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A bs t irac t 

Debugging actions durin.g the test/debug phase of 
software d e  ve1op.m e nt are la ot always performed per- 
fectly. That is, not all th.e software faults detected 
are perfectly removed without introducing new fault- 
s. This phenomenon is called the imperfect debugging. 
The Hyper- Geo ni et ric Dist 1-i but i on software relia bilat y 
growth Model (HGDM) was developed for estimating 
the number of  software fatilts initially in a program. 
In this paper, we propose a’n extended model based on 
the HGDM incorporating the notion of imperfect de- 
bugging. 

1 Introduction 

Software Reliability Growth Models (SRGMk) have 
been studied by many authors [l]. Most of the SRGMs 
proposed are based on the assumption of pedfect de- 
bugging. However, in reality, not all the software fault- 
s detected are perfectly rentoved without introducing 
new faults [a]. Most of the existing SRGMs do not 
take this into account, and only a few researchers ex- 
tended the SRGMs considering imperfect debugging 
[3-81. 

The Hyper-Geometric Distribution software relia- 
bility growth Model (HGDM) for estimating the num- 
ber of initial software faults, first proposed by Tohma 
e t  al. [9], is shown to be attractive. Tohma et. al. [lo- 
121, Jacoby et. al. [13-141. and Hou et. al. [15-161 
have made a series of studics on the HGDM recently. 
In this paper, we propose an extended model based 
on the HGDM incorporating the notion of imperfect 
debugging. Furthermore, to  make the proposed model 
more realistic and practical, we consider the situation 
where there is learning implicitly in the fault removal 
process. The growth curve of the cumulative number 

Yi-Ping Cliang 

Department of Business Mathematics 
Soochow University 

Taipei, Taiwan, R.O.C. 

of discovered faults and a measure of software relia- 
bility for the HGDM with imperfect debugging are in- 
vestigated. In addition, the relationship between the 
proposed model and the Goel-Okumoto NHPP model 
with imperfect debugging is djscussed. Experiments 
have been performed by using two real test/debug da- 
ta sets, and the results show the proposed model fits 
the data sets satisfactorily. 

2 Review of HGDM 

In this section, we briefly review the Hyper- 
Geometric Distribution software reliability growth 
Model (HGDM) [9-141. In general, a program is as- 
sumed to  have m faults initially before the test/debug 
phase starts. The collection of test operations per- 
formed in a day or a week is called a “test instance”. 
Test instances are denoted by t i ,  i = 1 , 2 ,  . . . , n in ac- 
cordance with the order of applying them. The “sen- 
sitivity factor”, wi, represents how many faults are 
newly discovered or rediscovered during the applica- 
tion of test instance ti. Some of‘the faults detected by 
tj may have been detected previously by the applica- 
tion oft1,tZ , . . . ,  t j -1 .  

Let Cd-1 be the number of faults already detected 
so far by t l ,  t z ,  . . . , ti-1 and zj be the number of faults 
newly detected by ti. Then, some of the wi faults may 
be those already counted in Cj-1, and the remaining 
wj faults account for the newly detected faults. With 
the assumption that new faults will not be introduced 
into the program while correcting is being performed, 
the conditional probability P(Nj = zi I m, wi, Cj-1) 

can be formulated as: 
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where max(0, wi - Ci-1) 5 xi 5 min(wi, m - Ci-1) 
for all i 2 0,  Ci-1 = c i i \ 2 k ,  CO = 0, 20 = 0 and 
xk is an observed instance of Nk. The expected value 
of C; denoted by ECi is [9-141 

( 2 )  
ECo = 0,  i ECi = m[l  - nfZl(l - p j ) ] ,  i = 1 , 2 , .  . . , n, 

where pi = wi/m.  Although various functions for pi  
have been presented, the linear function pi = e i  + f 
usually gives satisfactory results [11-12]. 

From Eq.(2), (ECi - E C i - i ) / ( m  - ECi-1) = pi 
represents the ability of test workers to  detect new 
faults at the application of t i .  If the test is completely 
random, that is, test data are taken randomly from 
the input space of the program, pi will be a constant. 
In following sections, we propose an extended model 
under the assumption that pi is a constant. 

3 HGDM with Imperfect Debugging 

In Section 2 we reviewed the HGDM, which as- 
sumes the detected faults are instantly and perfectly 
corrected without introducing any new faults. How- 
ever, this assumption is not always valid and can be 
modified to be: 
(ij When the detected faults are removed, it is pos- 

sible to  introduce new faults. 
(iij When a fault is newly discovered during the appli- 

cation of t i ,  removal of the fault is instantaneous 
and the following may occur: 
(a) the fault is corrected with probability 1 - B i ;  

(b) a new fault is introduced with probability Bi. 
On the basis of above assumption, we propose an ex- 
tended model based on the HGDM incorporating the 
notion of imperfect debugging in the following. 

