual content of the optional decision permutations, but is
the grading of confidence in those decision permutations [3].
Another approach is a paper by Melen et al [4] that looks at
machine learning for an expert system using a rule base and
a Bayesian network for rule selection. This paper's approach
is distinct from that and is part of a neural network approach
using formula extraction as a compliment to rule extraction
where the early work was published recently [5]. Outside of
computational methods, often the grading of confidence is
very difficult, and is often a more intensive activity then the
understanding of the decision permutation itself, and in
some cases, outside of computational machine assistance it

is not invested in or relies on a voting system of human
opinions [6]. However, within computational methods,
approaches have used data mining within textual and
imagery databases and can bring benefits to validation [7].
Traditionally Expert System approaches are largely textual
hierarchies of rules in either forward chaining as an
Explainable Expert System (ESS) or backward chaining
executions to arrive at a decision or the reasoning evidence
for a decision as in the Reconstructive Explainer (Rex) [8].
Sometimes also with scored multi-hypothesis alternatives or
concepts of knowledge type [8, 9]. Approaches with
statistical probabilities have been proposed in safety critical
applications like medical [10] and military Data Fusion [11]
and relate to a probability of decision tree rules with a single
input instance of each input. However, this paper presents an
algebraic form of an Expert System where a differing
number of alternative input values will be combined, to form
a perfected value and confidence from all of the possible
evidence values of those inputs, rather than a probability for
a decision tree rule being likely as in other approaches. That
is to say the alternative decision permutations convergence
and distribution will modify the expert systems result, both
in-terms of the missing values and also in resultant
confidences for those values. The growing development
pace in Artificial Intelligence (AI) and Cyber poses the
deeper reasoning approaches by safety critical systems to
take actions based on observations with greater Information
Assurance (IA) [12]. That adaption is also moving
precedence for more "on the fly" (or Online) adaption with
safety critical outcomes. Rationally, machine reasoning has
the greatest value when the information is uncertain,
inaccurate, unclear, conflicting or incomplete and
approaches have incorporated Bayesian networks [13].

II. PAPER STRUCTURE

Section one is the introduction of the application area,

and the novelty of modernizing the expert system approach

to be mixed with Neural Network concepts, part of that

novelty is that the expert system approach is grading a

value rather than grading a rule, Section two is the paper

structure. In section three is the mapping of computational

Neural Network approaches and the human intelligence

concepts to be combined into this Expert System data

approach. Section four is the input representation discussion

of the benefits of a language. Section five discusses a multi

hypothesis approach for an algebraic form of a expert

system. Section six is an knowledgebase language syntax

and organization. Section seven is the data structure used to

represent the algebraic form as a computational graph.

Section eight is the construction of the computational

graph, and section nine the evaluation processing. Section

ten is the estimation of a final value based on deduced

confidences. Section eleven structures into decision trees

by guard equations to form valid populations of hypothesis.

Sections twelve and thirteen are: an illustrative example

using a prototype and the summary and conclusion.

III. STRUCTURE OF DATA

In human terms approaches to resolving this can be
intellectually deductive and inductive as per Aristotle's and
Sir Frances Bacon's reasoning [14], but may be applied to
computational techniques like Neural Networks and Expert
Systems. Machine reasoning can be seen as the
transformation of observations and with some knowledge
can create understanding. Although it may be that there is
some uncertainty in those observations that may create more
than one version of an understanding, as possible knowledge
based permutations, based on different knowledge rules
when applied to those observations. When considering
these transformations, data can be represented in three forms
as a structured approach that bridges between Intelligence of
humans and machine learning approaches and based on the
Intelligence approach as a Life Cycle [15], three forms of
data are described below:

• Raw Data: The output from the Intelligence Life Cycle stage
"Collection", and is the input to the "Processing" stage. In Neural
Networks this can be seen as the pre-processing and Input layer, as
observations from a collection activity are presented as the evidence in
the input layer.

• Information: The output of the Intelligence Life Cycle "Processing"
stage. In Neural Networks this can be the output of the hidden layers. It
converted Raw Data into Information through a "Processing" activity
prior to categorization in the output layer.

