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Abstract 

This paper analyzes the effect of input profile se- 
lection on software testing using the concept of fault 
detectability profile. It shows that optimality of the 
input profile during testing depends on factors such 
as the planned testing effort and the fault detectabil- 
ity profile. To achieve ultra-reliable software, selecting 
test input uniformly among different input domains is 
preferred. On the other hand, if testing effort is lim- 
ited due to cost or schedule constraints, one should 
test only the highly used input domains. Use of opera- 
tional profile is also needed for accurate determination 
of operational reliability. 

1 Introduction 

Significant effort is now being devoted to develop 
techniques to deliver reliable software. Methods pro- 
posed include well-controlled software development 
practice such as the cleanroom approach[l6, 241, for- 
mal verification and testing. Cleanroom approach sig- 
nificantly reduces the number of faults introduced dur- 
ing the early phases of software life cycle, but it can- 
not totally avoid the problem of software faults and 
failures. Formal verification has been used for small 
programs but, in its current stage, cannot be applied 
to practical software which can be very large. In fore- 
seeable future, achievement of reliable software will 
heavily rely on software testing. 

During testing a program is executed with some 
inputs to see if the software operates as it is specified. 
It is impossible to exhaustively test a program due to 
the sheer size of the input space. Thus some approach 
must be used to select a small subset of the input 
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space with the hope that the inputs from this subset 
are representatives for the whole input space and will 
be able to detect most, if not all of the software faults. 

Several different approaches for software testing are 
used. For functional testing, input space is partitioned 
into domains based on the functions supported by the 
software. Every input from a domain is considered 
to be equivalent to every other input from the same 
domain as far as the software fault detection is con- 
cerned. Structural testing is based on the control flow 
of the code. One cannot have confidence in a section 
of code unless it has been tested out. One should test 
all possible and reachable elements of a software if the 
cost and time constraints allow. Many criteria have 
been proposed for structural testing including state- 
ment coverage, branch coverage, and data-flow based 
coverage measures. 

Both functional and structural testing have their 
limitations. Neither of them assures that every possi- 
ble fault will be found. Some complete coverage crite- 
ria can be too costly to be practical. 

There is another category of testing termed random 
testing. In this approach, test input is selected ran- 
domly from the input space. Testing continues until it 
is estimated that the objective failure rate is reached 
or the allowable test period has expired. The advan- 
tage of random testing is the ease of selecting an input, 
though sufficient care must be taken to ensure strict 
randomness. Some form of test oracle may be needed 
to efficiently verify that an output is valid. 

The major purpose of testing is to increase the re- 
liability of a software. During testing, if a fault is 
found, it will be fixed and hence the reliability is im- 
proved. Even if no faults are found and fixed for a 
period, our confidence about the software reliability 
is increased. The reliability growth exhibited during 
software testing depends significantly on the selected 
test inputs. What really matters to the user, and also 
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to the testing personnel, is the software’s operational 
reliability, which depends on the software’s quality as 
well as its operational usage. Since it is extremely dif- 
ficult, if not impossible, to detect and fix all the faults 
in a software, testing would be more effective if one 
can detect and fix faults that are more likely to result 
in failures during operational use. This gives rise to 
the idea of operational profile-based testing [18, 191 
which involves partitioning input space into domains 
and selecting inputs from each domain based on its 
frequency during operational use. Musa has given de- 
tailed steps for the construction of operational profile 
and the associated test input selection [19]. Cobb and 
Mills [5] mention that operational profile based (us- 
age) testing is 20 times more effective than coverage 
testing. We examine this aspect of testing in detail 
here. 

