&5

o
L
T g

/26736

p- 7
N93-17V 157

An Improved Classification Tree Analysis of High Cost
Modules Based Upon an Axiomatic Definition
of Complexity

Jianhui Tian

Adam Porter

Marvin V..Zelkowitz

Soft. Eng. Process Group Computer Science Dept. Inst. for Advanced Computer Studies

IBM Canada Laboratory
North York Ontario,
Canada

Abstract

Identification of Righ cost modules has been viewed
as one mechanism o improve overall sysiem reliabil-
ily, since such modules tend to produce more than their
share of problems. A decision tree model has been
used to identify such modules. In 1kis current paper, a
previously developed aziomatic model of program com-
plezily is merged with the previously developed decision
tree process for an improvement in the ability to iden-
tify such modules. This improvement has been tested
using data from the NASA Software Engineering Lab-
oratory.

1 Introduction

Identification of high cost modules has been viewed.
as one mechanism to improve overall system reliability,
since such modules tend to produce more than their
share of problems. In order to idertify such modules,
Selby and Porter [2, 3] developed a decision proce-
dure based upon decision trees. With their technique,
which we call Classification Tree Analysis (CTA), they
showed on a set of 16 large-scale programs contain-
ing over 4700 modules obtained from the NASA Soft-
ware Engineering Laboratory, that they could identify
which subset of the 74 measures obtained from each
module would produce good estimators of high-cost
modules.

Recently Tian and Zelkowitz [4] developed an ax-
iomatic model of program complexity. Based upon
this model, the 74 measures kept on each of the 4700
modules could be reduced to only 18 measures that
represented valid complexity measures. Using these

10005788L

University of Maryland
College Park, Maryland

and Computer Science Dept.
University of Maryland
College Park, Maryland

18 measures, the decision tree process results in an
improvement over the original Selby-Porter method.

In this paper we will first describe the original de-
cision tree process, we then summarize the axiomatic
complexity model, and then demonstrate that we can

~ improve on the previous model in identifying high-cost

modules.

2 Classification Tree Analysis

In a series of earlier studies by Selby and Porter,
a technique called classification tree analysis (CTA)
was used to identify high cost components. Of critical
importance to CTA is the selection of measures (or
attributes) to construct the classification tree.

We define a high cost component as one in the
uppermost quartile (i.e., 25 percent) relative to past
data. The rationale for this definition is the so called
“80:20 rule”, which states that about 80 percent of a
software system’s cost is associated with roughly 20
percent of the system.

A classification tree is essentially a decision tree
that branches on the range of values according to a
measure at an internal node repeatedly until a com-
ponent can be identified as high or low cost, or until
all measures are exhausted.

The'classification tree method that was used, called
the classification paradigm, consists of the following
three integral parts:

o Classification tree generation is the central

4-27

activity of conmstructing classification trees and
preparing them for analysis and feedback;

e Data management and calibration are the
activities that retain and manipulate historical
data and tailor classification tree parameters to
the development environment; and

o Analysis and feedback is the part that lever-
ages the information resulting from the tree gen-
eration by applying it in the development process.
The central piece of the application of classifica-
tion tree is to develop remedial plans and take
corrective actions.

2.1 CTA Method

The goal is to predict high cost modules in the cur-
rent project with high cost being interpreted as the
highest quartile. The historical data (or training set),
consisting of one project immediately preceding the

current one, are grouped into quartiles according to a

measure’s value, with all measures being considered.

Starting from the root, a measure is selected to sep-
arate modules into four subsets associated with each
arc. The number to the left of an arc is the lower
(inclusive) bound and the number to the right is the
upper (non-inclusive) bound for the subset according
to the measured value. So we have four subsets (quar-
tiles).

A set of modules associated with an arc is positively
identified if more than a threshold (termination crite-
rion) of modules are in the highest quartile of cost, and
it is represented in the tree as a terminal node marked
with a “4” sign. A set can be negatively identified
similarly, and represented correspondingly by a “-”
sign. If a set cannot be either positively or negatively
identified, another measure is selected to further clas-
sify these modules into finer subsets. This process
continues until either all modules are identified or all
measures are exhausted without being able to make
such a determination. In the latter case, the termi-
nal node is marked with a “?” sign, representing that
CTA can not make a prediction for modules in this
set.

Notice that the generation of the classification tree
depends solely on the training set and various-param-
eters selected for the technique. The current project
will only use the tree but not affect the structure of
the tree.