• Intelligence: In the Intelligence Life Cycle this is the output from the
"Analysis and Production" stage. In Neural Networks this is the Output
layer categorization and converts Information into Intelligence.

A. Definitions Knowledge-Base File Compartment

These are rules that contain quantities and conventions
that may exist to allow data to be understood generically in
all knowledgebase compartments, and in this approach these
are rules that contain global quantity conversions and
standard value definitions.

B. Raw Data Knowledge-Base File Compartment

Raw data is often formatted in a source unique way, and
may contain both relevant and irrelevant information
combined. It is processed so it can be used purposefully
were the relevance is increased. In a neural network
approach this is like the pre-processing and input layer, in
this Expert System mixed approach this is a source
conversion layer to a generic form, where the rules can use
scientific unit quantities defined in the definitions such that
the subsequent hidden layer or layers can be re-used.

C. Information Knowledge-Base File Compartment

Information is catalogued raw data that prioritizes a
collected raw dataset into useful information and is the

processed form of the raw data extracts with a standard
understood semantic and syntax. In a neural network
approach this is like the hidden layers, in this Expert System
mixed approach this is where the generic reusable rules can
be fused (or "converged"), calculated and graded prior to
final representation as Intelligence but provides reusable
libraries of knowledge transformation.

D. Intelligence Knowledge-Base File Compartment

Intelligence is where the contextual understanding is
combined to the information (processed raw data) to answer
a specific question in exploitation, and it takes a knowledge
context and understanding to answer a question. In a neural
network approach this is like the output categorization layer.
In this Expert System mixed approach it is the re-
representation in a form that would be understood by the
user, and has applications to database data migration.

These structured data compartments presented here
forms a kind of bridge between human organizational use
for analysis techniques used in the Intelligence life cycle,
computational approaches like neural networks and the
structure proposed in this Experts System approach.
However, within these organizational knowledgebase
compartments there is also a requirement for a knowledge
definition representation that is consistent between them.

IV. THE INPUT REPRESENTATION

Representing knowledge creates the need for a
representation that is flexible to not compromise the
semantics of the knowledge by making it fit a standard
model unless it is suitably flexible and easy to use. That
model needs to represent the knowledge with low
compromise and with low abstraction, and resultant
knowledge of the understanding that can be evaluated for
confidence. Traditionally the Relational Database
Management System (RDBMS) and eXtensible Markup
Language (XML) are forms that involve a configurable
complexity to provide enough flexibility in a fixed data
structure, but has a drawback of representing a data centric
view, rather than logic models like are used with machine
operations and in algorithms. However, the database and
XML representations have high syntactic value for raw data,
but may have in conversion lost some semantics in
conversion. In fact in may be argued that there is a need for
a language syntax form to capture both data values and
machine logic operations together. Furthermore, the
conversions between Raw Data, Information and
Intelligence may change confidences or combine sources
where as the Raw form may be more well understood. So
these sources and confidences require to be tracked from the
Raw Data to the intelligence conversions in terms of security
source caveats and confidence weightings. Such that the
output can report and express security source caveats and
confidences as metadata in the resultant output estimations.

V. THE MULTIPLE HYPOTHESIS APPROACH

Considering that a system taking observations of raw
data and using rules of established data conversions to
calculate possible missing data (i.e. values or understandings
that were not observed), Then this could be considered as a

multiple hypothesis approach when there are alternative
valid rules. Where those multiple hypothesis are captured as
rules and alternative data values from separate sources, then
all the rule permutations may be applied to all source data
values from each of the sources to calculate all the possible
combinations of values. Then a confidence may be derived
from how well the multiple hypothesis rule and value
combinations results numerically match together. These can
also be scaled by the source confidence and the population
of results, such that the confidences are commutable with
other rules sets that have a different number of rule
hypothesis. To capture both the knowledge conversions as
rules and possible observation values, a consideration of a
knowledgebase representation can be considered in a
mathematical algebraic form.

