
On Input Profile Selection For Software Testing *

Naixin Li Yashwant K. Malaiya

Computer Science Department
Colorado State University

Fort Collins, CO 80523
(303) 491-7031

malai ya@cs. colost at e .edu

Abstract

This paper analyzes the effect of input profile se-
lection on software testing using the concept of fault
detectability profile. It shows that optimality of the
input profile during testing depends on factors such
as the planned testing effort and the fault detectabil-
ity profile. To achieve ultra-reliable software, selecting
test input uniformly among different input domains is
preferred. On the other hand, if testing effort is lim-
ited due to cost or schedule constraints, one should
test only the highly used input domains. Use of opera-
tional profile is also needed for accurate determination
of operational reliability.

1 Introduction

Significant effort is now being devoted to develop
techniques to deliver reliable software. Methods pro-
posed include well-controlled software development
practice such as the cleanroom approach[l6, 241, for-
mal verification and testing. Cleanroom approach sig-
nificantly reduces the number of faults introduced dur-
ing the early phases of software life cycle, but it can-
not totally avoid the problem of software faults and
failures. Formal verification has been used for small
programs but, in its current stage, cannot be applied
to practical software which can be very large. In fore-
seeable future, achievement of reliable software will
heavily rely on software testing.

During testing a program is executed with some
inputs to see if the software operates as it is specified.
It is impossible to exhaustively test a program due to
the sheer size of the input space. Thus some approach
must be used to select a small subset of the input

'This work was partly supported by BMDO and is monitored
by ONR

space with the hope that the inputs from this subset
are representatives for the whole input space and will
be able to detect most, if not all of the software faults.

Several different approaches for software testing are
used. For functional testing, input space is partitioned
into domains based on the functions supported by the
software. Every input from a domain is considered
to be equivalent to every other input from the same
domain as far as the software fault detection is con-
cerned. Structural testing is based on the control flow
of the code. One cannot have confidence in a section
of code unless it has been tested out. One should test
all possible and reachable elements of a software if the
cost and time constraints allow. Many criteria have
been proposed for structural testing including state-
ment coverage, branch coverage, and data-flow based
coverage measures.

Both functional and structural testing have their
limitations. Neither of them assures that every possi-
ble fault will be found. Some complete coverage crite-
ria can be too costly to be practical.

There is another category of testing termed random
testing. In this approach, test input is selected ran-
domly from the input space. Testing continues until it
is estimated that the objective failure rate is reached
or the allowable test period has expired. The advan-
tage of random testing is the ease of selecting an input,
though sufficient care must be taken to ensure strict
randomness. Some form of test oracle may be needed
to efficiently verify that an output is valid.

The major purpose of testing is to increase the re-
liability of a software. During testing, if a fault is
found, it will be fixed and hence the reliability is im-
proved. Even if no faults are found and fixed for a
period, our confidence about the software reliability
is increased. The reliability growth exhibited during
software testing depends significantly on the selected
test inputs. What really matters to the user, and also

196
1071-9458/94 $4.00 0 1994 IEEE

to the testing personnel, is the software’s operational
reliability, which depends on the software’s quality as
well as its operational usage. Since it is extremely dif-
ficult, if not impossible, to detect and fix all the faults
in a software, testing would be more effective if one
can detect and fix faults that are more likely to result
in failures during operational use. This gives rise to
the idea of operational profile-based testing [18, 191
which involves partitioning input space into domains
and selecting inputs from each domain based on its
frequency during operational use. Musa has given de-
tailed steps for the construction of operational profile
and the associated test input selection [19]. Cobb and
Mills [5] mention that operational profile based (us-
age) testing is 20 times more effective than coverage
testing. We examine this aspect of testing in detail
here.