10005788L

Modules
my ma ms my ms
cyclomatic complexity 3 8 13 30 45
module+function call 8 40 7 3 12

operators 30 18 10 33 58
module calls 3 4 3 0 5
prediction - 7T - - 4

| actual

Table 1: Predicting High Cost Modules

[- + - 7

As an example, consider the sample (fictitious) test
data of Table 1, and the classification tree in Figure 1.
This test set includes 5 modules and 4 measures. In
this case, the CTA method predicts 3 out of 4 modules
correctly (it misses module m3) and is unable to clas-
sify module m; through the classification tree. For
example, module my follows the right most branch
from the root (cyclomatic complexity of msg is greater
than 26) and again follows the right most branch from
there (operator counts of ms is greater than 34). We
can finally predict it to be of high cost because its
module call counts falls between 4 and 10.

2.2 CTA Cost

There are two types of cost associated with the CTA
technique: the cost of building classification trees and
the cost of using them. The former is determined by
the factors: 1) the CTA parameters, 2) the size of
the available measure pool where measures are to be
selected, and 3) the implementation efficiency of the
CTA supporting tools. For the latter cost factor, the
tree size is a good measure. Because the classification
trees we are studying have fixed structure (there are
4 branches from every internal node), we can effec-
tively capture the cost of using classification trees by
counting the number of internal nodes for them.

2.3 CTA Performance

According to the match between CTA predictions
and actual cost data for the modules in a test set,
various performance measures can be defined:

Coverage: The percentage of modules (either posi-
tively or negatively) identified;

Accuracy: The percentage of correct matches between
predictions and actual data,;

Comsistency: The percentage of predicted high cost
modules who are actually high cost. High consistency

cyclomatid
complexity

fungtion pipis

0)
- - % ?

—

operators

0
26731/ 34\
! + - module calls
0
Y
? ? + -

Figure 1: Component Classification Tree

indicates less “false alarms;” and

Completeness: The percentage of actual high cost
modules predicted correctly by CTA. It reveals the
power of CTA to uncover high cost modules.

3 Axiomatic Program Complexity

Most program complexity studies define complexity
as a numeric comparison between any two programs.
However, we have come to realize that some programs
are inherently incomparable. For example, it makes
litttle sense to compare the complexity between a pay-
roll system and a real-time emission control system in
a car. They each come from radically different appl-
cation domains.

Instead we view complerity as a partial ranking
among the set of programs and a complezity measure
as a function applied to specific programs as an ap-
proximation of the attribute we are trying to deter-
mine. The following summarizes this model [4].

3.1 Axiomatic model

Consider a program as a hierarchy of modules con-
sisting of instructions, data, and the underlying exe-
cution control mechanism. We initially limit ourselves
to a Pascal-like nested scope sequential control lan-
guage. Programs are represented by their abstract
syntax trees:

4-29

10005788L

e U represents the set of all programs.

e AST(P) represents a binary abstract tree repre-
sentation for program P. The root node of pro-
gram P is given by root(P), the left subtree of P
is left(P) and the right subtree of P is given by
right(P).

e For programs P and Q, IN(P,Q) is true if P is
a subprogram of Q (i.e., AST(P) is a subtree of
AST(Q))- -

o If IN(P,Q) is true, then dist(P,Q) represents
the path length in order to go from root(P) to

root(Q).

e P with all free occurrence of z replaced by y not
in P is denoted as P;. We use Pg to mean the
renaming is carried out for all corresponding one-
to-one pairs in lists a and §, where

(var(P)—a)Nnp =10

(var(P) is the variable list of program P).

A complezity ranking R is a binary relation on the
set of programs. The complexity ranking between pro-
grams P and Q is R(P, Q). We interpret R(P, Q)asP
being no more complex than Q. P and Q are compa-
rable, denoted C(P, Q) , if either R(P, Q) or R(Q, P)
holds, i.e., C(P,Q) iff R(P,Q)V R(Q, P).

A complezity measure V is a function that maps
every program into a vector of real numbers: V: U —
R". : '

Although simple definitions, we are immediately
confronted by a difficult problem:

Theorem T1: There exist complexity rankings that
are undecidable.!

Although the general problem of complexity rank-
ing is undecidable, many practical rankings are not.
In what follows we restrict ourselves to these more
practical rankings.