VI. KNOWLEDGE REPRESENTATION

A representation is required to capture knowledge in a
form where conversion can be evaluated. The illustrated
form captures mathematical relationships using an algebraic
equation form such that different known data (atoms) can be
fed into the knowledgebase rules (axioms) and will include
guard equations, security caveats and rule confidence
weightings. To parse these axioms and atoms, a language
format with low abstraction in the representation is required
and has the following formal Backus Nour Form (BNF)
syntax expression (see Figure 1):

<KnowledgeBase> ::= <AxiomAtom> ";" [<KnowledgeBase>] ;
<AxiomAtom> ::= <Symbol> "=" <Expression>

["When" <Expression>]

["Security" <Integer>]
["Confidence" <Expression>] ;

<Symbol> ::= <Identifier> ;

<Literal> ::= <Real> | <Integer> ;
<Expression> ::= <Term> [<Relation> <Expression>] ;

<Relation> ::= "<" | "<=" | "==" | ">=" | ">" | "!=" ;

<Term> ::= <Factor> [<Operator> <Expression>] ;
<Operator> ::= "+" | "-" ;

<Factor> ::= <Quantity> ["*" | "/" <Expression>] ;

<Quantity> ::= <Value> ["&&" | "||" <Expression>] ;
<Value> ::= [<Operator>] <Parameter> ;

<Parameter> ::= <Symbol> | <Function> | <Literal> |

"(" <Expression> ")" ;
<Function> ::= <Symbol> "(" [<ParameterList>] ")" ;

<ParameterList> ::= <Expression> ["," <ParameterList>] ;

Fig 1 BNF Expression of Knowledgebase Language

The BNF expressions can be used with both: Atoms
(observational facts) and Axioms (knowledge rules), and
they are separated into different files to be parsed using the
BNF, so their difference can be recorded in a symbol table.

VII. ALGEBRAIC REPRESENTATION

To represent an algebra within a computer requires

consideration of an abstraction to nodes with relationships

that may form hierarchical structures much like a Neural

Network Computational Graph. A node may result in a

value like either: Symbol which is a reference to an

identifier of a variable parameter, a Literal value which is a

real or integer constant value, a Function with an associated

Parameter List. A node can also be a machine operation

like a Operator, Factor, Term or Equals. As nodes need to

form hierarchical tree structures, they need tree pointers to

form the links to related nodes, and as a basic mathematical

operator has an action and two operands a binary tree

structure seems appropriate. Although in the case of a

function call it should not be limited to two parameters. So

the tree pointers relate to a below level, and a below then

same level ordering of nodes. As such the nodes show the

required parameter list at the same level for a node, and at

the below levels the relationships of connected chains of

dependant operations for those parameters that were at the

function's below and same level node's parameter list. In

this way a computational graph is built into atomic

operations in each related node and forms the relationship

dependencies. This form of a binary tree of dependant

computational chains maps onto the Reverse Polish

Expression stack based execution model for evaluating

results. As there may be many rules and many values each

node needs to capture a list of values that will be computed,

and so that values for rules and observational evidence can

have differing confidences and security caveats. Each node

needs to track these with the value list as they are combined

in nodes during evaluation.

VIII. BUILDING THE COMPUTATIONAL GRAPH

In terms of execution order, and using recursion on each

node a depth first then breadth node order would compute

each depended chain before each parameter is required and

can be converted to a Reverse Polish Expression for

evaluation, that is executing in turn from the leaf nodes

upward to the root node. A fact value can be added as an

assignment and will allow many fact values to combine

alternative values. Each rule and fact tree can be added as a

tree from the same level pointer of the root node, to

compose a single tree for the whole knowledgebase. A

computational graph structure is built in three parts: a

symbol table, a hierarchical node structure and value list.

Each node is added to a symbol table during the parsing.

The Hierarchical tree points to the symbol table which has

the initial values with their parse time known values, in the

case of literal values it is added to the hierarchical node

structure's literal node as a single value. Security caveats

and confidences are added to the upper most node in the

hierarchical node structure for that rule or fact. If the

Security Caveat is not defined in the knowledgebase then it

is assumed to be 0x00000000, and as it is a bit field this

means No Caveat, these are the defaults for all other nodes.

