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ABSTRACT

Random testing is a well known concept that requires that each test is selected randomly regardless of the
test previously applied. This paper introduces the concept of antirandom testing. In this testing strategy each
test applied is chosen such that its total distance from all previous tests is maximum. Two distance measures
are de�ned. Procedures to construct antirandom sequences are developed. A checkpoint encoding scheme is
introduced that allows automatic generation of e�cient test cases. Further developments and studies needed are
identi�ed.

1 Introduction

Exhaustive testing of software is infeasible except for very small programs [1, 2]. Achieving 100% test coverage
using a speci�c measure does not assure that all defects have been found [4, 5]. Obtaining total coverage itself
may be hard; 85% branch coverage is often used as a target. The testing time, often a signi�cant fraction of
the overall development time, is always limited. The testers thus have the challenging task of making testing as
e�cient as possible, since the cost of remaining defects in the released code can be very high.

Here we consider black-box testing where only the external speci�cations are used to obtain test suites. No
implementation speci�c information is assumed to be known. Often software testing is termed random [3, 6, 7].
By de�nition, in random testing the values of the inputs in each test are selected randomly, regardless of the
previous tests applied. Random testing and its variations have been extensively used and studied for hardware
systems.

Random testing avoids the problem of deterministic test generation that requires structural information about
the program to be processed for generating each test. Available evidence suggests that random testing may be
a reasonable choice for obtaining a moderate degree of con�dence; however, it becomes very ine�cient when the
residual defect density becomes low [6].

Random testing does not exploit some information that is available in black-box testing environment. This
information consists of the previous tests applied. If an experienced tester is generating tests by hand, he would
select each new test such that it covers some part of the functionality not yet covered by tests already generated.
The objective of this paper is to formally de�ne an approach that uses this information and to propose schemes
that may allow such test generation to be done automatically. We term this approach antirandom testing, since
selection of each test explicitly depends on the tests already obtained. The problem of generating antirandom
sequences is �rst considered for boolean inputs. to make each new test as di�erent as possible, we use Hamming

distance and Cartesian distance as measures of di�erence. In general, the input variables for a program can be
numbers, characters as well as data structures. Here we also present an approach to e�ciently encode the input
space spanned by such variables into binary. This allows binary antirandom sequences to be decoded into actual
inputs.
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Test data selection has been regarded as an important part of testing software [8, 9, 10, 11]. Researchers
have identi�ed valuable guidelines for selecting test data. We can divide the input space into multi-dimensional
subdomains such that the software responds to all the points within the same subdomain in a similar way. Both
experience and intuitive reasoning would suggest that a signi�cant fraction of faults would tend to occur at the
boundary values. Also since the program behavior for the di�erent points within such a subdomain is likely to
be strongly correlated, testing for just a single internal point in the subdomain may be adequate in many cases.
Testing for boolean conditions is discussed in [13, 14]. Automated test generation has been considered by some
researchers [14, 15]. The problem of reducing the number of tests by limiting the total number of combinations
to be considered by using orthogonal arrays is given in [16, 17]. This approach, although not considered here,
can be used in conjunction with the scheme proposed here. One major di�erence between the two approaches is
that antirandom testing will test for all input interactions provided su�cient test vectors are applied. It is thus
applicable for ultra-high reliability software also.

There can be two possible test scenarios. For large systems, testing would have to be terminated long before it
has exhausted all combinations. In this case antirandom testing would attempt to probe well distributed points,
resulting in higher defect �nding capability. There may be some cases (e.g. unit testing) where exhaustive testing
in some sense may be possible (perhaps in terms of equivalence partitioning). In such cases, antirandom testing
is likely to �nd defects sooner, thus reducing the overall test and debugging time.

The next section introduces and explains the basic concepts used. It also considers the problem of generating
binary antirandom test sequences. In the third section, we consider automated testing of software. A checkpoint
encoding scheme is introduced that reduces the general problem of testing software to generation of antirandom
test sequences. Further experimental and theoretical work needed is identi�ed in the second and the third section
as well as in the concluding section.