Another purpose of software testing is to assess
the software quality. The software failure data col-
lected during software testing is used with the soft-
ware reliability growth models so that the program’s
reliability can be estimated. For such estimation to
be accurate, it is required that the software should
be exercised during testing phase following the same
input distribution, as the software in operational us-
age. Indeed, this is an assumption generally made for
software reliability models [9]. If the input selection
during testing phase is different in distribution from
that in operation, some adjustment should be made
to account for the differences. Musa et a1 [17] intro-
duce a concept termed test compression factor for this
purpose. In contrast with real operational use, input
states for software during testing phase are generally
not repeated or repeated with much lower frequency.
Thus, actual test inputs are more effective in revealing
faults than random sampling according to operational
usage patterns. An simple example was given in [17]
to illustrate the concept of test compression factor,

“Assume that a program has only two in-
put states, A and B. Input state A occurs
90 percent of the time; B, 10 percent. All
runs take 1 CPU hr. In operation, on the
average, it will require 10 CPU hr to cover
the input space, with A occurring nine times
and B, one. In test, the coverage can be ac-
complished in 2 CPU hr. The testing com-
pression factor would be 5 in this case.”

Based on some assumptions, Musa et a1[17] computed
that the test compression factor varies from 8 to 20 for
softwares with the number of input states ranging from
lo3 to 10’. Musa et a1 [17] also noted that equivalence
partition testing can increase the test compression fac-
tor. A similar concept termed accelerating factor was

used by Drake and Wolting [7]. Using repair data,
they computed the value of acceleration factors for
two terminal firmware systems to be 47805 and 45532.
Observations [6, 8, 281 of significant correlation be-
tween structural coverage and fault removal and work
by Malaiya et a1 [13] also suggest that real testing can
be more effective than random sampling over opera-
tional usage distribution. Data gathered by Hecht and
Crane [lo] indicate that code segments for rare con-
ditions, like exception handling, have a much higher
failure rate than normal code. Since such code seg-
ments are not easily exercised during software testing,
relatively more faults (corresponding to higher failure
rates) are left undetected in such segments. When
these segments happens to be executed in real oper-
ation, they are much more likely to result in a fail-
ure. This would suggest that substantial number of
test cases should be directed towards rare conditions,
which generally cannot be satisfied by operational us-
ages testing.

We thus have two conflicting considerations. On
one hand, test input selection reflecting operational
usages tends to capture faults that are more likely to
result in a failure during operation; on the other hand,
it is believed that test input profile with more coverage
(of code, path, rare conditions, etc.) should be more
effective in fault removal. Taking both of these aspects
into consideration, what is the best overall test input
selection scheme for enhancing the reliability of a soft-
ware? How can the knowledge of operational profile
be best used in software testing? This paper tries to
address these questions.

2 Optimum Test Input Distribution

2.1 Input space with two domains

Let us start with a simple case which is analyzed
and interpreted relatively easily. Assume we have a
program whose operational profile is described by in-
put space partition SI , S2, IS11 >> 1 , IS21 >> 1,
with opl and op2 be the fraction of times the input
is drawn from S1 and S2. For example, S1 and S 2
could correspond to two different operations. Obvi-
ously opl + op2 = 1. Also let there be exactly 2 faults
in the program. Fault 1 can be detected only by in-
puts from S1, with detectability [15] of d l in S1. Here
the detectability of a fault is the probability that the
fault is detected by a test randomly selected from an
input space. Fault 2 can be detected only by inputs
from S2, with detectability of d2 in S2. (If two faults
are equally testable by S1 and S2, then the effect of

197

testing on reliability growth is independent of the dis-
tribution of test input selection.) We also assume that
all failures will be observed and debugging is perfect,
that is, no new faults are introduced while a fault is
being fixed. Since both S1 and S2 are large enough,
we will consider input selection from either of them as
sampling with replacement, which will facilitate the
calculation. For convenience, we use complements of
the detectability values, pl = 1 - dl , pa = 1 - d2.

Pbl = Prob{an input from S1 is processed properly
after n l test runs from SI}

= Prob{Fault 1 will not be encountered I it
was not found in n l tests}

x Prob{it was not found in n l tests}
+ Prob{it will not be encountered I it was

x Prob{it was found in n l tests}
found in n l tests}

= p1 x p y + 1 x (1 - p;l)
= 1 - p y + p, nl+l

Similarly,
Pd2 = Prob{an input from S2 is processed properly

after n2 test runs from S2}
n2+1 = 1 - p;2 + p2

Let n l + n2 = n be the total number of test runs.
n l = k x n, n2 = (1 - k) x n; where 0 5 k 5 1 is
the proportion of test inputs that are chosen from SI .
Then the overall probability of a correct execution is
given by,