Also if the confidence is not defined in the knowledgebase

it is assumed to be the value 1.0 (100%). Each node is

inserted above the last node but where an operator has an

operator precedence then the node is added below so it will

execute first but that is dependent on the relative operator in

the last node. Brackets are implemented as functions and

functions are added below, with their parameter list

computational graph structures added on the same level of

the function node's below node. Each of the four data

compartments (Defines, Input, Hidden and Output layers)

are loaded in order, building the complete knowledgebase,

but their structure allows reuse.

IX. COMPUTATIONAL GRAPH EVALUATION

On evaluation the hierarchical nodes are computed, but

depending on the node type the machine operation is

different:

Literal values are taken from the symbol table and

loaded in to the hierarchical node's value list for further

computation by nodes connected to them, as in Figure 2. ܸ݈ܽ݁ݑ ൌ .݈ܾ݈݁ܽܶ݋ܾ݉ݕܵ ݂݁ܿ݊݁݀݅݊݋ܥ ݁ݑ݈ܸܽ ൌ .݈ܾ݈݁ܽܶ݋ܾ݉ݕܵ ݕݐ݅ݎݑܿ݁ܵ 1.0ሻ	ݐ݈ݑሺ݂݀݁ܽ	݂݁ܿ݊݁݀݅݊݋ܥ ൌ .݈ܾ݈݁ܽܶ݋ܾ݉ݕܵ 00000000ሻݔ0	ݐ݈ݑሺ݂݀݁ܽ	ݕݐ݅ݎݑܿ݁ܵ
Fig 2 Literal Type Node Computation

Operators take the list of values from the child node

(Below) and the child node's same level node

(Below.Same), the operator defined in the semantic field is

used to calculate all resultant values mixes, and are added

to the value list of that operator node. The confidence is

calculated from multiplying each of the operand values'

confidences. The security caveats are tracked by taking the

BINARY OR of the security caveats from both operands

for each individual value calculated (see Figure 3). ܸ݈ܽ݁ݑ ൌ .ݓ݋݈݁ܤ .ݓ݋݈݁ܤ	〈࢘࢕࢚ࢇ࢘ࢋ࢖ࡻ〉	݁ݑ݈ܸܽ ܵܽ݉݁. ݂݁ܿ݊݁݀݅݊݋ܥ ݁ݑ݈ܸܽ ൌ .ݓ݋݈݁ܤ ݂݁ܿ݊݁݀݅݊݋ܥ ൈ .ݓ݋݈݁ܤ ܵܽ݉݁. ݕݐ݅ݎݑܿ݁ܵ ݂݁ܿ݊݁݀݅݊݋ܥ ൌ .ݓ݋݈݁ܤ .ݓ݋݈݁ܤ	ࡾࡻ	ݕݐ݅ݎݑܿ݁ܵ ܵܽ݉݁. ݕݐ݅ݎݑܿ݁ܵ
Fig 3 Operator Type Node Computation

Functions are the same as operators although the

number of child same level nodes are dependent on the

number of function parameters used.