Another purpose of software testing is to assess 
the software quality. The software failure data col- 
lected during software testing is used with the soft- 
ware reliability growth models so that the program’s 
reliability can be estimated. For such estimation to 
be accurate, it is required that the software should 
be exercised during testing phase following the same 
input distribution, as the software in operational us- 
age. Indeed, this is an assumption generally made for 
software reliability models [9]. If the input selection 
during testing phase is different in distribution from 
that in operation, some adjustment should be made 
to account for the differences. Musa et a1 [17] intro- 
duce a concept termed test compression factor for this 
purpose. In contrast with real operational use, input 
states for software during testing phase are generally 
not repeated or repeated with much lower frequency. 
Thus, actual test inputs are more effective in revealing 
faults than random sampling according to operational 
usage patterns. An simple example was given in [17] 
to illustrate the concept of test compression factor, 

“Assume that a program has only two in- 
put states, A and B. Input state A occurs 
90 percent of the time; B, 10 percent. All 
runs take 1 CPU hr. In operation, on the 
average, it will require 10 CPU hr to cover 
the input space, with A occurring nine times 
and B, one. In test, the coverage can be ac- 
complished in 2 CPU hr. The testing com- 
pression factor would be 5 in this case.” 

Based on some assumptions, Musa et a1[17] computed 
that the test compression factor varies from 8 to 20 for 
softwares with the number of input states ranging from 
lo3 to 10’. Musa et a1 [17] also noted that equivalence 
partition testing can increase the test compression fac- 
tor. A similar concept termed accelerating factor was 

used by Drake and Wolting [7]. Using repair data, 
they computed the value of acceleration factors for 
two terminal firmware systems to be 47805 and 45532. 
Observations [6, 8, 281 of significant correlation be- 
tween structural coverage and fault removal and work 
by Malaiya et a1 [13] also suggest that real testing can 
be more effective than random sampling over opera- 
tional usage distribution. Data gathered by Hecht and 
Crane [lo] indicate that code segments for rare con- 
ditions, like exception handling, have a much higher 
failure rate than normal code. Since such code seg- 
ments are not easily exercised during software testing, 
relatively more faults (corresponding to higher failure 
rates) are left undetected in such segments. When 
these segments happens to be executed in real oper- 
ation, they are much more likely to result in a fail- 
ure. This would suggest that substantial number of 
test cases should be directed towards rare conditions, 
which generally cannot be satisfied by operational us- 
ages testing. 

We thus have two conflicting considerations. On 
one hand, test input selection reflecting operational 
usages tends to capture faults that are more likely to 
result in a failure during operation; on the other hand, 
it is believed that test input profile with more coverage 
(of code, path, rare conditions, etc.) should be more 
effective in fault removal. Taking both of these aspects 
into consideration, what is the best overall test input 
selection scheme for enhancing the reliability of a soft- 
ware? How can the knowledge of operational profile 
be best used in software testing? This paper tries to 
address these questions. 

2 Optimum Test Input Distribution 

2.1 Input space with two domains 

Let us start with a simple case which is analyzed 
and interpreted relatively easily. Assume we have a 
program whose operational profile is described by in- 
put space partition SI ,  S2, IS11 >> 1 ,  IS21 >> 1, 
with opl and op2 be the fraction of times the input 
is drawn from S1 and S2.  For example, S1 and S 2  
could correspond to two different operations. Obvi- 
ously opl + op2 = 1. Also let there be exactly 2 faults 
in the program. Fault 1 can be detected only by in- 
puts from S1, with detectability [15] of d l  in S1. Here 
the detectability of a fault is the probability that the 
fault is detected by a test randomly selected from an 
input space. Fault 2 can be detected only by inputs 
from S2, with detectability of d2 in S2. (If two faults 
are equally testable by S1 and S2, then the effect of 
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testing on reliability growth is independent of the dis- 
tribution of test input selection.) We also assume that 
all failures will be observed and debugging is perfect, 
that is, no new faults are introduced while a fault is 
being fixed. Since both S1 and S2 are large enough, 
we will consider input selection from either of them as 
sampling with replacement, which will facilitate the 
calculation. For convenience, we use complements of 
the detectability values, pl = 1 - dl ,  pa = 1 - d2. 