Axiom Al: (VP,Q) (E = @ = C(P,Q)) where
is the function of program X.

Given programs P and Q, the problem of [E =

is unfortunately also undecidable. This axiom, then,
is at the center of the problem of developing effec-
tive complexity measures on real programs. We cer-
tainly want to be able to compare equivalent programs
in order to determine which is best; however, unde-
cidability says that we cannot always do this. It is
for this reason that most complexity measures have
not achieved significant breakthroughs since the un-
derlying models are rarely comparable. However, in
many practical applications, such as described above,
we know or can assume that two given programs have
the same or similar functionality.

Because of this, in practice we often use a weaker
form of this axiom that only addresses the similarity
of two programs:

Axiom A1 (VP,Q) ([P]=[Q]= (P, Q)).

A program in general consists of many hierarchi-
cally related components. As a result, we require that
a program must be comparable with a subpart of it-
self.

Axiom A2: (VYP,Q) (IN(P,Q) = C(P,Q))

1 Axiom and theorem references are keyed to [4], which also
contains the proofs of the theorems. Some of the theorems
given in that paper are not relevant to this present discussion
and hence are not listed here.

4-30

10005788L

Axiom A2 brings up the intuitive notion that we
would like complexity to increase as programs become
larger, i.e., if P is a component in Q (IN(P,Q)), then
P is no more complex than Q. We left this out because
there are cases where the opposite is true. Consider
Q formed from P by addition of easily recognizable
keywords or tags; Q might be more readable, thus
easier to maintain as a result. Another case is that
loops are often more easily understood if they include
their initialization code than if presented without it.

Contextual information might help to reduce the
complexity of composite programs. But the degree
of the reduction must be limited, otherwise infinitely
large programs paradoxically might be the simplest.
On the other hand, a periodic function such as co-
sine(z) as the complexity of a program, where z is
some size measure of a program P, is clearly not ac-
ceptable. As a general trend, then, adding compo-
nents must result in a more complex program:

Axiom A3:
(3K € N)(YP,Q)((IN(P,Q) A (dist(P,Q) >
K)) = R(P,Q))

Since our goal is to compare the complexity of two
different programs, define a predicate 7 such that
T(V(P),V(Q)) is true if program P is no more com-
plex than program Q. For V into R, we have the ob-
vious definition that 7 (V(P), V(Q)) is just (V(P) <
V(Q)). For higher dimensions, other results are pos-

‘sible (e.g., a dot product called the performance level

measure which compares alternative software designs

[1))-

T is our decision process which "determines how
well V approximates our complexity ranking R be-
tween P and Q based on the measured complexity
values V(P) and V(Q). We would like the relation-
ship to be T(V(P), V(Q)) < R(P,Q), and in fact it
is an implied axiom in most other complexity models.
However, we believe that this is the major weakness
that has prevented most complexity models from be-
ing truly effective. Because of undecidability issues
(e.g. theorem T1), for all P and Q we cannot deter-
mine 7 for every R. As a result, we use a weaker
condition, namely:

Axiom A4: (YP,Q) (R(P,Q)= V(P)<V(Q)) |

Since for many useful applications, R defines a total
ranking, we then have:

Theorem T5: When R is total, i.e., (VP,Q)C(P,Q) ,
we have:

(VP,Q) (U(P) < V(Q) = R(P,Q))

In order to be useful, we would like our complex-
ity measures to distribute programs across a range of
values. If there is only a single “dominating” cluster
point, we gain little information from the measure.
Axiom AS5 allows, for rough comparisons, bi-polar or
multi-polar distributions:

Axiom A5: (Vk € R)(36 > 0) (U= {P: V(P) €
[k—&k+8}=10])

Axiom A5 forces our complexity measure to be
nontrivial, as in:

Theorem T7: (VP)(3Q) (V(P) # V(Q))

When V maps programs into a discrete bounded
set S, axiom A5 requires that at least two points in S
have infinitely many programs with such values:

Theorem T8: If set S of complexity values is finite,
then:

HE:(keS)A({P:V(P)=Fk}|=|UD} 22

3.2 A classification model

Given these five axioms, we developed a classifi-
cation model for categorizing the various complexity
measures depending upon the information they pro-
vide. A vertical classification uses a subset of the at-
tributes for the entire program, while a hierarchical
classification uses some functional relationship among
the program’s parts.

Vertical classification

A complexity ranking R is abstruct, denoted
AB(R), if given P and Q with AST(P) = AST(Q),
then R(P, Q)(and equivalently, R(Q, P)).

