
-J &&c 97/117
SAND- --q7-Ol83C

A Top-Down Approach to High-Consequence Fault Analysis for Software Systems

Ed Fronczak

Sandia National Laboratories

Albuquerque, New Mexico

elf?onc@sandia.gov

Abstract

Even ifsoftware code is fault-free, hardivare failures can alter a value in memov, possibly

where the code itself is stored, causing a computer system to reach an unacceptable state.
Microprocessor systems are used to perform many safety and security Jirnctions where a design goal is

to eliminate single-point failures such as these. One design approach is to use multiple processors,

compare the outputs, and assume a failure has occurred if the outputs don't agree. In systems where

the design is constrained to a single processor, however, analytical methodrs are needed to identi&

potential single-point failures at the bit level so that an effective fault-tolerant strategy can be

employed

This paper describes a top-down methodology, based upon Fault Tree Analysis, that has been
used to identi& potential high-consequence faults in microprocessor-based systems. The key to
making the Fault Tree Analysis tractable is to effectively incorporate appropriate design features such

as software path control and checksums so that complicated branches of the fault tree can be

terminated early, The analysis uses simplfled software flow diagrams depicting relevant code

elements. Pertinent sections of machine language are then examined to iden ti& suspect hardivare.

A comparison of this methodology with approaches based upon Failure Modes and Effects

Analysis is made. The methodology is demonstrated through a simple example. Use of fault trees to

show that software code isfree of safety or security faults is also demonstrated.

Keywordrs: Software-System Safety, Software-System Security, Fault Tree Analysis, Failure Modes and

Effects Analysis, Fault Tolerance.

mailto:elf?onc@sandia.gov

DISCLAIMER

This report was prepared as an account of work spomored by a n agency of the United
States Government. Neither the United States Government nor any agency thereof, nor
any of their employees, make any warranty, express or implied, o r a s ~ m e s any legal liabili-
ty or respom-bility for the accuracy, completeness, or usefulness of any information, appa-
ratus, product, or process disdased, or represents that its use would not infringe privately
owrl'ed rights. Reference herein to any specific commercial product, process, o r senice by
trade name, trademark, manufacturer, or otherwise does not necessarily constitute or
imply its endorsement, recommendation, or favoring by the United States Government or
any agency thereof. The views and opinions of authors exprrssed herein do not necessar-
ily state or reflect those of the United States Government or any agency thereof.

\

Portions of this document may be illegible
in electronic image products. fmarres are
produced from the best avaiiable original
dOCUment,

,

1. Introduction
Computer system designs are in use today that allow single point failures to compromise safety

and security. In fact, chances are good that your system is one of them, especially if it uses a single

processor.

It's not that features aren't being added to software to provide fault tolerance. Commonly used

testing and analysis techniques just aren't effective in finding gaps in the fault tolerance strategies.

This paper describes a top-down approach to high-consequence fault analysis that has been used

to analyze systems with high-consequence events such as: 1) allow unauthorized access, 2) failure to

encrypt messages, 3) inadvertently transmit secret codes, 4) inadvertently divulge cryptographic keys, 5)

inadvertently detonate a mine,and 6) report that a system is in a safer than actual state. In every case,

this methodology has uncovered design shortcomings despite efforts of the designers to design in safety

and security features. The number of faults uncovered has ranged &om a few to a thousand.

A comparison of top-down and bottom-up methodologies suggests that the top-down approach

will be more effective. The methodology is demonstrated through a simple example where both

hardware and s o h a r e fault trees are constructed.

2. Failures, Faults, and High-Consequence Events

High-consequence events are those system responses that cannot be tolerated. They may

compromise safety, security, or result in financial disaster. The system customers and designers

generally know what these event are.

A failure occurs in any system, subsystem, or component when it does not respond correctly to

inputs.

A fault is any failure or condition that results in a high-consequence event.

Not every hardware failure is a fault. A memory bit failure that denies authorized as well as

unauthorized entry in a security system has caused the system to operate incorrectly even though the

system security requirement, to prevent unauthorized entry, is satisfied. This kind of failure impacts

system reliability, but does not result in a high-consequence event.

3. Comparison of Fault Analysis Methodologies
The goal of a High-Consequence Fault Analysis is to identifjl both design faults and faults due to

hardware failures that will result in some top-level undesired event. The analyst needs a systematic

method for uncovering these faults that is both effective and efficient. A comparison of bottom-up and

2

top-down approaches shows why one would expect a top-down approach to be more effective and

efficient.

3.1 Bottom-up High-Consequence Fault Analysis Methodology
A widely used methodology for High-Consequence Fault Analysis is based upon Failure Modes

and Effects Analysis (FMEA). This bottom-up analysis is performed using the following procedure:

1. Identify high-consequence events;

2. determine hardware failure modes that will be considered;

3. determine critical parts of the system;

4. assume a particular hardware failure;

5. determine whether or not this hardware failure will result in one of the identified high-

consequence; and,

6. continue until all hardware failures of all critical parts have been considered.