Pbl = Prob{an input from S1 is processed properly 
after n l  test runs from SI} 

= Prob{Fault 1 will not be encountered I it 
was not found in n l  tests} 

x Prob{it was not found in n l  tests} 
+ Prob{it will not be encountered I it was 

x Prob{it was found in n l  tests} 
found in n l  tests} 

= p1 x p y  + 1 x (1 - p;l) 
= 1 - p y  + p, nl+l 

Similarly, 
Pd2 = Prob{an input from S2 is processed properly 

after n2 test runs from S2} 
n2+1 = 1 - p;2 + p2 

Let n l  + n2 = n be the total number of test runs. 
n l  = k x n, n2 = (1 - k )  x n; where 0 5 k 5 1 is 
the proportion of test inputs that are chosen from SI .  
Then the overall probability of a correct execution is 
given by, 

PSYd = Pdlxop1+P,2xop2 = opl(l-p:"+p:"+') 

Differentiating this with respect to k on both sides, 

0p2[(n ln(pa))pF-k)n - (n  ~ n ( p ~ ) ) p ( , ' - ~ ) ~ + ' ]  
To obtain the optimal value of k, we equal the above 
to 0 and solve to get, 

dP, , * = OPl[-(n WPl))P:" + (n ln(Pl))P;"+l] + 

This gives the optimum proportion of test input which 
should be selected from S1 provided that we know the 
values of all the parameters PI ,  pa, opl, opz, and n. 
Thus in general, the optimum test input distribution 
is not the same as the operational usage (in this case, 
k # opl). It is a function of the operational profile 
as well as the individual fault detectabilities (1 - p1) 
and (1 - p2), and the planned amount of test effort in 
terms of the number of test inputs n .  

It should be noticed that in Equation 2 ,  the terms 
opl, op2, p l  and p2 occur within logarithmic functions. 

Thus kept is not as sensitive with respect to them as 
with respect to n. 

To explore the variation of kopt , let us assume that 
pl = pz = p, i.e., the two faults have equal detectabil- 
ities, then the above equation reduces to: 

(3) 

Notice that the second term is negative when op2 > 
opl. From this equation, we can make the following 
observations: 

When opl = opz, k = 0.5. Thus if inputs from 
two domains are used with equal frequency dur- 
ing operation, they should be equally distributed 
during testing. When opl < opal k < 0.5. That 
is, if the domain S1 is used less frequently than 
the domain S2, S1 should also be tested less often 
compared with S2. Similar is true for the case 
opl > op2. This is consistent with the suggested 
operational profile based testing, although the ex- 
act distribution for test input selection differs. 

For fixed input sample size n, smaller detectabil- 
ity (1 - p) implies kopt closer to 0.5 i.e. more 
even distribution. Thus the test input selection 
should also be based on the initial overall fault 
detectability, i.e. the initial reliability of the soft- 
ware. Figure 1 plots the variation of k,t with 
p, where opl = 20%, op2 = SO%, curve A corre- 
sponds to 100 test inputs, curve B to 1000 and 
curve C to 10000. 

For fixed fault detectability (1 - p), larger value 
of n suggests more even distribution since kept is 
closer to 0.5 as shown in Figure 2. This tells us 
that the optimal distribution of input selection 
depends on how much testing effort is going to 
be spent. To test most effectively all the time, 
the test input distribution should vary as testing 
proceeds. 

For small n, and small value of (1 -p) , the value of 
kept obtained from the above equation can be neg- 
ative, which suggests that no test inputs should 
be chosen from S1 if the amount of testing is very 
limited. 

As n approaches infinity, kept approaches 0.5. 
Which means that to achieve ultra-high reliability 
through extensive testing, we should select inputs 
with equal frequency from each domain. This 
may correspond to weighted random testing, be- 
cause S1 and S2 may not have the same size. 
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Figure 2: Variation of kopl with n (p=O.99) 

2.2 Input space with multiple domains operational reliability after n tests is described by : 
m 

PSYS = 1 - (1 - p )  opi x pk," 
which is constrained by 
Solving this, we obtain the optimal test input dis- 

kj = 1. 
In practice, there are several domains not just two. 