If two programs are syntactically identical except
for variable names, as long as two set of names are
isomorphic, the only conceivable differences is inter-
pretational (the meaning attached to each name). On

10005788L

4-31

the other hand, when considered functionally, each
name is just a surrogate for the underlying data ob-
ject. Thus we have the classification:

A complexity ranking R is functional, denoted
FN(R), if given P and Q with name sets a and §
such that AST(P5') = AST(Q), then R(P, Q).

Hierarchical classification

Assessing complexity by using only the components
while ignoring interactions (i.e. ignoring the context
where the components are defined and used) results in
a conter! free ranking: A complexity ranking R is con-
text free, denoted CF(R), if given P, its ranking with
respect to any given Q can be uniquely determined
by: (1) Q and (2) root(P), the complexity ranking of
left(P), and the complexity ranking of right(P).

As a special case of context free complexity where
organizational information is completely ignored, we
can have primitive complexity: A complexity rank-
ing R is primitive, denoted PR(R), if all programs
P and Q with the same collection of AST(P) and
AST(Q) nodes (same number of occurrences for each
corresponding pair) then R(P, Q).

Also, a complexity ranking R is interactional, de-
noted JA(R), if it is not context free, i.e. ~CF(R).

Without considering interaction, the complexity of
the composite complexity is the sum of all the com-
ponents complexities. However, due to interaction
among component parts, the total complexity may be
greater than the sum. Such a complexity ranking is
called overull.

If we are allowed to modify the internal structure,
or reorganize the program according to some program-
ming practices (such as modularization, data abstrac-
tion and information hiding), we may be able to cut
down the interfacing complexity, thus the overall com-
plexity. Since the two programs are functionally equiv-
alent, they are comparable in complexity (A2).

The relationship among different hierarchical
classes can be summarized in the following tree: -

(Primitive
Context Free PR(R)
CF(R) Non Primitive
-PR(R)
Hierarchical {
‘ Overall
Interactional OA(R)
IA(R) Not Overall
\ -~0A(R)

Using this model, we have been able to develop
Weyuker’s 9 properties for complexity measures as
special cases of our axioms [5). Since those proper-
ties have been widely studied over the past 4 years,
and since we can model her properties with our clas-
sification model, we believe that our axioms are a rea-
sonable approximation of program complexity.

4 Application of the Model

Sixteen software systems, ranging from 3000 to
112,000 lines of FORTRAN source code, were selected
from NASA ground support software for unmanned
spacecraft control developed in the NASA /GSFC Soft-
ware Engineering Laboratory. Each required between
5 and 140 person-months to develop over a period of 5
to 25 months by 4 to 23 persons. Each project contains
from 83 to 531 modules, totalling over 4700 modules.
There are 74 attributes, each quantified by a specific
measure, for each module divided into three broad cat-
egories: fault, effort, and style (or complexity).

For each application instance, one of the projects
was used as a training project in order to develop the
classification tree for the next project. This was re-
peated for the remainder of the 16 projects.

Five of the projects were of a greatly different size
than the others (by more than a factor of 3). We
deemed these to not fulfill Axiom A1’ on similarly
of functionality. This reduced the set of projects to
11 (and 10 data points) and are given as Group A in
what follows. We used a different ordering of 6 of the
projects in terms of training set to give us Group B
(and 5 additional data points). CTA refers to the orig-
inal Classification Tree Analysis process, while ACT
refers to the Axiomatic Classification Tree process de-
veloped in this paper.

100057881

4.1 Measure Screening

From the set of 74 measures for each. module, we
first eliminate all measures that are not directly mea-
sureable from the modules themselves. Thus effort
data, e.g., number of hours to develop the module,
are eliminated. We also eliminated change and error
data since they represent interactions among program
components and the operational environment. We can
therefore reduce the number of measures to 40.

All candidate measures satisfy axioms Axiom Al’
(comparing functionally equivalent programs), Ax-
iom A2 (comparing component-composite pairs),
Axiom A4 (measures agree with their ranking), and
Axiom A5 (no single cluster). However, many of
the measures do not satisfy Axiom A3, the general
monotonicity axiom. These measures are averaging
measure such as assignment statements per 1000 eze-
cutable statements, which may be correlated with av-
erage effort per 1000 lines or so0, but not with the total

. development effort. Therefore these measures will be

4-32

eliminated. This reduces the candidate measures from
40 to 18, with the candidate measure set S being the
left half of Table 2.