2 Binary Antirandom Sequences

Here we start with formal de�nitions of the terms used and then examine construction of antirandom sequences.
We assume that the input variables are all binary.
De�nition: Antirandom test sequence (ATS) is a test sequence such that a test ti is chosen such that it
satis�es some criterion with respect to all tests t0, t1, ... ti�1 applied before.
De�nition: Distance is a measure of how di�erent two vectors ti and tj are. Here we use two measures of
distance de�ned below.
De�nition: Hamming Distance (HD) [18] is the number of bits in which two binary vectors di�er. It is not
de�ned for vectors containing continuous values.
De�nition: Cartesian Distance (CD) between two vectors, A = faN ; aN�1; :::a1; a0g andB = fbN ; bN�1; :::b1; a0g
is given by:

CD(A;B) =p
(aN � bN )2 + (aN�1 � bN�1)2 + ::+ (a0 � b0)2 (1)

If all the variables in the two vectors are binary, then equation 1 can be written as:

CD(A;B)

=
p

jaN � bN j+ jaN�1 � bN�1j+ ::+ ja0 � b0j

=
p
HD(A;B) (2)

Example 1: Consider a pair of vectors:
A = f0000g
B = f1010g
Then HD(A,B) = 2 and CD(A,B) =

p
2

De�nition: Total Hamming Distance (THD) for any vector is the sum of its Hamming distances with
respect to all previous vectors.



De�nition: Total Cartesian Distance (TCD) for any vector is the sum of its Cartesian distances with respect
to all previous vectors.
De�nition: Maximal Distance Antirandom Test Sequence (MDATS) is a test sequence such that each
test ti is chosen to make the total distance between ti and each of to,t1... ti�1 maximum, i.e.

TD(ti) =

i�1X

j=0

D(ti; tj) (3)

is maximum for all possible choices of ti. We will use Hamming distance and Cartesian distance to construct
MHDATSs and MCDATSs.

Example 2: Consider the partial binary test sequence t0= f0,0,0,0g and t1= f1,1,1,1g. To construct a 3-test
MHDATS, t2 can be any one of the remaining 14 vectors. Both sequences are valid MHDATSs:
t0= 0 0 0 0 t0= 0 0 0 0
t1= 1 1 1 1 t1= 1 1 1 1
t2= 0 0 0 1 t2= 0 0 1 1

For the �rst sequence THD(t2) = 1 + 3 = 4. For the second sequence also THD(t2) = 2 + 2 = 4.
However, the �rst sequence is not a MCDATS like the second. For the �rst sequence TCD(t2) =

p
1 +

p
3 =

2.732, and for the second TCD(t2) =
p
2 +

p
2 = 2.828.

For black-box testing, we have no structural information available about the actual implementation. Using
maximal distance criterion, every time we attempt to �nd a test vector as di�erent as possible from all previously
applied vectors. The antirandom testing scheme thus attempts to keep testing as e�cient as possible. In this
approach we are using the hypothesis that if two input vectors have only a small distance between them then the
sets of faults encountered by the two is likely to have a number of faults in common. Conversely, if the distance
between two vectrs is large, then the set of faults detected by one is likely to contain only a few of the faults
detected by the other.

If testing is less than exhaustive, then MDAT (maximum distance antirandom testing) is likely to be more
e�cient than either random or pseudorandom testing. This is likely to be the case for all practical systems. Even
when exhaustive testing is feasible, MDAT is likely to detect the presence of bugs earlier.

When some structural information is available, it is possible to enhance MDAT using educated guesses, just as
random testing can be enhanced by using weighted random testing. However, only black-box testing is considered
here. A simple but computationally expensive procedure may be speci�ed in this way.

Procedure 1. Construction of a MHDATS (MCDATS):

Step 1. For each of N input variables, assign an arbitrarily chosen value to obtain the �rst test vector. As
discussed below this does not result in any loss of generality.