Variables get all the possible values for every matching

variable name in the tree, then sets the confidences from the

product of the minimum ratio between each other value

combinations, divided by the population and scaled by this

variable nodes own confidence if it was set in the parse

time, for that knowledgebase rule's root node. Security

Caveats are the security caveats from the variable's search

values as in Figure 4. ܸ݈ܽݏ݁ݑ ൌ .݄ܿݎܽ݁ܵ ݂݂݅ܦ ݏ݁ݑ݈ܸܽ ൌ ݉݅݊ ቆ݄ܵ݁ܽܿݎ. .݄ܿݎሻܵ݁ܽݔሺ݂݁ܿ݊݁݀݅݊݋ܥ ሺyሻ݂݁ܿ݊݁݀݅݊݋ܥ , .݄ܿݎܽ݁ܵ .݄ܿݎሻܵ݁ܽݔሺ݂݁ܿ݊݁݀݅݊݋ܥ ݂݁ܿ݊݁݀݅݊݋ܥ ሺxሻቇ݂݁ܿ݊݁݀݅݊݋ܥ ൌ 	 .ሼ0݂݂݅ܦሺ݀݋ݎ݌ . ሽሻܲ݊݋݅ݐ݈ܽݑ݌݋ ∙ ݕݐ݅ݎݑܿ݁ܵ ݈݂݃݊݅ܽܿܵ݊݋ܥ݁݀݋ܰ݊ݓܱ ൌ .݄ܿݎܽ݁ܵ ݕݐ݅ݎݑܿ݁ܵ
Fig 4 Variable Type Node Computation

The nodes are processed in a recursive fashion until all

nodes are computed, the computation does imply that all

input values need to be calculated first for the tree searches

to have all the values loaded, but the compartmentalized

knowledgebase file structure should support this.

X. ESTIMATION OF VALUES

To make an estimate of a perfected value and also to be

consistent with probability trees the addition operation is

used in a histogram of the values, with the cumulative

summation of confidence for each value in the respective

bin. So a centre of gravity can be taken to arrive at a

perfected value and a perfected confidence for that value.

The variable node in the hierarchical tree provided the

scaling of the confidences to normalize the confidence

consistently such that they are commutable. A histogram is

compiled from: a dataset length (NoOfValues), the max and

min values in that dataset that are MaxValue and MinValue,

see Figure 5. ܸ݈ܽݏܴ݁݁ݑ	 ൌ 	 	݁ݑ݈ܸܽݔܽܯ െ ሻ݁ݖ݅ܵݐݏ݅ܪݔܽܯ,ݏ݁ݑ݈ܸ݂ܱܽ݋ሺ݉݅݊ሺܰݔܽ݉݁ݑ݈ܸܽ݊݅ܯ	 െ 1, 1ሻ	 ݀ ൌ 	 ඄൬݁ݑ݈ܸܽݔܽܯ	 െ 	ݏܴ݁݁ݑ݈ܸܽ݁ݑ݈ܸܽ݊݅ܯ	 ൰ඈ ݉ݑ݈ܵݑܥ		 ൌ 	෍൫ሺሼ0. . ݀ሽ ∙ 	ݏܴ݁݁ݑ݈ܸܽ ൅ ሻ݁ݑ݈ܸܽ݊݅ܯ	 	 ∗ .ሾ0ݐݏ݄݅	 . ݀ሿ൯ ܸ݈ܽ݉ݑܵ݁ݑ	 ൌ 	෍ሺሼ0. . ݀ሽ ∙ 	ݏܴ݁݁ݑ݈ܸܽ ൅ 	݉ݑܵݐݏ݅ܪ ሻ݁ݑ݈ܸܽ݊݅ܯ	 ൌ .ሼ0ݐݏ݄݅∑	 . ݀ሽ ܹ݄݁݅݃݁ݑ݈ܸܽݐ	 ൌ 	஼௨௟ௌ௨௠ு௜௦௧ௌ௨௠ ݕݐ݊݅ܽݐݎ݁ܥ	 ൌ 	 ൬ ݉ݑ݂ܵ݊݋ܥ	݉ݑ݈ܵݑܥ ∙ ൰		݉ݑܵݐݏ݅ܪ 	 ∙ 	100	
Fig 5 Centre of Gravity from Histogram

Although a histogram has a bin resolution (ValueRes)

the centre of gravity process will provide a sub bin

resolution. The centre of gravity process provides a

perfected value that takes the distribution and the relative

confidences in that distribution into account. So that taking

all the processing into account the final value is a perfected

value based on all the confidences from every valid rule

permutation, because the confidences were set based on

how many alternative answers there where and how close

they matched in value from separate rule or value

permutation routes. That is to say they measure how well

matched the resultant values are that came from alternative

rules or known observations as a match to known

understanding in the knowledgebase. This is true so long as

all the rules that are accessible are all valid for the

conditional circumstance, so a guard equation is provided to

each rule to control the population of answers to a set that

are valid.