PSYd = Pdlxop1+P,2xop2 = opl(l-p:"+p:"+')

Differentiating this with respect to k on both sides,

0p2[(n ln(pa))pF-k)n - (n ~ n (p ~)) p (, ' - ~) ~ + ']
To obtain the optimal value of k, we equal the above
to 0 and solve to get,

dP, , * = OPl[-(n WPl))P:" + (n ln(Pl))P;"+l] +

This gives the optimum proportion of test input which
should be selected from S1 provided that we know the
values of all the parameters PI , pa, opl, opz, and n.
Thus in general, the optimum test input distribution
is not the same as the operational usage (in this case,
k # opl). It is a function of the operational profile
as well as the individual fault detectabilities (1 - p1)
and (1 - p2), and the planned amount of test effort in
terms of the number of test inputs n .

It should be noticed that in Equation 2 , the terms
opl, op2, p l and p2 occur within logarithmic functions.

Thus kept is not as sensitive with respect to them as
with respect to n.

To explore the variation of kopt , let us assume that
pl = pz = p, i.e., the two faults have equal detectabil-
ities, then the above equation reduces to:

(3)

Notice that the second term is negative when op2 >
opl. From this equation, we can make the following
observations:

When opl = opz, k = 0.5. Thus if inputs from
two domains are used with equal frequency dur-
ing operation, they should be equally distributed
during testing. When opl < opal k < 0.5. That
is, if the domain S1 is used less frequently than
the domain S2, S1 should also be tested less often
compared with S2. Similar is true for the case
opl > op2. This is consistent with the suggested
operational profile based testing, although the ex-
act distribution for test input selection differs.

For fixed input sample size n, smaller detectabil-
ity (1 - p) implies kopt closer to 0.5 i.e. more
even distribution. Thus the test input selection
should also be based on the initial overall fault
detectability, i.e. the initial reliability of the soft-
ware. Figure 1 plots the variation of k,t with
p, where opl = 20%, op2 = SO%, curve A corre-
sponds to 100 test inputs, curve B to 1000 and
curve C to 10000.

For fixed fault detectability (1 - p), larger value
of n suggests more even distribution since kept is
closer to 0.5 as shown in Figure 2. This tells us
that the optimal distribution of input selection
depends on how much testing effort is going to
be spent. To test most effectively all the time,
the test input distribution should vary as testing
proceeds.

For small n, and small value of (1 -p) , the value of
kept obtained from the above equation can be neg-
ative, which suggests that no test inputs should
be chosen from S1 if the amount of testing is very
limited.

As n approaches infinity, kept approaches 0.5.
Which means that to achieve ultra-high reliability
through extensive testing, we should select inputs
with equal frequency from each domain. This
may correspond to weighted random testing, be-
cause S1 and S2 may not have the same size.

198

Y

'6

0.1

0 -

-0.1

-0.2

-

-

-

I

0.1

0 -

-0.1

-0.2

1

0.8

0.6

0.4

0.2

0

-

-

-

I

I

I
I
I

I
\
\
\

I I

op1=20%, op2=80% -
I opl=80%, op2=20% - -

- I

\

- \
\

'- - - - - - - - - _

Figure 2: Variation of kopl with n (p=O.99)

2.2 Input space with multiple domains operational reliability after n tests is described by :
m

PSYS = 1 - (1 - p) opi x pk,"
which is constrained by
Solving this, we obtain the optimal test input dis-

kj = 1.
In practice, there are several domains not just two.

Typically the number of domains obtained during the
construction of operational profile can be hundreds or

tribution given by:

i = 1 t o m (4)

This has the same format as the earlier solution
for the case of two partitions. The observations and

)
even thousands for very large projects [18, 191. For
such cases, we can still get an optimal distribution
for test input selection analytically. Let us assume O p t m mnIn(p) '
that a program's input space consists of m domains
with one fault associated with each domain with the
same detectability (1 - p) . In this case, the system

n . , O P i

1 1 4 o;.,-l k' = - +

199

3000

2500

Figure 3: Variation of relative MTTF with n (one fault for each domain)

usage-based testing L:o.01 k 0 1) - - -
uniform testing (k=0.5)

-

conclusions in the previous section are thus still appli-
cable.