Step 2. To obtain each new vector, evaluate the THD (TCD) for each of the remaining combinations with respect
to the combinations already chosen and choose one that gives maximal distance. Add it to the set of selected
vectors.

Step 3. Repeat step 2 until all 2N combinations have been used.

This procedure uses exhaustive search. As we will see later, the computational complexity can be greatly
reduced.

To illustrate the process of generating MDATS, we consider in detail the generation of a complete sequence for
three binary variables.

Example 3: For a system, the inputs fx,y,zg can be either 0 or 1. We will illustrate the generation of MHDATS
using a cube with each node representing one input combination.

Let us start with the input f0,0,0g. This does not result in any loss of generality. As we will see later, the
polarity of any variable can be inverted. The next vector t1 of the MHDTS is obviously f1,1,1g with THD(t1) =
3. At this point, the situation is shown in Fig. 1a, where the input combinations already chosen are marked.



As can be visually seen, a symmetrical situation exists now. Any vector chosen would have HD = 1 from one
of the past chosen vectors and HD = 2 from the others. If we allow the variables to be reordered, then without
any loss of generality we have the following choices. t0= f0,0,0g
t1= f1,1,1g; THD = 3
t2 = f0,1,0g; THD = 3 or t2 = f1,0,1g; THD = 3

Let us consider the �rst choice. After t2 = f0,1,0g, the clear choice for t3 is f1,0,1g at the opposite corner of
the cube. The situation now is shown in Fig. 1b.
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Figure 1: Construction of 3-bit MHDATS

Again a symmetrical situation exists. Any one of the remaining vectors have the same relationship with the
set of vectors already chosen. Let us pick f1,0,0g as t4. The next vector t5 then has to be f0,1,1g at the opposite
corner of the cube. We can again choose any one of two remaining vectors as shown in Fig. 1c. Let us choose t6
= f1,1,0g which leaves t7 = f0,0,1g. The complete MHDTS obtained here is given as sequence 1 in Table 1.

Table 1: 3-bit MHDTS (Example 3)

Test xyz THD TCD

t0 0 0 0
t1 1 1 1 3 1.7320
t2 0 1 0 3 2.4142
t3 1 0 1 6 4.146
t4 1 0 0 6 4.8284
t5 0 1 1 9 6.5604
t6 1 1 0 9 7.2426
t7 0 0 1 12 8.9746

In this example, it is easy to see that with our chosen vectors for t0,t1 and the two choices for t2, we could
have constructed 16 distinct MHDATSs using all of the later choices available. We can verify that all of these are
also MCDATSs.

A large number of experiments with construction of MHDATSs and MCDATSs have been done. Based on
these, the following results can be stated.
De�nition: If a sequence B is obtained by reordering the variables of sequence A, then B is a variable-order-
variant (VOV) of A.
Theorem 1: If a sequence B is variable-order-variant of a MHDATS (MCDATS) A, then B is also a MHDATS
(MCDATS).

The theorem follows from the fact that Hamming or Cartesian distance is independent of how the variables
are ordered.

Example 4: The sequence A below is both a MHDATS and a MCDATS. The sequence B constructed by switching
the second and the third columns is also both MHDATS and MCDATS, as can be veri�ed calculating THD and
TCD values for all options for t1, t2 and t3.
Sequence A Sequence B
t0= 0 0 0 0 0 0 0 0
t1= 1 1 1 1 1 1 1 1
t2= 1 0 1 0 1 1 0 0
t3= 0 1 0 1 0 0 1 1



De�nition: If a binary sequence B is obtained by changing the polarity (i.e. inverting all the values) of one or
more variables of a sequence A, then B is termed a polarity-variant of A.
Theorem 2: If a sequence B is a polarity-variant of a MHDATS (MCDATS) A, then B is also MHDATS
(MCDATS).

The theorem follows from the fact that for a pair of vectors the distance remains the same, if the same set of
variables in both are complemented.