3.1 
imperfect debugging 

Mean value function of the HGDM with 

Let mo = m be the number of initial faults in a 
program before the test/debug phase. Suppose there 
are x1 new faults discovered by t l .  Since the detected 
faults are instantly corrected and the fault introduc- 
tion rate during the application of t l  is 81, there are 
1 9 1 ~ 1  faults newly introduced during the removal of 

Let mi be the number of faults including the initial 
faults and all the faults already introduced so far by 
t l ,  t 2 ,  . . . , t i .  The HGDM with imperfect debugging 
can be derived as follows. 

mo = m; 
ml = mo +&NI = m + 6'1N1; 

. . . . .  

Therefore, Eq.(l)  can be modified to be 

(3) 

where "(0, wi-Ci-l) 5 25 5 min(mi-1-Ci-1, w;). 
Under the assumption that the test is completely ran- 
dom, we have 

W i  
(5) mi-1 

- = p  V i = 1 , 2  , . . .  , n ,  a n d O S p L 1 .  

For convenience, let 
i 

i =  1,2,.. . ,71. 
k = l  

Since mi-1 = m + CL.: ekNk, we have 
ENi = E(E(Ni  I Ni-1)) = E[(mi- i  - C i - l ) ~ ]  

(7) - - p ( m -  EC,*_,), i = 1 , 2  , . . . ,  72. 

From Eqs.(6) and (7), we have 

The solution to  this difference equation is [lo] 
EC,* = ( 1  - ( 1  - Oi)p}ECa*_l + mp(1 - Si). 

a 
EC,T=m[l-II(l-(l-Ok)p)], i =  1 , 2  , . . . ,  71. (8) 

k = l  

Therefore, ECi ( i .e . ,  zkz1 ENk)  for the HGDM with 
imperfect debugging is 
EC1=mp, 

( 9 )  ECi=mp [ l + ~ j , ,  nj,;; { 1-( 1 4 ) p } ]  ,i=2, . . . , 72. 

the detected faults. Therefore, the number of faults 
including initial faults and the faults newly introduced 3.2 Characteristics of fault introduction rate 

by t l  are ml = m o  + 81x1 = m + B 1 2 1 .  Suppose there 
are 2 2  new faults discovered by t z .  Since the fault in- 
troduction rate during the application of t z  is &, there 
are &ZZ faults newly introduced during the removal 
of the detected faults. Therefore, the number of faults 
including initial faults and all the faults introduced so 
far by tl and tz are m2 = ml+&z2 = m+Blzl+82x2. 

The fault introduction rate Oi is the probability of 
fault introduction during the application of ti ,  and it 
should satisfy the condition: 0 5 Bi < 1 for all i 2 1. 
If Bi  equals zero for all i 2 1 ,  it is equivalent to the per- 
fect debugging case. If & is a constant for all i > 1 ,  it 
assumes the probability of introducing a software fault 
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n 

S(m,p,oi) = Z(C~ - EG)’, (12) 
is a constant. However, the assumption of 0i being a 
constant is not realistic. Since the skill to  remove soft- 
ware faults will improve with1 the experience, the effect 
of learning in the progress of removing faults should 
be taken into consideration. 

Traditionally, the “decrea!izng exponentzal curve” or 
the “decreaszng S-shaped cnrve ” as shown in Figure 
1 is commonly used to  inteicpret the human learning 
process under the imperfec tr debugging environmen- 
t .  The decreasing exponential learning curve assumes 
the fault introduction rate dlecreases faster at the ini- 
tial application of test instances than at later stages. 
The decreasing S-shaped learning curve assumes that 
the fault introduction rate decreases slowly at l,he be- 
ginning stages of testing because the skill to  remove 
faults is not experienced initially; a t  the subsequen- 
t stages, the rate decreases quickly because the skill 
becomes versed; at the later stages, the rate again de- 
creases slowly. 

%=1 

where ECi is given by Eq.(9) and 0i = 1/(1+ 
The IMSL MATH/LIBRARY Subroutine UNLSF [17] 
is used for the minimization of Eq.(12), and the esti- 
mates of these four parameters m, p ,  a, and b can be 
obtained. 

4 Growth Curve of EC; andl a Measure of Soft- 
ware Reliability 

4.1 A finite-fault category 

A classification scheme was proposed by Musa and 
Okumoto [18] for software reliability growth models. 
The following theorem shows the HGDM with imper- 
fect debugging belongs to  the finite-fault category. 
Theorem 1. Assuming 0i = 1/(1 + ea’+*) for i 2 1, 
the upper bound of ECj is finite. 
Proof: Since Bi is decreasing in i, we have 

i .i-1 

m m 
= lim - {I+-( i-e1)p];}=-. 

i i c o  1-01 1-Q1 

Moreover, since ECi is increasing in i ,  the upper 
0 bound of ECi is finite. 