3 Reliability Growth Wi th Different
Test Input Distributions

In this section, we will examine how reliability
growth is affected by different test input distribution.
These examples are given below to illustrate different
reliability growth trend for different detectability prc-
files with different test input distributions.

Example 1. Consider a program consisting of two
domains with one fault associated with each domain.
Figure 3 plots the reliability growth for this case. The
X-axis is the number of test cases applied and the Y-
axis is the relative value of MTTF as given by the
mean number of test cases to a failure,

where Pays can be computed using Equation 1. Curve
for k = 0.1 describes the reliability growth using oper-
ational profile based testing, curve for k = 0.01 corre-
sponds to testing using more biased input distribution,
and the curve for k = 0.5 to uses even distribution
between two input domains. For this example, we as-
sume opl = 0.1, op2 = 0.9, 1 - p = 0.01.

From the plots, we can see that initially when the
number of test input is small, more biased test input
distribution gives better MTTF. As more test inputs

are exercised, the reliability growth curve favors the
even distribution.

Example 2. Consider a system consisting of two do-
mains with three faults associated with each domain.
Figure 4 plots the reliability growth for this case. The
detectabilities for the three faults within each domain
are (1 - pl) = 0.01, (1 - p 2) = 0.05, (1 - p 3) = 0.1
respectively. The operational profile is described by
opl = 0.01, op2 = 0.99. The curve for k = 0.01 shows
the result of testing with operational usage. The curve
for IC = 0.001 is more biased. While the Curve for
k = 0.1 is less biased than operational usage. Again
the curve for k = 0.1 uses an even distribution.

The plot shows that when the number of test is less
than 450, usage-based testing is slightly better than
more uniform testing. After this, uniform testing will
be remarkably superior to usage-based testing.

Example 3. Figure 5 plots the reliability growth
for a system consisting of four domains with one fault
associated with each domain. The values of the pa-
rameters used in this plot are: opl = 0.01, op2 = 0.1,
op3 = 0.3, op4 = 0.59, (1 - p) = 0.02. The dashed
curve in the plot corresponding to uniform testing.
The solid curve reflects usage-based testing.

When the number of test input is less than 630,
usage-based testing is superior to uniform testing.
However, as more testing is involved, uniform testing
becomes much more better than usage testing.

Although the number of domains, the number of
faults associated with each domain, and the parame-
ters vary, the general trend shown in the above three
examples is the same. That is, testing should be more

200

45000

1600

1400

1200

1000

800

6 0 0 -

4oo00

usage-based testing - I
uniform testing - - ,

- I -
I

/
/ - / -

/
/

/ - /
/

/

- /
/

/
/

/
/

/
/

/

35000

s E 25000
I= c 2oooo I ~

I 15000

loo00

5000

0

k=O. 1
uniform testing (k=0.5) ,

_ _ _ _ _ _ _ _ _ - - _ - _ _ - - - - - - -

Number of test cases

biased towards the frequently used domains if only a
small number of test inputs is allowed. However, as
more test inputs are executed, test inputs should be
selected more uniformly among different domains.

uniform testing gives better MTTF once the number
of tests exceeds about 110.

Example 4. Figure 6 plots the reliability growth for
a system with 2 domains. There is one fault associated
with each domain. The parameters are assumed as
follows: opl = 90%, op2 = lo%, pl = 0.9, p2 = 0.99.
One should notice here the detectabilities of faults are
different and the detectability values are set in favor
of usage based testing. However, even for this case,

Usage Testing vs* ‘Overage Testing

Adams’ study of some real software system [l]
shows that the operational failure rates for different
projects follow a similar distribution with the number
of faults having a certain failure rate being inversely
proportional to the failure rate. Figure 7 plots the rel-

201

14OOo I I 1 I I 1

usaQe-bmed testing -
uniform testing

12ooo

e! l--

$

H 6OcnJ-

i --
8

4OOo-

2ooo-

-

,/'

,/'

.**
/'

a/*

,/
,.e*

_/--

__/- ___.--' _--- ___---- __---
__<---

_/-

ative detectability profiles from two projects and the
average detectability profile for 9 other projects.

Cobb and Mills [5] have used Adams' data in their
computation and came to the conclusion that usage
testing testing is about 20 times more effective than
(statement) coverage testing. If this is true in general,
then there is no need to do coverage testing. However,
a close examination suggests that some assumptions
implied in the calculation may not hold.