Example 5: The sequence B below is obtained by complementing the second and the fourth variables. It can be
seen that both are MHDATSs and MCDATSs. Sequence A Sequence B
t0= 0 0 0 0 0 1 0 1
t1= 1 1 1 1 1 0 1 0
t2= 1 0 1 0 1 1 1 1
t3= 0 1 0 1 0 0 0 0

Theorem 3: A MHDATS (MCDATS) will always contain complementary pair of vectors, i.e. t2k will always be
followed by t2k+1 which is complementary for all bits in t2k where k = 1; 2; : : :.
Proof: The �rst two vectors t0 and t1 will always be a complementary pair. Below we will show that if the
vectors t0, t1, ..., t2k�1 are complementary pairs, then the vectors t2k and t2k+1 will also be a complementary
pair. Thus t2 and t3, hence t4 and t5, etc. will all be complementary paris.

Let us assume a MHDATS contains an even number of vectors, t0; t1:::t2k�2; t2k�1, such that a vector with an
odd subscript is a complement of the preceding vector. Let us now assume that a vector t2k is found such that
its total Hamming (Cartesion) distance from all of t0, ... t2k�1 is maximal.

If we change the polarity of all the variables, we get the sequence �t0; �t1; ::: �t2k�2; �t2k�1; �t2k, where �ti indicates
complement of ti. By Theorem 2, this is also a MHDATS (MCDATS). Now since �t1 = t0, �t0 = t1 etc., the partial
sequence �t0; �t1::: �t2k�2; �t2k�1 contains the same vectors as t0; t1:::t2k�2; t2k�1 but in a di�erent order. Thus �t2k has
the same total Hamming (Cartesian) distance as t2k with respect to t0; t1:::t2k�2; t2k�1.

Now after having constructed the MHDATS (MCDATS) t0; t1; :::t2k�2; t2k�1; t2k, the addition of �t2k+1 = t2k
will keep it a MHDATS (MCDATS) because:

1. �t2k provides the maximal total HD (CD) with respect to ft0; t1:::t2k�2; t2k�1g.
2. �t2k also provides the maximal HD (CD) with respect to t2k. QED.

So far we have assumed the construction of MHDATSs (MCDATS) using exhaustive evaluation of all the
remaining vectors. Thus for a vector containing N variables, the computation will require evaluation of f1+(2N-
1) + (2N -2) + ... 4 + 3 + 2 + 0g distances to obtain a complete sequence. Using the above property, the number
of evaluations is reduced to f1 + 0 + (2N -2) + 0 + (2N - 4) + ... 4 + 0 + 0 + 0g distances. That may still
represent a prohibitive amount of computation in situations when N is large. We will next consider incremental
construction of complete MHDATSs and MCDATSs.

Procedure 2. Expansion of MHDATS (MCDATS):

Step 1. Start with a complete MHDATS of N variables, XN�1; XN�2; :::X1; X0.
Step 2. For each vector ti, i = 0, 1, ... (2N -1), add an additional bit corresponding to an added variable XN ,
such that ti has the maximum total HD (CD) with respect to all previous vectors.

We have extensively experimented with this procedure. We have two major observations.
1. It is always possible to extend a MHDATS (MCDATS) by adding one more variable using Procedure 2. A
formal proof for this is being sought.
2. The column added is a function of columns already included. We are attempting to identify this function such
that it does not vary for di�erent values of N and can be used in a simple way.

To illustrate additional aspects of constructing antirandom sequences, let us consider the following example.