L!”g lime 
Figure 1. (a) Decreasing exponential curve; (b) 

decreasing S-shaped curve. 

A continuous function B ( t )  which can describe ei- 
ther the decreasing S-shaped curve or the decreasing 
exponential curve is given by 

(10) 
1 e( t )  = a > 0 ,  t 2 0 .  

Through simple calculation, the following may be ob- 
tained: 
(i) If b < 0, B ( t )  is a decreasing S-shaped curve. 

(ii) If b 2 0, 0 ( t )  is a decreasing exponential curve. 

tion d ( t ) ,  a discrete function Bi can be defined as 

1 + eQt+Q ’ 

Based on above discussion for the continuous func- 

i =  1,2, . . . , n .  

4.2 Growth curve of EC; 
Since ECi is increasing in i, we have the following 

definition [15]. 
Definition 1. ECi is an exponential curve if EC;+l+ 

0 
Theorem 2. Suppose the test is completely random 
in the test/debug phase, i.e., pi = p for all i 2 1. 
The growth curve of ECi shows ,an exponential growth 
curve no matter what 0; is. 
Proof: For all i 2 1, we have 

ECi-1 - 2ECi < 0 for all i 2 1. 

ECi-1 + EC;+l - 2EC; =:ENi+l-ENi. 
i-1 

= -mp2(1 - 0i) n[l- (1 - 0,)p] < 0. 0 
k = l  

Thus, we can use 0; to interpret a discrete decreasing 
S-shaped or exponential learning curve. 

Theorem 2 indicates if pa is a constant, ECi shows 
an exponential curve no matter what 0; is. In other 
words, if the growth curve of ECi is not an exponential 
curve, pi is not a constant. 3.3 Estimation of parameters by least squares 

method 
4.3 A measure of software reliability 

The parameters of the HGDM with imperfect de- 
bugging can be estimated by the least squares method. 
For the given sample observations, the sum of squares 
of errors is 

The term mi - Ci means the number of remaining 
faults after the application of t i .  Thereore, a measure 
of software reliability is defined as 
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Note that R; is increasing in i and 0 5 Ri 5 1 for all 
i .  The expected value of Ri is 

where C,' is defined in Eq.(6). It is obvious that ERi 
is increasing in i ,  and then we have the following def- 
inition [15]. 
Definition 2. 
(i) ER,  is an exponential curve if ERi+l+ ERi-1 - 

2ERi < 0 for all i 2 1; 
(ii) ER, is an S-shaped curve if there exists a finite 

integer I > 1 such that ERi+l+ ERi-1- 2E& 2 
0 for all i < I and ERi+l + ERi-1 - 2ERi < 0 
for all i 2 I .  0 

From Eq.(13), we have 

Since 8i = 1/(1 + cui+*), from Eq.(8), we have 
i 

E C z * = m [ l - ~ { l - p / ( ~ - u ~ - b ) } ] ,  i =  1 , 2 , .  . . , 12. (15) 

Based on Eqs.(l4) and (15), the following theorem of 
the growth curve of ERi can be obtained similarly 

Theorem 3. Assuming Bi = 1 / ( 1 +  e a i f b ) ,  we have: 

k = l  

1151. 

(i) if 1 2 p > c ( ~ ' + * ) ( ~ ~ - ' ) ,  then ERi is an expo- 

(ii) if 0 5 p 5 e - ( zu+b) (ea - l ) ,  then ERi is an S- 
nential curve; 

shaped curve. O 

5 Precise Relationship to Goel-Okumoto Mod- 
el with Imperfect Debugging 

In this section, under the assumption o f  Bi = 0 for 
all i 2 1, the mathematical relationship between the 
mean value function of the HGDM with imperfect de- 
bugging and that, of the Goel-Okumoto NHPP Model 
with imperfect debugging [5] is shown. 

The mean value function D(i )  of the Goel- 
Okumoto model with imperfect debugging is [5]: 

where m is the number of initial faults in a program, 
p is the fault introduction rate (0 5 ,/3 < l ) ,  and 4 is 
the fault detection rate (4 > 0).  