Both abstract and non-abstract aspects contribute
to cost, so measures from any vertical class are poten-
tially acceptable. On the other hand, as we are only
considering cost and complexity at the module level,
the hierarchical classification is not relavent. The
analysis based on the measure classification scheme
does not eliminate any measure for CTA in this case.

4.2 Apggregate Evaluation

Given 18 remaining measures that meet the bound-
ary conditions based on the axioms and measure clas-
sifications, we next determine which of them best pre-
dicts total effort. The underline distribution, as we
assumed, is a four region distribution (grouped into
four quartiles) determined by historical data. A quar-
tile of modules is positively identified if more than
75% of the modules (tolerance level: 25%) have the
upper most quartile of effort. The negative sets can
be similarly identified.

Let m;(V) (i = 1,2,3,4) be the number of modules
in quartile i using measure V; p;(V) be the proportion
of modules in m;(V) belonging or to the upper most
quartile of effort; and n;(V) be the rest proportion in
m;(V) (therefore p;(V) + ni(V) = 1). As a result,
a quartile is positively identified if p;(V) > 0.75, and

Meets Axiom A3

Fails Axiom A3

assignment statements
input-output statements
input-output parameters
source lines

comments

source lines minus comments
executable statements
function calls

module calls

function plus module calls
cyclomatic complexity
operators

operands

total operators

total operands

decisions statements
format statements

origin

assignment statements per 1000 executable statements
input-output statement per comment

input-output parameters per comment

input-output statements per 1000 executable statements
input-output statements per input-output parameter
input-output statements per 1000 source lines

function calls per comment

function calls per input-output statement

function calls per function plus module call

function calls per input-output parameter

function calls per module call

.module calls per comment

module calls per input-output parameter

module calls per function plus module call

module calls per input-output statement

function plus module calls per 1000 source lines
function plus module calls per input-output statement
function plus module calls per input-output parameter
function plus module calls per 1000 executable statements
function plus module calls per comment

cyclomatic complexity per 1000 source lines
cyclomatic complexity per 1000 executable statements

Table 2: Attributes passing initial screening

negatively identified if n;(V) > 0.75.

To formulate the objective function for the aggre-
gated selection, we need to evaluate the contribution
of each quartile. We can weight them by the num-
ber of modules falling into the quartile. Therefore, we
formulate our selection criteria as:

Jmax {Z{’"ﬁ(") «pi(V) +mi(V) = n.-(V)}} (1)

for i ranging from 1 to p(V) > 0.75 Vv n;(V) 2 0.75

This selection criterion maximizes the number of
modules in positively or negatively identified quartiles.
For each of the quartiles neither positively nor nega-
tively identified, another measure is selected using the
same criterion. The process continues until all mod-
ules are identified or all measures are exhausted.

5 Results

We applied both the original CTA process and the
modified ACT process to the 16 NASA projects broken

10005788L

down into the 11 projects of groups A and six projects
of B. The following sections describe the results of this
analysis.

Size of generated trees

One measure of the efficiency of the technique is
the size of the classification trees that are generated.
Figure 2 shows that the axiomatic model (ACT) re-
duces tree size approximately 27% over the original
CTA model from 188 nodes to 136 nodes in the 15
programs with average tree size dropping from 12.5 to
9.1 nodes.

The smaller the tree the more desirable (less costly
to use to navigate through the tree, fewer measures to
collect), thus a point in the upper left region represents
an improvement over the original CTA.

Performance coverage

Table 3 compares the coverage based on the original
and modified classification trees. In all the projects
except one, near 100% coverage is achieved by both
methods. Thus the decision tree analysis method al-
most always will predict a cost for a module and will

4-33

CTA _ ‘...’&4:36)

f 3
20
a
a2
a
10
a
a
a
b
a
b
ACT
0 10 - 20
individual data points average

group A group Bl A B all
CTA|17157886493418[36341]17.73.412.5
ACT|9 1125744333 9|33241{12.32.6 9.1

Figure 2: Internal Node Count Comparison

individual data points average
group A group B |A B all
CTA|66 76 78 63 53 67 71 85 73 71|70 50 81 77 58/70 68 69
ACT!67 73 80 66 50 67 81 83 73 89|79 54 86 85 58|75 74 74