Example 6: Here let us attempt to construct a 4-variable antirandom test sequence. We will use Procedure 2
to extend the 3-variable sequence obtained in Example 3 (Table 1) by adding an extra column. The complete
4-variable sequence will have 16 vectors as opposed to the 3-variable sequence we have with 8 vectors. We will do



the construction in two parts. First, we will augment the 3-variable/8 vector sequence into a 4-variable/8 vector
sequence. We will then construct the rest of the 8 vectors.
a. Let us append a forth variable w to the lefthand side. If we start by adding a `0' to t0, we have to add a `1'
to t1, then for t2 we have two choices.

w x y z
t0 = 0 0 0 0
t1 = 1 1 1 1

t2 = 0 0 1 0 or t2 = 1 0 1 0
With the �rst choice we have THD = 1 + 3 = 4 and TCD =

p
1 +

p
3 = 2.7320. The second choice gives us

THD = 2 + 2 = 4 again, but TCD =
p
2+

p
2 = 2.8284. Since the second choice would generate a sequence that

is a MCDATS as well as a MHDATS, let us use it for t2. The vector t3 then is f0 1 0 1g.
Using Cartesian distance as a criterion, we can construct the next four vectors similarly. the partial sequence

then is given below. We have used up the complete 3 bit sequence given in Table 1. The column corresponding
to the added variable is shown in bold.

t0 0 0 0 0
t1 1 1 1 1
t2 1 0 1 0
t3 0 1 0 1
t4 1 1 0 0
t5 0 0 1 1
t6 0 1 1 0
t6 1 0 0 1

b. Now a symmetrical situation exists. We can use any of the remaining vectors for t8; however, it would be
useful if certain patterns are repeated for the next eight vectors.

Our extensive experimentation suggests that we can construct the rest of the sequence by taking the above
partial sequence and simply changing the polarity of leftmost variable w. The last part of the sequence then is:

t8 1 0 0 0
t9 0 1 1 1
t10 0 0 1 0
t11 1 1 0 1
t12 0 1 0 0
t13 1 0 1 1
t14 1 1 1 0
t15 0 0 0 1

The calculation of TCD and THD proves that the 16-vector sequence is indeed a MCDATS and a MHDATS.

The Example 6 above represents one of many such construction experiments. The observations are summarized
below.

1. A MCDATS is always a MHDATS but not vice versa. For the same number of bits there are fewer valid
MCDATSs than MHDATSs.

2. When constructing an N-variable sequence, a symmetrical situation exists, when the �rst (2N=2) vectors
have been obtained, i.e. any one of the remaining vectors can be chosen as the next vector.

3. For N-variables, the �rst (2N=2) vectors are such that if the polarity of a variable is reversed, then the
resulting vectors (2N=2) are distinct from the original set of 2N=2) vectors.

4. For 2N=2 vectors of an N-bit MCDATS (MHDATS), we can obtain the rest of the 2N=2 vectors by changing
the polarity of one of the variables.

The formal proofs for these are being sought. The above observations suggest an incremental procedure to
construct an N-variable MHDATS (MCDATS).

Procedure 3. Expansion and Unfolding of a MHDATS (MCDATS):

Step 0. Start with a complete (N-1) variable MHDATS (MCDATS) with 2N�1 vectors.
Step 1. Expand by adding a variable using Procedure 2. We now have the �rst (2N=2) vectors needed.



Step 2. Complement one of the columns and append the resulting vectors to �rst set of vectors obtained in
Step 1. Here, it would be convenient to complement the variable added in Step 1.

The procedure requires 2
N

2
: 1
2
= 2N�2 bits to be evaluated.

In many cases we would like to obtain an antirandom sequence involving a large number of variables. Instead
of incrementally expanding and unfolding, can we concatenate m N-bit antirandom sequences to obtain a m x N
bit antirandom sequence with 2N vectors? Can we obtain the rest of (2m�N � 2 �N) vectors in an algorithmic
manner to create the complete sequence? Consider the following example.

Example 7: Let us concatenate two copies of the 3-bit antirandom sequence to obtain the following 6 bit
sequence.
t0 0 0 0 0 0 0
t1 1 1 1 1 1 1
t2 0 1 0 0 1 0
t3 1 0 1 1 0 1
t4 1 0 0 1 0 0
t5 0 1 1 0 1 1
t6 1 1 0 1 1 0
t7 0 0 1 0 0 1

An evaluation shows this to be a MHDATS but not a MCDATS. We can easily see that for a MCDATS, the
vector t2 should have an equal number of ones and zeroes.