Once critical parts of the system (those whose failure might result in a high-consequence) are

determined, the analysis cycles through each failure mode of each critical piece of hardware. To be

done thoroughly, each failure mode must be considered for every possible state of the system. In

practice this is never done since the number of combinations of failure modes and system states is

prohibitively large. This means that there is always some question about both the quantity and quality

of analysis performed. Results are typically reported in the form of a table such as in Figure 1 where the

ability of each component failure to cause each top-level fault (Fl, F2, and F3 in this example) is noted

by some brief entry. If the effect of the failure is a high-consequence event, some supporting text is

typical. However, if the analyst sees no resulting top-level fault, an entry such as "NO effect" with little

or no supporting text is typical. This methodology is not useful in identifling software design faults.

BOrrOMUP (FMEA)

F1 F2 F

TOP-DCMIN (FAULT TREE)

Li
Fault A Fault B

Figure 1. Comparison of Bottom-up and Top-down Fault Analysis Outputs

3

3.2 Top-down High-Consequence Fault Analysis Methodology

The top-down High-Consequence Fault Analysis methodology described here is based upon

Fault Tree Analysis (FTA). It is performed using the following procedure:

1. Identify high-consequence events;

2. Assume the software is fault free

a) Assume a high consequence event occurs
b) Construct a fault tree integrating hardware and software interactions

1) Use simplified system block diagrams depicting relevant components

2) Use simplified software flow diagrams depicting relevant code elements

c) Incorporate software features to simplifjr the analysis
3. Assume the hardware is fault free

a) Construct software fault tree

b) Use software fault tree to develop a code inspection procedure to complete the analysis.

The analysis proceeds by building the hardware fault trees, creating simplified block diagrams

and flow charts as needed. The software flow charts serve as a guide to locating critical areas in the

program memory that must be examined. Hardware involved in these critical code operations make up

the list of ''usual suspects.'' To construct a fault tree which identifies single faults, first assume that the

high-consequence event occurs. Next determine the immediate and necessary conditions that must

occur for this top-level fault to occur. These conditions are themselves lower-level faults. Repeat this

process for each lower-level fault until each branch of the fault tree terminates. Fault tree branches

terminate for one of the following reasons:

1. A point is reached where you have an "AND" gate with two independent hardware failures

as inputs. Sometimes an argument is made that two independent hardware failures exist

even though one of them may not be explicitly identified. This may happen, for example,

when a subroutine is used to check for bit failures. For the bit failure to be undetected, the

bit has to fail and some unidentified bit inathe subroutine has to fail.

2. A point is reached where an argument is made that a fault is so unlikely that it is not worth

pursuing.

3. A single hardware failure leading to a security fault is identified.

True independence of failures doesn't exist. We really are looking for failures that are not

strongly correlated. We will assume that the failures of two different pieces of hardware are not

strongly correlated. In other words, we will assume independence of bit failures.

4

This approach can be modified slightly to identifjr multiple faults by not terminating fault tree

branches until several faults are identified that must occur to cause the next higher fault. Time is better

spent, however, looking for single faults until one is convinced they have all been identified since the

likelihood of single faults occurring tends to be much greater than the likelihood of multiple faults

occurring.

The fault trees are typically constructed as tree diagrams with AND gates and OR gates

connecting the fault entries such as in Figure 1. Here High-Consequence Fault 1 (Fl) occurs if either

Fault A or Fault B occurs. Fault A occurs only if both Component J and Component K fail. Fault B

occurs if Component L fails. The failure of Component L is a fault since its occurrence results in F1.

The software fault tree is constructed assuming that the hardware is fault free. All identified

software design faults will be corrected.

3.3 The Key: Design Features that Facilitate Analysis

Why isn't this top-down methodology more widely used to do fault analysis on computer

systems? Discussions with both security and safety analysts reveal a reluctance to do Fault-Tree

Analysis on computer systems if it involves considering faults due to bit failures inside the processor or

its memory. The analysis will be too complicated. The fault trees will grow out of control. These are

justifiable concerns, but the alternative bottom-up analysis will never be any easier if done correctly.

The advantage in using the Fault Tree approach to analyze computer systems is that it is often easy for

the designer include a few software features that greatly facilitate the fault analysis. These features

make the top-down analysis tractable.

As the fault tree develops, one often sees that a small software modification can eliminate large

sections of hardware from concern. An important example of this is the use of some form of program

flow control to guard against inadvertent jumps during operation. Rather than examine every bit failure

to see if it will cause an inadvertent jump into a critical routine, a time consuming if not impossible task

for large systems, assume the inadvertent jump occurred and do something to detect it and stop the

critical routine from running. By noting the normal path through the software to reach the critical

routine and adding a few lines of code at strategic points along the way to modi@ a flow control word,

we can detect an inadvertent jump and fail safe.