Typically the number of domains obtained during the 
construction of operational profile can be hundreds or 

tribution given by: 

i = 1 t o  m (4) 

This has the same format as the earlier solution 
for the case of two partitions. The observations and 

) 
even thousands for very large projects [18, 191. For 
such cases, we can still get an optimal distribution 
for test input selection analytically. Let us assume O p t  m mnIn(p) ' 
that a program's input space consists of m domains 
with one fault associated with each domain with the 
same detectability (1  - p ) .  In this case, the system 

n .  , O P i  

1 1 4  o;.,-l k' = - +  
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conclusions in the previous section are thus still appli- 
cable. 

3 Reliability Growth Wi th  Different 
Test Input  Distributions 

In this section, we will examine how reliability 
growth is affected by different test input distribution. 
These examples are given below to illustrate different 
reliability growth trend for different detectability prc- 
files with different test input distributions. 

Example 1. Consider a program consisting of two 
domains with one fault associated with each domain. 
Figure 3 plots the reliability growth for this case. The 
X-axis is the number of test cases applied and the Y- 
axis is the relative value of MTTF as given by the 
mean number of test cases to a failure, 

where Pays can be computed using Equation 1. Curve 
for k = 0.1 describes the reliability growth using oper- 
ational profile based testing, curve for k = 0.01 corre- 
sponds to testing using more biased input distribution, 
and the curve for k = 0.5 to uses even distribution 
between two input domains. For this example, we as- 
sume opl = 0.1, op2 = 0.9, 1 - p = 0.01. 

From the plots, we can see that initially when the 
number of test input is small, more biased test input 
distribution gives better MTTF. As more test inputs 

are exercised, the reliability growth curve favors the 
even distribution. 

Example 2. Consider a system consisting of two do- 
mains with three faults associated with each domain. 
Figure 4 plots the reliability growth for this case. The 
detectabilities for the three faults within each domain 
are (1 - pl)  = 0.01, (1 - p 2 )  = 0.05, (1 - p 3 )  = 0.1 
respectively. The operational profile is described by 
opl = 0.01, op2 = 0.99. The curve for k = 0.01 shows 
the result of testing with operational usage. The curve 
for IC = 0.001 is more biased. While the Curve for 
k = 0.1 is less biased than operational usage. Again 
the curve for k = 0.1 uses an even distribution. 

The plot shows that when the number of test is less 
than 450, usage-based testing is slightly better than 
more uniform testing. After this, uniform testing will 
be remarkably superior to usage-based testing. 

Example 3. Figure 5 plots the reliability growth 
for a system consisting of four domains with one fault 
associated with each domain. The values of the pa- 
rameters used in this plot are: opl = 0.01, op2 = 0.1, 
op3 = 0.3, op4 = 0.59, (1 - p) = 0.02. The dashed 
curve in the plot corresponding to uniform testing. 
The solid curve reflects usage-based testing. 

When the number of test input is less than 630, 
usage-based testing is superior to uniform testing. 
However, as more testing is involved, uniform testing 
becomes much more better than usage testing. 

Although the number of domains, the number of 
faults associated with each domain, and the parame- 
ters vary, the general trend shown in the above three 
examples is the same. That is, testing should be more 
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biased towards the frequently used domains if only a 
small number of test inputs is allowed. However, as 
more test inputs are executed, test inputs should be 
selected more uniformly among different domains. 

uniform testing gives better MTTF once the number 
of tests exceeds about 110. 

Example 4. Figure 6 plots the reliability growth for 
a system with 2 domains. There is one fault associated 
with each domain. The parameters are assumed as 
follows: opl = 90%, op2 = lo%, pl = 0.9, p2 = 0.99. 
One should notice here the detectabilities of faults are 
different and the detectability values are set in favor 
of usage based testing. However, even for this case, 

Usage Testing vs* ‘Overage Testing 

Adams’ study of some real software system [l] 
shows that the operational failure rates for different 
projects follow a similar distribution with the number 
of faults having a certain failure rate being inversely 
proportional to the failure rate. Figure 7 plots the rel- 
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ative detectability profiles from two projects and the 
average detectability profile for 9 other projects. 