Our experiments suggest that such concatenation should retain the maximal HD property. We need to obtain
a formal proof for this. We also need to obtain an algorithmic method to obtain wide MCDATSs and to obtain
the rest of the (2mN � 2N ) vectors. It is our conjecture that it should be possible by using polarity variants of
the component arrays.

In some applications it may be possible to order and partition the set of variables into group of size p, such
that e�ect of variables in one group is disjoint (or nearly disjoint) to the variables in all other groups. In this case,
all we need to do is to apply an p-variable antirandom sequence to each group in parallel. This can considerably
reduce the test application time.

3 Checkpoint Encoding

In a general case, the inputs can be numbers, alphanumeric characters as well as data structures composed
using them. In such cases also we would like to maximize the e�ectiveness of testing. It is possible for one to
de�ne `distance' and use them for constructing antirandom sequences in such cases also.

Example 8: Let us consider two real variables x and y which can range from 0 to 1. The following then is a
MCDATS.

0 0
1 1
0.5 0.5

However, de�ning `distance' can be di�cult for data structures. Also for a program, the input variables can
be of di�erent types and ranges, which will make construction of antirandom sequences extremely hard. We
here propose an encoding approach which will convert the problem to constructing binary antirandom sequences.
The approach is based on domain and partition analysis and the concepts of equivalence partitioning,
revealing subdomains [11] and homogeneous subdomains [19]. The technique partially encodes an input
into binary, such that sample points desired can be obtained by automatic translation.

These sample points, termed checkpoints here, are strategically selected such that they are likely to span
most types of variations in the program behavior with respect to each input. To illustrate the approach let us
consider this simple example. For convenience, we use a square bracket ("[" or "]") to indicate inclusion of the



endpoint and a parenthesis ("(" or ")") to indicate exclusion.
For testing, it is important to test for illegal input values because the program must respond correctly to

those inputs, as we see in the following example. The range of illegal values should be regarded as one or more
additional equivalent partitions.

Example 9: Consider a continuous input variable x which can range from xmin to xmax, with the end values
included. A value outside of [xmin; xmax] is illegal (Figure 2). Let us call all the values of x such that xmin <

x < xmax internal points. Let us assume that the program under test either works correctly or incorrectly for
all internal points. We can thus use the following checkpoint encoding scheme as shown in Table 2.

Illegal

Xmin Xmax

Illegal

Figure 2: Normal and illegal ranges

Table 2: Encoding scheme for Example 9
Encoded
Binary Value of x

0 0 randomly chosen value
in the illegal range

0 1 xmin

1 0 xmax

1 1 a randomly chosen internal point

In general encoding can take several considerations into account based on speci�cations and the fault hypothesis
used.

1. Some fraction of all input values applied should be illegal.
2. Many defects may be associated with boundary values. They may not be detected when "typical" values

are used for testing. Some defects may require testing points closest to the boundary on both sides.
3. A legal range of values can often be partitioned into subdomains, such that each subdomain exercises a

somewhat di�erent (but not necessarily disjoint) part of the functionality. Thus one can use a fault hypothesis
that exercising only one such subdomain, defects corresponding to other subdomains may not be triggered.

4. With black-box testing, speci�cations may not reveal the reasons which would suggest a subdomain should
have been further partitioned. Thus there may be a need to sample a few randomly chosen points within a
subdomain. In practice, some information about the software structure can be useful for proper identi�cation of
subdomains.

5. If some inputs are more critical, there may be a reason to use a larger number of samples for that input.
This can be done by using more bits to encode that input.

Let us now see an example that illustrates some of the above considerations.

Example 10: Consider a continuous input variable x which is valid in the range [- a, b]. Let us assume the
program may respond di�erently in subdomains [-a, o) and (o, b]. In addition, we also wish to sample the function
with a couple of values each within both [-a, o) and (o, b].

Here we can use the checkpoint encoding scheme shown in Table 3. It attempts to ensure that the special
cases (boundary and illegal values) are generated early and the adjacent internal points are also adjacent in the
Hamming distance sense.