XI. POPULATION VALIDITY DECISION TREES

So that the population of values used in the knowledge

base are valid a guarded equation can be used to wire out

rules under conditions set in the rules or in input values, in

much the same way as existing Expert Systems structure

their knowledge in the knowledgebase to form decision

trees. The guard equation can be activated via the "When"

clause and include or exclude rules to control the valid

population of alternative answers under a condition

deduced from the rules in the knowledgebase. If a value is

set to unknown rather than a specific value, then the

population of rules can include results for all conditions or

be limited to some values, making the estimated perfected

value and its' confidence reflective of only the valid

answers.

XII. AN ILLUSTRATIVE EXAMPLE

Using a software prototype, an illustrative example:

SpeedOfLight = 299792458.0; which is an assignment of a

value is explained. In this example if a definition of the

speed of light was used then the symbol table would contain

the atom variable, the equation operator and the literal value

for the assignment as this form is representing both data

values and machine operations within the symbol table.

The content of the symbol table is in Table 1:
 Symbol Name Type Value

 VAR00|SpeedOfLight Var NotSetYet

Equal01| = Equal NotSetYet

VALUE02| float Literal 299782458.0
Table 1 Symbol Table Example

The symbols within the symbol table (Table 1) are

loaded in as nodes (aNode) in an ordered binary tree as a

fast reference indexing system, see graphical depiction in

Figure 6:

Fig 6 Symbol Table Structure

Each node (aNode) within the symbol table contains the
information in Table 2 as a data structure for each node:

Structure Item Structure Item Description

Ref Name Unique Symbol name reference.
Type Symbol node type.

Semantic Semantic function indicator.

Value Ptr Initial value in the linked list.

Security Security tracking value loaded.

Confidence Graded confidence value loaded.

Left, Right aNode Tree pointers.

Table 2 Symbol Table Node Structure (aNode)

As there are multiple hypothesis values a link list of
values provides a variable number of values at each node
with a backward pointing reference of origin to collate
security caveats and combine confidences inherited. The
value linked list node structure is as in Table 3:

Structure Item Structure Item Description

The Value Value of this permutation.

Confidence Confidence of this Value

Security Security Caveats Tracking

Origin 1 Where value was calculated from.

Origin 2 Where value was calculated from.

Next Pointer to the Next value in the linked list

Table 3 Value Linked List Node Structure

Each symbol table node (aNode) can be referenced from
a hierarchical tree node (aHierarchicalNode). The
hierarchical tree is a binary tree of references into the
symbol table tree and is an algebraic hierarchical structure
that holds the computational graph structure, which
references the: values, equals, operators and functions that
are constructed into a Reverse Polish form in their
hierarchical structure. The hierarchical tree node data is in
Table 4 and provides the reference to the symbol table entry
through the member pointer.

Structure Item Structure Item Description
Value List Ptr Calculated values linked list.
Member Ptr Pointer to Symbol table (aNode).

Guard Hierarchal Guard Equation aHierarchicalNode

Below, SameLevel aHierarchicalNode tree pointers.

Table 4 Hierarchical Node Structure (aHierarchicalNode)

The guard equation is also referenced into a separate
hierarchical tree structure for the ultimate evaluation of
whether to include or exclude the rule structures hypothesis

permutation. This allows rule and value structures to be
included or excluded based on deduced values using logic
terms to form decision trees and enforce that the population
of hypothesis rule permutations is controlled and valid.
Using the earlier example the hierarchical tree node
relationships for that form are as in Figure 7 and are mapped
to the original symbol table tree form:

Fig 7 Hierarchical Node Structure Indexing to the Symbol Table

Note that the hierarchical tree nodes forms a reverse

Polish expression that is a useful form that allow stack-based

calculations. But this can be a calculation using operators

and follow a form of values and operators. Where the

algorithm will load the value onto the stack with the current

stack value and then performs that operation on the stack it

leaves the result on the stack for the next operation. This

sequence is repeated until all operator and values are used

leaving the final value. To support BODMAS (Brackets,

Order, Divide, Multiply, Add and Subtract) the operator and

hierarchical tree need to be populated in a form that builds

the right hierarchical tree. For example a = 1+2/3, the

hierarchical tree of operators and functions observing

BODMAS are converted into a hierarchical tree in Figure 8

in a graphical form:

Fig 8 BODMAS Example Hierarchical Tree

This hierarchical tree can be evaluated from the leaf
node on the right upwards towards the root node on the left.
A depth, then breadth transversal provides the first value to
be pushed on the stack and is the literal value 2, then literal
value 3 is pushed and applies the operator '/' to calculate the
value 0.66667. Then the literal value 1 is pushed onto the
stack and the operator '+' is applied calculating the value
1.66667 which is assigned to the variable 'a', the Reverse
Polish Expression that is formed is 2 3 / 1 + = a [1.66667].
Adding nodes to the Hierarchical tree requires to be done in
BODMAS compliant order while preserving a Reverse
Polish Expression hierarchy. When an operator is added it

adds the denominator to the node below and the numerator
at the same level node, this chain allows multiple same level
nodes for operations like a function parameters lists that may
have more than two subsequent chains as a parameter list.
In the case if the Add/Subtract and Multiply/Divide the
nodes are rearranged to place higher operator precedence
below so they are evaluated before the addition. In the
operator precedence Functions and Brackets are evaluated
first and for this reason the brackets, power orders and
Binary operators are represented as functions, as are also
binary operators like AND and OR, which are used in the
Guard Equations. The tree is evaluated from leave to root
and forms the Reverse Polish Expression execution order.

XIII. SUMMARY AND CONCLUSIONS

It may be noted that the way that the hierarchical tree is

populated may seem less obvious, as the two operand literal

values: 2 and 3 are both below the operator “/” rather than

one at the same level and the other one below. The reason

for this is to allow function nodes to have more than two

parameters and also allow the structure of the whole

expression to be contained in one structure that is a forest of

trees rather than as a number of individual trees. This also

provides tree scope to be combined if a number of

successive knowledgebase axiom rule-sets that are used

separately are combined for successive deduction reasoning

levels of logic like in a neural network layer with multiple

hidden layers (as in Deep Learning). Also if there is

“known data values” (as atom facts) then the axioms (rules)

calculated values can be performed and confidences in each

value set based on the nearness to the other values and the

axiom estimate confidence as a ratio (which is simply

represent-able as a percentage to the user). This does mean

the confidences are not confidences of truth but confidences

of a fit to established axiom rules and other values, or rather

a match to an established understanding captured in the

knowledgebase. However, this also means that if the values

are represented in a histogram them adding the confidences

of equal values is permissible as it is consistent with a

probability tree approach, thus the highest score will result

from converging or matching answers. In conclusion the

knowledgebase can be used to infill missing data for less

observable data and also be used for data migration in

support of databases. The layer structure of the

knowledgebase is a similar concept to the neural network

approach, and maps those layers to the input, hidden and

output layers. Some rule exclusivity is introduced by the

support of decision trees structures using guarded equations.

Some rules can provide calculated results that may be

invalid, so these rules inclusions can be controlled by and

equation guard and these equation guards may separate rules

to decide if a rule is valid given a control definition within

the knowledgebase. This research has perhaps modernized a

concept of Expert Systems with a Computational Graph

approach to implement an algebraic form of a Expert

System that is closer to a Neural Network concept. Forming

a best answer in sight of the evidence using a confidence

that is based in probability trees. This provides a forward

chaining execution policy to combine with a neural network

rule extraction method [5] in solving intractable problems.

XIV. REFERENCES:

[1] Abdella, M. and Marwala, T. (2005). The use of genetic algorithms

and neural networks to approximate missing data in database - IEEE

Conference Publication. [online] Ieeexplore.ieee.org. Available at:
https://ieeexplore.ieee.org/abstract/document/1511574 [Accessed 25

May 2019].