Assumption 1: Usage testing distributes
testing effort to faults according to the failure
rates, i.e. faults with higher failure rates are
tested with more effort than faults with lower
failure rates. Coverage testing distributes
test effort equally to every fault, so a major
portion of testing effort is devoted to faults
with small failure rate because a majority of
faults have small failure rates according to
Adams' data.

The fact is that each fault has a certain detectabil-
ity associated with each input domain. The overall
detectability profile of faults in a program depends
partly on the program's input distribution. In general,
bias in input distribution will make faults detectable
by inputs from heavily used domains more testable.
However, for an arbitrary input distribution, we can
not claim that all the faults detectable by inputs from
heavily used input domains are more testable than any
faults detectable by inputs from less used domains.
Both usage testing and coverage testing select test in-
put randomly either to follow certain test input distri-

bution or to achieve certain coverage level, so the fault
removal process is still dictated by the detectability
profiles associated with each input selection. With o p
erational profile based software testing, initially faults
associated with heavily used input domains are ex-
ercised more often and well-testable faults associated
with those domains get removed quickly. Thus dur-
ing early software testing, input profile reflecting the
software's operational usage is efficient. As testing
proceeds further, however, the number of such faults
with high testability diminishes and only hard to de-
tect faults remain undetected. Now most faults that
are relatively more detectable are associated with less
used input domains. Continued testing following the
operational profile then becomes inefficient.

Assumption 2: Usage testing and coverage
testing are equally effective in terms of the
number of failures detected per test input.

The fact is that initially during testing, coverage
testing and usage testing may have similar fault de-
tecting ability since they exercise the program in sim-
ilar way (each input will exercise some new features
of the software). As testing proceeds, coverage testing
would be more effective because it always tries to se-
lect test input such that some new part of a software
will be exercised, hence coverage testing is likely to re-
veal more faults than usage testing for each test input
on the average.

Ramsey and Basili noticed that the number of faults
detected in a procedure are independent of the number
of times the procedure is executed [23]. Piwowarski et

202

35

30

25

20

15

10

5

0
0 0.1 0.2 0.3 0.4 0.5 0.6

Relative Detectability

Figure 7: Detectability profile of faults for some operational software

a1 [22] observed that fault removal rate and code cov-
erage are closely related by a somewhat linear func-
tion. Vouk [28] has suggested that the relation be-
tween software coverage and fault removal rate follows
the Weibull distribution. Chen et a1 [4] suggested ex-
clusion of the tests that do not contribute to any type
of coverage from consideration when using traditional
software reliability models. Malaiya et a1 [14] have
recently proposed a new model to relate test cover-
age to software reliability. These results support that
when the number of tests increases to the point where
many additional test inputs based on operational us-
age do not contribute to more coverage, coverage test-
ing should be more effective in fault detection than
usage testing.

Assumption 3: The failure rate distribu-
tion remains the same when testing starts
and after testing finishes. Adams’ data [l]
gives the distribution of failures collected
from operational use.

For an untested software, the distribution of faults
over different detectabilities would be more uniform.
Trachtenberg [27] argues that the reason Adams’ data
follows Zipf’s law may be because during software de-
velopment at IBM, consciously or unconsciously, “the
effort to prevent and remove each fault could have
been expended in proportion to the fault’s potential
failure rate”. Although no data is available to describe
the failure rate distribution of faults for an untested
software, it is reasonable to assume that such failure
rate distribution must be more uniform initially. The

effect of such changes in software failure rate distribu-
tion during testing phases should also be taken into
consideration.

More detailed and careful analysis is needed to com-
pare the relative effectiveness of usage testing vs. cov-
erage testing. Quantitative evaluation of their effec-
tiveness remains a problem and calls for more experi-
mentation and experience to fully understand the test-
ing process.