Cobb and Mills [5] have used Adams' data in their 
computation and came to  the conclusion that usage 
testing testing is about 20 times more effective than 
(statement) coverage testing. If this is true in general, 
then there is no need to do coverage testing. However, 
a close examination suggests that some assumptions 
implied in the calculation may not hold. 

Assumption 1: Usage testing distributes 
testing effort to  faults according to the failure 
rates, i.e. faults with higher failure rates are 
tested with more effort than faults with lower 
failure rates. Coverage testing distributes 
test effort equally to  every fault, so a major 
portion of testing effort is devoted to  faults 
with small failure rate because a majority of 
faults have small failure rates according to  
Adams' data. 

The fact is that each fault has a certain detectabil- 
ity associated with each input domain. The overall 
detectability profile of faults in a program depends 
partly on the program's input distribution. In general, 
bias in input distribution will make faults detectable 
by inputs from heavily used domains more testable. 
However, for an arbitrary input distribution, we can 
not claim that all the faults detectable by inputs from 
heavily used input domains are more testable than any 
faults detectable by inputs from less used domains. 
Both usage testing and coverage testing select test in- 
put randomly either to follow certain test input distri- 

bution or to  achieve certain coverage level, so the fault 
removal process is still dictated by the detectability 
profiles associated with each input selection. With o p  
erational profile based software testing, initially faults 
associated with heavily used input domains are ex- 
ercised more often and well-testable faults associated 
with those domains get removed quickly. Thus dur- 
ing early software testing, input profile reflecting the 
software's operational usage is  efficient. As testing 
proceeds further, however, the number of such faults 
with high testability diminishes and only hard to  de- 
tect faults remain undetected. Now most faults that 
are relatively more detectable are associated with less 
used input domains. Continued testing following the 
operational profile then becomes inefficient. 

Assumption 2: Usage testing and coverage 
testing are equally effective in terms of the 
number of failures detected per test input. 

The fact is that initially during testing, coverage 
testing and usage testing may have similar fault de- 
tecting ability since they exercise the program in sim- 
ilar way (each input will exercise some new features 
of the software). As testing proceeds, coverage testing 
would be more effective because it always tries to  se- 
lect test input such that some new part of a software 
will be exercised, hence coverage testing is likely to  re- 
veal more faults than usage testing for each test input 
on the average. 

Ramsey and Basili noticed that the number of faults 
detected in a procedure are independent of the number 
of times the procedure is executed [23]. Piwowarski et 
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Figure 7: Detectability profile of faults for some operational software 

a1 [22] observed that fault removal rate and code cov- 
erage are closely related by a somewhat linear func- 
tion. Vouk [28] has suggested that the relation be- 
tween software coverage and fault removal rate follows 
the Weibull distribution. Chen et a1 [4] suggested ex- 
clusion of the tests that do not contribute to any type 
of coverage from consideration when using traditional 
software reliability models. Malaiya et a1 [14] have 
recently proposed a new model to relate test cover- 
age to software reliability. These results support that 
when the number of tests increases to the point where 
many additional test inputs based on operational us- 
age do not contribute to more coverage, coverage test- 
ing should be more effective in fault detection than 
usage testing. 

Assumption 3: The failure rate distribu- 
tion remains the same when testing starts 
and after testing finishes. Adams’ data [l] 
gives the distribution of failures collected 
from operational use. 

For an untested software, the distribution of faults 
over different detectabilities would be more uniform. 
Trachtenberg [27] argues that the reason Adams’ data 
follows Zipf’s law may be because during software de- 
velopment at IBM, consciously or unconsciously, “the 
effort to prevent and remove each fault could have 
been expended in proportion to the fault’s potential 
failure rate”. Although no data is available to describe 
the failure rate distribution of faults for an untested 
software, it is reasonable to assume that such failure 
rate distribution must be more uniform initially. The 

effect of such changes in software failure rate distribu- 
tion during testing phases should also be taken into 
consideration. 