If %i is a const.ant, from Eq.(9) we have 

(17) 
m 

1 - 8  1. EC. - -{ 1 - ei l n [ l - ( l - e ) P l  z -  

Comparing Eq.(16) with Eq.(17), since both 0 and ,O 
are fault introduction rates, we can let 

[I - e-('-O)$]. (18) e = @  and p = -  

Since 0 5 (1 - e - ( l - @ ) $ ) / ( l  - p) 5 1 if and only if 
0 5 4 5 1, the relationship between the mean value 
functions of these two models is given by Eq.(18) when 

1 
1 - P  

O < $ < l .  
6 Numerical Examples and Data Analysis 

To validate the proposed model, two software fault 
data sets are perforFed. The sum of squares of errors 
S S E  = C;="=,Ci - Ci)' is adopted as the evaluation 
criterion. From Eq.(13), two measures related to ERi ,  
the observed software reliability Rl i  and the estimated 
software reliability R2i, are defined in the following, 
respectively. A 

-&(1- 0 j ) Z j  

&(1- %j)ENj  

Rlo = 0, and Rli = h , i = l 1 2 , . . . , n ;  
m 

A -  

R2o = 0 ,  and R2i = h , i = 1 , 2  ) . . . ,  12. 
m 

6.1 First Data Set 

The first test/debug data set is presented in [19]. It 
is the collection of the cumulative number of discov- 
ered faults for the 81 test instances. The cumulative 
number of discovered faults up to the test instance t ~ 1  
is 460. 

The least squares estimates of parameters of the 
HGDM with imperfect debugging are 6 = 366.5, = 
0.0295, 2 = 0.2806, b = -4.0461. The sum of squares 
of errors SSE is 6567.9. Therefore, the number of 
faults introduced during the observation period as a 
result of imperfect debugging is approximately 93. 

The observed and estimated growth curves of the 
cumulative number of detected faults are shown in Fig- 
ure 2. It can be seen that t&e estimated growth curve 
fits the data nicely. Since b = -4.05 < 0, 8, is a de- 
creasing S-shaped curve as shown in Figure 3. The 
curves of Rli and R2i are plotted in Figure 4. Obvi- 
ously, the curve of R2i is an S-shaped cure. In fact, 
the curve of R2i being S-shape can be easily deter- 
mined by Theorem 3 instead of burdensome plotting. 

The least squares estimates of parameters of the 
HGDM are 6 = 545.67 and p̂  = 0.0239, and the 
sum of squares of errors SSE is 8181.18. Based on 
S S E ,  the HGDM with imperfect debugging fits the 
data more accurately than the HGDM. 

6.2 Second Data Set 

This data is presented in [20].  It is the collection 
of the cumulative number of discovered faults for the 
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25 test instances. The least squares estimates of the 
parameters of the HGDM with imperfec: debugging 
are lliz = 135.97, p^= 0.12911, G = 0.9401, b = 11.0243. 
The sum of squares of errors SSE is 766.1. Since 
all the values of Oi, i = 1, '2, .  . . , 25  tend to zero, the 
number of faults introduceld during the fault removal 
process is approximately 0. 

The observed and estimated growth curves of the 
cumulative number of detected faults are shown in Fig- 
ure 5. The estima_ted growth curve fits the dlata sat- 
isfactorily. Since b = 11.0243 > 0, & is a decreasing 
exponential curve as shown in Figure 6. Moreover, s- 
ince all the values of 8, are negligible, the fault removal 
process can be regarded to  be perfect debugging. Ac- 
cordingly, the proposed model can be reduced to  the 
HGDM. The curves of R1, and R2i are plotted in Fig- 
ure 7. Similarly, the curvc of R2i being exponential 
shape can be easily determined by Theorem 3. 

The least squares estiniates of parameters of the 
HGDM are lliz = 135.98 and p̂  = 0.129, and thle sum of 
squares of errors SSE is 766.1. Obviously, the HGDM 
with imperfect debugging 11s equivalent to the HGDM 
for this data set. Thus, we can still apply the HGDM 
with imperfect debugging even though the fault re- 
moval process is perfect de bugging. 

'i' Conclusions 

In this paper, we propose an extended model based 
on the HGDM by elimination of the assumption that 
the detected faults in a program can be perfectly re- 
moved. To make the proposed model more realistic 
and practical, we consider the situation where there 
is learning in the fault rerinoval process. Thle exper- 
imental results show the IKGDM with imperfect de- 
bugging can fit the data sets satisfactorily. Moreover, 
we can apply the HGDM with imperfect debugging 
even though the fault removal process is perfect. The 
growth curve of the cumulative number of discovered 
faults is investigated. The relationship between the 
proposed model and the Goel-Okumoto model with 
imperfect debugging is alsc discussed. 
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Figure 4. Curves of R l i  and R2i for the fir& data set. 
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Figure 5. Fitness of Ci s to clis for second data set. 
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Figure 6. Curve of 6i for. second data set. 
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Figure 7. Curves of R l i  and 112i for second data set. 
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