[2] Bohanec, M. and Rajkovič, V. (2009). DEX: An Expert System Shell
for Decision Support. [online] Citeseerx.ist.psu.edu. Available at:

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.142.2037

&rep=rep1&type=pdf [Accessed 25 May 2019].
[3] Voskoglou*, M. (2014). Measuring the Uncertainty of Human

Reasoning. American Journal of Applied Mathematics and Statistics,

[online] 2, pp.1-6. Available at:
https://pdfs.semanticscholar.org/af03/f50acbabf84ff8ea221e83bcbc4

50573443c.pdf [Accessed 7 Aug. 2019].

[4] Melen, R., Sartori, F., & Grazioli, L. (2015). Modeling and
understanding time-evolving scenarios. JOURNAL OF

SYSTEMICS, CYBERNETICS AND INFORMATICS, 13(5), 62-67

[5] Rudd-Orthner, R. and Milhaylova, L. (2019). Numerical
Discrimination of the Generalisation Model from Learnt Weights in

Neural Networks. Annals of Emerging Technologies in Computing,

[online] 3(4), pp.1-14. Available at:
https://www.researchgate.net/publication/335023149_Numerical_dis

crimination_of_the_generalisation_model_from_learnt_weights_in_n

eural_networks.
[6] Johnson-Laird, P. (2010). Mental models and human reasoning.

[online] Proceeding of the National Academy of Science. Available

at: https://www.pnas.org/content/107/43/18243 [Accessed 7 Aug.
2019].

[7] Cooke, C., Santana, C., Morris, T., DeBraal, L., Ordonez, C.,

Omiecinski, E., Ezquerra, N. and Garcia, E. (2000). Validating
expert system rule confidences using data mining of myocardial

perfusion SPECT databases - IEEE Conference Publication. [online]

Ieeexplore.ieee.org. Available at:
https://ieeexplore.ieee.org/document/898642 [Accessed 25 May

2019].

[8] Barzilay, R. and DeCristofaro, J. (1998). A NEW APPROACH TO
EXPERT SYSTEM EXPLANATIONS. [online] Aclweb.org. Available

at: https://www.aclweb.org/anthology/W98-1409 [Accessed 7 Aug.

2019].
[9] Khalak, Asif & Wemhoff, Eric. (2005). Multi-hypothesis estimation

approach to diagnosis and prognosis of degrading systems. 3691 -

3701. 10.1109/AERO.2005.1559674.
[10] Spiegelhalter, D., Dawid, A., Lauritzen, S. and Cowell, R. (1993).

[Bayesian Analysis in Expert Systems]: Rejoinder. Statistical

Science, [online] 8(3), pp.277-283. Available at:
https://www.researchgate.net/publication/257937651_Bayesian_Anal

ysis_in_Expert_Systems_Disc_P247-283.

[11] Rauch, H. (1884). Probability Concepts For An Expert System Used
For Data Fusion. [online] Pdfs.semanticscholar.org. Available at:

https://pdfs.semanticscholar.org/9812/c3497dced433f59b66d407183
5bd3c0f279d.pdf [Accessed 6 Sep. 2019].

[12] Varadaraju, R. (2011). A Survey of Introducing Artificial Intelligence

Into the Safety Critical System Software Design Process. [online]
Citeseerx.ist.psu.edu. Available at:

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.116.1592

&rep=rep1&type=pdf [Accessed 7 Aug. 2019].
[13] Wiegerinck, Wim & Kappen, Bert & Burgers, Willem. (2010).

Bayesian Networks for Expert Systems: Theory and Practical

Applications. 10.1007/978-3-642-11688-9_20.
[14] Cushing, J. (1998). Aristotle and Francis Bacon. In Philosophical

Concepts in Physics: The Historical Relation between Philosophy

and Scientific Theories (pp. 15-28). Cambridge: Cambridge
University Press. doi:10.1017/CBO9781139171106.004

[15] Recorded Future. (2018). 5 Phases of the Threat Intelligence

Lifecycle. [online] Available at:
https://www.recordedfuture.com/threat-intelligence-lifecycle/

[Accessed 7 Aug. 2019].