Table 4: Accuracy Comparison

mmdividual data points average
group A group B A Ball

CTA/|70 66 31 54 52 63 30 16 50 10{ 7 100 33 17 65{39 35 38

ACTI|67 61 37 57 56 63 50 15 50 23{43 85 40 29 65{50 50 50

group A group B

CTA|98 98 99 98 91 93 97 100 100 98|100 98 97 97 100
ACTl99 100 97 100 82 93 100 98 100 99| 98 98 100 97 100

a. individual data points

group A group B all

CTA| 97 99 97

ACT| 97 99 97
b. average comparison

Table 3: Coverage Comparison

rarely leave modules unclassified. So, we can conclude
that the CTA technique using either selection method
achieves fairly good and consistent coverage, with an
average of 97% coverage for both.

Performance accuracy

Accuracy improved about 5% with the ACT pro-
cess, as given in Table 4.

Performance consistency
Table 5 gives the conswtency comparison. This is

the measure that drives the whole process, being that
identification of high cost modules is the major goal

10005788L

Table 5: Consistency Comparison

individual data points average
group A group B [A B all
CTA|[26 60 54 62 42 21 4233 6 47| 7 4 4063 47]38 28 35
ACT)30 46 73 59 49 21 14 33 6 30(71 13 40 63 47|35 39 35

Table 6: Completeness Comparison

of the prediction process.

The performance level between the two selection
methods is significantly different, with the modified
ACT selection method outperforming the original
CTA method by a margin of 50% to 38%.

Performance completeness

While ACT generates many fewer “false alarms,”
(i.e., predicting high cost modules which really are
not high cost — the above consistency measure), both
methods are comparable in actually identifying the
high cost modules, i.e., the completeness measure of
Table 6. That is, both will fail to indicate high cost
modules in over half the cases.

6 Conclusions

Classification Trees are a method to use measure-
able quantities from program modules in order to de-
termine desireable attributes from the development
process. Identification of high cost modules should
correlate closely with other process measures such as
reliability.

In this paper, we presented a Classification Tree
Analysis (CTA) method and a modification to it,
the Axiomatic Classification Tree Analysis (ACT)
method, where an axiomatic model of program com-
plexity was used to develop the candidate measures in
the classification tree.

4-34

In all important measures, the ACT was either as
good as or improved upon the original CTA model:
(1) Classification trees were smaller; (2) Coverage was
the same; (3) Accuracy improved; (4) Consistency im-
proved and (5) Completeness was the same. We there-
fore believe that we have a candidate process that im-
proves upon the original model.

Using an axiomatic basis for classification trees has
two important economic benefits:

1. By eliminating unnecessary measures from the
classificaiton tree (e.g., reducing the list from 74
to 18 in the NASA SEL experiment), we elimi-
nate the need to collect such data. This would
imply less overhead on the development process.

2. The axiomatic classification tree analysis tech-
nique generates improved results, allowing man-
agement to better control and evaluate the de-
velopment process and allow for more informed
decision making with less risk involved.

Of course there is still much more to be done. ACT
is only right on 50% of the modules it calls high cost,
and only finds accurately over one third of these mod-
ules. However, the method is improving, and is inex-
pensive to use since it is available as a byproduct of
static analysis of the developing code. Further work
will continue on developing these models.

Acknowledgements

This research was supported in part by National
Science Foundation grant CCR-8819793 and National
Aeronautics and Space Administration grant NSG-
5123 to the University of Maryland.

References

[1] Cirdenas S. and M. V. Zelkowitz, “A man-
agement tool for the evaluation of software de-
signs,” IEEE Trans. on Software Engineering 17,
9 (September, 1991) 961-971.

[2] Porter A. A. and R. W. Selby, “Empirically
Guided Software Development Using Metric-
Based Classification Trees”, IEEE Software,
(March, 1990) 46-54.

[3] Selby R. W. and A. A. Porter, “Learning from
example: Generation and evaluation of decision
trees for software resource analysis,” IEEE Trans.
on Software Engineering 14, 12 (1990) 1743-1757.

10005788L

[4] Tian J. and M. V. Zelkowitz, “A formal program
complexity model and its application,” J. of Sys-
tems and Software 17, 3 (March, 1992) 253-266.

[5) E. 3. Weyuker, “Evaluating Software Complexity
Measures,” IEEE Trans. on Software Engineer-
ing, 14, 9 (1988) 1357-1365.