After we have encoded all the inputs using binary variables, the problem is simply reduced to that of generating
binary antirandom sequences. If the input variable Ij j = 0,1, ... M where M is the total number of inputs, is
encoded using Cj bits, the binary vectors would be

P
m

j=0
Cj bits wide. Notice that the tests generated by this



Table 3: Encoding scheme for Example 10
Encoded
Binary Value of x

1 0 1 randomly chosen in the illegal range
0 0 0 -a
1 0 0 randomly chosen in (-a, -a/2] range
1 1 0 randomly chosen in (-a/2, 0) range
0 1 0 0
0 1 1 randomly chosen in (0, b/2) range
0 1 1 randomly chosen in [b/2, b) range
1 1 1 b

scheme will include common combinations, likely to be encountered most often during operational use as well as
special combinations which have higher error revealing capability.

The proposed scheme, as illustrated in Figure 3, combines the bene�t of checkpoint encoding with antirandom
testing. Once the checkpoint encoding de�nition (CED) has been obtained, the tests can be generated automati-
cally. The antirandom vectors generated are translated using the CED. When needed, the random value generator
will generate a random value of an input, which may be a single number or a data structure. The advantage of
randomization is that when a subdomain for an input variable is encountered several times, each time a di�erent
value is likely to be generated. This would require that the seed values be altered during each access.

MHDATS

Proposed CEAR scheme

(MCDATS)

generator

vector test
definition
encoding 

Checkpoint 
ActualBinary

Range(s) Random value(s)

Response

Generator
Value

Random

Test
under

Software

Translation

Binary to Actual

Figure 3: Proposed CEAR scheme with encoded antirandom vectors.

The computational requirements of the blocks included in the Checkpoint Encoded Antirandom testing (CEAR)
scheme are very light. Thus it may not be necessary to record the set of tests before they are applied. The CEAR
and the software under test may run together, a test being used right after it is generated. The CEAR scheme
may be implemented to make the test-suite generated either repeatable or nonrepeatable. The �rst option would
be suitable if a �xed regression testing test-suite is desired.

We must discuss a very important tradeo�. Many defects can be associated with boundary conditions. Such a
condition can be subdomain boundary for a single input variable or a combination of such boundaries for several
input variables. On the other hand, in normal operation, much of the time only internal values will occur. Thus
the �eld failure rate may depend more on the faults associated with the values which are not boundary conditions.

In terms of the checkpoint encoding scheme, the question can be stated in this way. For each variable that
is part of the input space, how many checkpoints should represent `common' values, and how many should be
boundary values? We perhaps require a considerable amount of experimental data before we can obtain de�nite
guidelines for answering this question. If we can be certain that there are no unidenti�ed subdomain boundaries
(that will however require examining the software implementation), we could assume that each internal subdomain
is a revealing subdomain, and thus it needs to be sampled only once. For very small software systems, it may
be possible to exhaustively test for all boundary values combinations along with a reasonable number of common
combinations. However, for a general system, guidelines for making optimal choices cannot be o�ered at this
time.



Example 11: As a more complete example of checkpoint encoding, let us consider the FIND program by Hoare
(Figure 4). Testing of its FORTRAN version was examined by DeMillo et al. [8]. It takes as an input an integer
array A with size N � 1 and an array index F, 1 � F � N . The program rearranges the array such that all
elements to the left of A(F) have values no larger than A(F), and all elements to the right are no smaller.

The subdomains are identi�ed below; the special cases are marked with an asterisk.
Array size: 1, 2 and greater than two
Element values:
all positive,
all 0,
all negative,
illegal (containing non-integers),
mixed.