5 Testing For Reliability

The operational profile of a software system can be
used at different stages in the software’s lifetime [17].
For the purpose of reliability certification or predic-
tion, software test input selection should follow the
software’s operational profile [16]. Also, operational
profile based testing can be efficient if only limited
amount of testing is available. If our main objective
of testing is fault removal, operational profile based
testing must be supplemented by coverage based test-
ing. Accurate operational profile of a software can be
difficult and costly to obtain in some cases but is worth
the effort if high reliability levels need to be certified.
When accurate operational profile is available, other
factors, such as the planned testing effort and the ini-
tial software quality also need to be considered because
they also affect the effectiveness of testing. When test-
ing a program, we must consider the software usage,
but should not rely solely on it.

Like operational profile- b ased testing, cover age

203

testing has its intuitive appeal. An ideal coverage cri-
terion should be such that it is possible to generate
tests manually or automatically to achieve the desired
coverage. The number of inputs for a target coverage
level should not be too large to be practical, and the
chosen level of the measure should satisfy the critical
reliability requirement. There should be a strong cor-
relation between reliability and the coverage measure
so that one can accurately estimate and predict the
reliability from the coverage measure and determine
when testing can be stopped because certain coverage
(and hence reliability) has already been reached.

Statement coverage (or block coverage) and branch
coverage are the most used coverage measures in prac-
tice. Other coverages such as data flow coverages also
becomes well-known. Tools are now available for col-
lecting the coverage data of test inputs for some met-
rics: block, branch, c-use, p-use, all-use [12]. Some
work is being done to study the test coverage growth
and its relation to fault removal rate or software re-
liability achieved. For example, Ntafos [20, 211 com-
pared the effectiveness of random testing with that of
branch testing and all-uses testing, and observed that
coverage testing is much more effective in revealing
faults. Malaiya et a1 [14] suggested a hypothesis that
different test coverage growths follow an logarithmic
trend. Based on this hypothesis, software fault re-
moval rate and software reliability can be estimated
directly from static test coverage measures. Still more
empirical data and analytical studies correlating such
coverage measures and reliability are needed.

It was noticed that faults are not evenly distributed
among program modules. Static metrics have been
used to predict fault-prone modules. Usage informa-
tion may be used to estimate the relative use frequen-
cies of program modules or functions. Combination of
these two types of information may be used to deter-
mine the reliability level for different modules. Based
on the reliability objective, different coverage mea-
sures and/or different coverage levels may be associ-
ated with different modules to achieve most efficient
testing.

6 Conclusions

Our results show that the optimal test input pro-
file for the purpose of defect removal depends on the
operational profile and the defect detectability profile
of the program. It is also depends, to a significant
extent, on the amount of testing planned. If only lim-
ited testing can be afforded, test input distribution
should be more biased than the operational profile.

For accurate estimation or prediction of software reli-
ability] testing should be conducted according to the
software’s operational profile. However, if very high
reliability is to be achieved through extensive testing,
test inputs should be more evenly distributed among
different input domains.

Coverage testing can be very effective in practice.
Detailed investigations are needed in this area to ex-
amine and evaluate different coverage measures. Work
is also needed to relate different coverage measures to
software reliability growth. Since some modules are
more fault-prone than others, and some modules are
more critical to a system’s operation than others, a
family of coverage measures may be chosen eventually
to meet different reliability requirements for different
modules or different systems.

We suggest that effective software testing requires
the knowledge of operational profile, effectiveness of
coverage measures, and fault-proneness of program
modules. Further empirical and analytical research is
required for better understanding of the testing pro-
cess.

References

[l] E.N. Adams, “Optimizing Preventive Service of
Software Products,” IBM Journal of Research
and Development, Vol. 28, No. 1, January 1984,
pp. 2-13.

[2] B. Beizer, Software Testing Techniques, 2nd Edi-
tion, Van Nostrand Reinhold, 1990.

[3] J.R. Brown, and M. Lipow, “The Quantitative
Measurement of Software Safety and Reliability]”
TRW Report Q R 1776, August 1973.

[4] M.H. Chen, J.R. Horgan, A.P. Mathur and V.J.
Rego, “A time/structure based model for estimat-
ing software reliability,’’ SERC- TR-1 17-P, Pur-
due University, Dec. 1992.

[5] R. Cobb and H. Mills, “Engineering Software un-
der Statistical Quality Control,” IEEE Software,
November 1990, pp. 44-56.