More detailed and careful analysis is needed to com- 
pare the relative effectiveness of usage testing vs. cov- 
erage testing. Quantitative evaluation of their effec- 
tiveness remains a problem and calls for more experi- 
mentation and experience to fully understand the test- 
ing process. 

5 Testing For Reliability 

The operational profile of a software system can be 
used at different stages in the software’s lifetime [17]. 
For the purpose of reliability certification or predic- 
tion, software test input selection should follow the 
software’s operational profile [16]. Also, operational 
profile based testing can be efficient if only limited 
amount of testing is available. If our main objective 
of testing is fault removal, operational profile based 
testing must be supplemented by coverage based test- 
ing. Accurate operational profile of a software can be 
difficult and costly to obtain in some cases but is worth 
the effort if high reliability levels need to be certified. 
When accurate operational profile is available, other 
factors, such as the planned testing effort and the ini- 
tial software quality also need to be considered because 
they also affect the effectiveness of testing. When test- 
ing a program, we must consider the software usage, 
but should not rely solely on it. 

Like operational profile- b ased testing, cover age 
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testing has its intuitive appeal. An ideal coverage cri- 
terion should be such that it is possible to generate 
tests manually or automatically to achieve the desired 
coverage. The number of inputs for a target coverage 
level should not be too large to be practical, and the 
chosen level of the measure should satisfy the critical 
reliability requirement. There should be a strong cor- 
relation between reliability and the coverage measure 
so that one can accurately estimate and predict the 
reliability from the coverage measure and determine 
when testing can be stopped because certain coverage 
(and hence reliability) has already been reached. 

Statement coverage (or block coverage) and branch 
coverage are the most used coverage measures in prac- 
tice. Other coverages such as data flow coverages also 
becomes well-known. Tools are now available for col- 
lecting the coverage data of test inputs for some met- 
rics: block, branch, c-use, p-use, all-use [12]. Some 
work is being done to  study the test coverage growth 
and its relation to fault removal rate or software re- 
liability achieved. For example, Ntafos [20, 211 com- 
pared the effectiveness of random testing with that of 
branch testing and all-uses testing, and observed that 
coverage testing is much more effective in revealing 
faults. Malaiya et a1 [14] suggested a hypothesis that 
different test coverage growths follow an logarithmic 
trend. Based on this hypothesis, software fault re- 
moval rate and software reliability can be estimated 
directly from static test coverage measures. Still more 
empirical data and analytical studies correlating such 
coverage measures and reliability are needed. 

It was noticed that faults are not evenly distributed 
among program modules. Static metrics have been 
used to predict fault-prone modules. Usage informa- 
tion may be used to estimate the relative use frequen- 
cies of program modules or functions. Combination of 
these two types of information may be used to deter- 
mine the reliability level for different modules. Based 
on the reliability objective, different coverage mea- 
sures and/or different coverage levels may be associ- 
ated with different modules to achieve most efficient 
testing. 

6 Conclusions 

Our results show that the optimal test input pro- 
file for the purpose of defect removal depends on the 
operational profile and the defect detectability profile 
of the program. It is also depends, to a significant 
extent, on the amount of testing planned. If only lim- 
ited testing can be afforded, test input distribution 
should be more biased than the operational profile. 

For accurate estimation or prediction of software reli- 
ability] testing should be conducted according to the 
software’s operational profile. However, if very high 
reliability is to be achieved through extensive testing, 
test inputs should be more evenly distributed among 
different input domains. 

Coverage testing can be very effective in practice. 
Detailed investigations are needed in this area to ex- 
amine and evaluate different coverage measures. Work 
is also needed to relate different coverage measures to 
software reliability growth. Since some modules are 
more fault-prone than others, and some modules are 
more critical to a system’s operation than others, a 
family of coverage measures may be chosen eventually 
to meet different reliability requirements for different 
modules or different systems. 

We suggest that effective software testing requires 
the knowledge of operational profile, effectiveness of 
coverage measures, and fault-proneness of program 
modules. Further empirical and analytical research is 
required for better understanding of the testing pro- 
cess. 
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