F points to:
�rst element,
a middle element,
last element
outside (illegal)

Array status:
1. elements randomly ordered
2. elements already ordered as needed
3. elements in order reverse of case 2
4. elements all equal

In order to encode the checkpoints e�cients, we may want to separate special cases and consider them sepa-
rately. For example When the array size is 1, the choices for F and array staus do not make sense. Similarly the
case when all elememnts are 0 may also be considered separately. Separating such cases, we may use the encoding
scheme suggested in Table 4. It can be called a "�eld encoding scheme" because each �eld of a few bits is encoded
separately.

Table 4: Encoding scheme for Example 11
Field Bits Value Signi�cance

Array Size b0 0 2
1 > 2

Element values b3,b2,b1 000 all positive
001 all negative
010 illegal
rest mixed

F points to b5,b4 00 �rst element
01 a middle element
10 last element
11 illegal

Array status b7,b6 00 randomly ordered
01 already ordered
10 reverse ordered
11 all equal

We have thus used eight variables for encoding. A partial nine vector 8-bit antirandom sequence is shown in
Table 5. It should be noticed that the �rst 8 rows are formed by concatenation of two partial 4-bit antirandom
sequences. It is possible to use some multibit combinations across several �elds to specify special cases.

Notice that all the individual choices have occurred in the �rst eight vectors, but to apply all possible combi-
nations allowed by the encoding scheme, 28 vectors would be needed.

It can be seen that the resulting combinations are consistent with the �ndings and recommendations of DeMillo
et al. [8]. They suggest use of illegal as well as special values in addition to the usual values. If additional testing
time is available, the coding scheme above should be modi�ed to allow a larger number of normal combinations.



Table 5: A partial 8-bit sequence
b7 6b b5 b4 b3 b2 b1 b0

0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1
1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1
1 1 0 0 1 1 0 0
0 0 1 1 0 1 1 0
1 0 0 1 0 0 1 1
0 1 1 0 0 1 1 0
1 0 0 1 1 0 0 1
0 1 1 1 1 0 0 0

SUBROUTINE FIND(A,N,F)

C

C FORTRAN VERSION OF HOARE'S FIND

C PROGRAM (DIRECT TRANSLATION OF

C THE ALGOL 60 PROGRAM FOUND IN

C HOARE'S "PROOF OF FIND" ARTICLE

C IN CACM 1971).

INTEGER A(N),N,F

INTEGER M,NS,R,I,J,W

M=1

NS=N

10 IF(M.GE.NS) GOTO 80

R=A(F)

I=M

J=NS

20 IF(I.GT.J) GOTO 60

30 IF(A(I).GE.R) GOTO 40

I=I+1

GOTO 30

40 IF(R.GE.A(J)) GOTO 50

J=J-1

GOTO 40

50 IF(I.GT.J) GOTO 20

C

C COULD HAVE CODED GO TO 60 DIRECTLY

C -DIDN'T BECAUSE THIS REDUNDANCY

C IS PRESENT IN HOARE'S ALGOL

C PROGRAM DUE TO THE SEMANTICS OF

C THE WHILE STATEMENT.

C

W=A(I)

A(I)=A)J)

A(J)=W

I=I+1

J=J-1

GOTO 20

60 IF(F.GT.J) GOTO 70

NS=J

GOTO 10

70 IF(I.GT.F) GOTO 80

M=I



GOTO 10

80 RETURN

END

Figure 4. FIND program from [8].

4 Conclusion and Future Work

We have presented a black-box approach that attempts to maximize the test e�ectiveness by keeping tests
as di�erent as possible from each other. The scheme provides formalization of a concept that is intuitively
attractive. Unlike coding theory or random/pseudorandom testing, this is a new approach that requires further
theoretical and experimental investigations. Some of the theoretical challenges are identi�ed in the paper. We
need to experimentally evaluate and re�ne the techniques for well known benchmark programs for comparison
and characterization as well as for larger systems. The proposed technique needs to be compared with existing
white-box and random testing approaches. Techniques that allow application of this approach to large software
systems need to be be developed and studied. The checkpoint encoding scheme proposed here converts the test
generation requirement to a binary problem. It also has the advantage of explicitly enumerating the checkpoints
which is vital to keep testing e�cient.
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