[6] S.R. Dalal, J.R. Horgan and J.R. Kettenring,
“Reliable Software and Communications: Soft-
ware Quality, Reliability and Safety,’’ Proc. 15th
Int. Conf. Software Engineering, May 1993, pp.
425-435

[7] H.D. Drake and D.E. Wolting, “Reliability
Theory Applied to Software Testing” Hewlett-
Packard Journal, April, 1987, pp. 35-39.

204

[8] P.G.Frank1 and N.Weiss, “An Experimental Com-
parison of the Effectiveness of Branch Testing
and Data Flow Testing,” IEEE Trans. Soft. Eng.,
Aug. 1993, pp. 774-787.

[9] A.L.Goe1, “Software Reliability Models: Assump-
tions, Limitations, and Applicability”, IEEE
Trans. Software Engineering, Vol. December
1985, p. 1411-1423.

[lo] H. Hecht and P. Crane, “Rare Conditions and
Their Effect on Software Failures” Proc. Annual
Reliability and Maintainability Symposium, 1994,
pp. 334-337.

[ll] Y. Levendal, “Improving quality with a Manufac-
turing Process,” IEEE Software, March 1991, pp.
13-25.

[12] M.R. Lyu, J.R. Horgan and S. London, “A cover-
age Analysis Tool for the Effectiveness of Software
Testing” ISSRE’93, pp. 25-34.

[13] Y. K. Malaiya, A. von Mayrhauser and P. Sri-
mani, “An Examination of Fault Exposure Ra-
tio,” IEEE Trans. Software Engineering, Nov.
1993, pp. 1087-1094

[14] Y.K.Malaiya, N. Li, J.Bieman, R. Karcich and
B. Skibbe, The Relation Between Software Test
Coverage and Reliability, Technical Report, 1994,
to appear in ISSRE’94.

[15] Y. K. Malaiya and P. Verma, “Testability Pro-
file Approach to Software Reliability,” Advances
in Reliability and Quality Control (Ed. M.H.
Hamza), Acta Press, December, 1988, pp. 67-71.

[16] H.D. Mills, M. Dyer and R.C. Linger, “Clean-
room Software Engineering,” IEEE Software,
NOV. 1986, pp. 19-24.

[17] J.D. Musa, A Iannino, K . Okumoto, Software Re-
liability, Measurement, Prediction, Application,
McGraw-Hill, 1987.

[18] J.D. Musa, “The Operational Profile in Soft-
ware Reliability Engineering: An Overview ,” IS-
SRE’92 pp. 140-154.

[19] J.D. Musa, “Operational Profiles in Software
Reliability Engineering,” IEEE Software, March
1993, pp. 14-32.

[20] S.C. Natfos, “An Evaluation of Required Ele-
mente Testing Strategies”, 7th Int. Conf. on Soft-
ware Engineering, March 1984.

[all S.C. Ntafos, “On Required Element Testing”
IEEE Trans. on Software Engineering, October
1984, pp. 795-803.

[22] P. Piwowarski, M. Ohba and J . Caruso, “Cov-
erage Measurement Experience During Function
Test,” ICSE’93, pp. 287-300.

[23] J . Ramsey and V.R. Basili, “Analyzing the Test
Process Using Structural Coverage,” Proc. 8th in-
ternational conference on Software Engineering,
August 1985, pp. 306-3312.

[24] R. Selby, V. Basili, and F. Baker, “Cleanroom
Software Development: An Empirical Evalua-
tion,” IEEE Trans. Software Engineering, SE-
13(9), 1987, pp. 1027-1037.

[25] H.M. Sneed, “Data Coverage Measurement in
Program Testing,” Workshop on Software Test-
ing, July 1986.

[26] M. Takahashi, and Y. Kamayachi, “An Empir-
ical Study of a Model for Program Error Pre-
diction,” IEEE Trans. Software Engineering, SE-
15(1), 1989, pp. 82-86.

[27] M . Trachtenberg, “Why Failure Rates Observe
Zipf’s Law in Operational Software,’’ IEEE
Trans. Reliability, Vol. 41, No. 3, 1992, pp. 386-
389.

[28] M A . Vouk “Using Reliability Models During
Testing With Non-operational Profiles,” Proc.
2nd Bellcore/Purdue workshop on issues in Soft-
ware Reliability Estimation, Oct. 1992, pp. 103-
111

205