Other examples of design modifications to aid analysis suggest themselves during the analysis.

Software modifications are easy to make and simplifjring the analysis serves the designer's, the analyst's,

and the customer's best interests. The ability of the customer to understand the high-consequence fault

tree analysis is an added and not inconsequential benefit.

3.4 Comparison of the Two Methodologies

Some comparisons of the two methodologies follow:

Bottom-up: Some hardware is determined to be non-critical before a detailed analysis is

performed. If a mistake is made here, critical hardware will not be analyzed.

Top-down: Hardware is only deemed non-critical by looking at the full analysis. If it doesn't

appear on the fault tree, it isn't critical.

Bottom-up: In order to be thorough, every failure mode of every component of critical hardware

must be considered during every system state. This is not practical for large systems.

Top-down: Only failure modes and system states that appear in the developed fault tree are

pertinent. It is not necessary to discuss every failure mode of every component during every system

state. Large systems can be analyzed.

Bottom-up: Details of the analysis are omitted in the presentation.

Top-down: The fault tree is the detailed record of the analysis.

Bottom-uo: Presentation is lengthy because it is filled with unnecessary information.

Top-down: Presentation is concise and easily understood.

Bottom-up: The relationship between each fault and the top-level security compromise is typically

described with text and is hard to follow.

Top-down: The relationship between each fault and the top-level security compromise is clear by

looking at the fault tree.

Bottom-up: Analysis cannot proceed until the design is complete.

Top-down: Fault trees can be incorporated as part of the design methodology.

Bottom-up: How are s o h a r e and hardware interactions considered?

Top-down: Incorporating hardware-software interactions is basic to the methodology.

6

Bottom-up: Not useful for software code fault analysis.

Top-down: Fault analysis of software code is possible.

There appears to be no downside to using this top-down approach, unless you're getting paid by

the pound for doing the analysis. An analyst will get better results and get them more quickly using the

top-down approach.

4. Example Analysis

An analysis of the following simple security system shows how a fault analysis is performed. We

will look at a design that has no fault tolerance features and identify, through the analysis, hardware

failures that will compromise system security and types of hardware failures that may exist but which

might be very difficult to analyze Next we will show how soflware features can be incorporated to

address the identified concerns. Finally we will use a software fault tree analysis to derive a code

inspection procedure that can be used to show whether or not the code design is fault free.

4.0 System Description

A security guard observes activity at a gate. When someone approaches the gate, she must either

determine that they are good guys and let them in, or that they are bad guys and issue an alarm. She

controls activity by selecting among three keypad commands: Open, which opens the gate; On, which

turns on an alarm; Off, which turns off the alarm. The gate automatically closes afler someone passes

through.

Control Unit

Arithmetcl
Logic Unit

Accumulator
Registers

RAM)

Figure 2. System Block Diagram

Figure 2 shows a block diagram of the microprocessor system used to control operations at the

gate. The software program is stored in Read Only Memory (ROW and uses the Random Access

Memory (RAM) as a work space. The microprocessor consists of an Arithmetic Logic Unit (ALU), a

Control Unit, and some programmable registers. One of the registers, the Program Counter, contains

the address of the next program instruction to be performed. Another, the Flag Register, is used in

branching instructions. Data is transferred fi-om the Input Device (keypad) to the microprocessor and

7

from the microprocessor to the Output Device (gate controller) over the system bus through another

register, the Accumulator, which is part of the ALU.

For this analysis, we assume that the keypad and gate controller are fault free.

4.1 Identify High-Consequence Events

While no system malfunction is desired, some malfunctions, such as inadvertently opening the

gate, compromise security. When bad guys show up at the gate and the guard selects the alarm

command, the last thing she wants to see is an opening gate. This system failure is so costly that we do

not want the presence of a single bit error to result in the gate being inadvertently opened. Other

malfunctions, such as inadvertently sounding the alarm or failing to open the gate given an Open

command, may be inconvenient but do not compromise security. The high-consequence fault analysis

focuses on those system failures that compromise security.

For this system, the high-consequence event of concern is "Send Open message inadvertently."

4.2 Hardware Fault Tree (Fault-Free Software)

We develop the fault tree by assuming that the undesired event has occurred, and work

backward from that event looking for hardware failures that might be to blame.

As we start to develop the fault tree, we note that it will be usehl to have a software flow

chart, such as in Figure 3, that shows how the Open message is sent to the gate controller when the

guard selects the Open command at the keypad. When the guard selects a command, the keypad device

makes an 8-bit word available to the system bus. The two least significant bits are used to identi@ the

selected command as shown below:

01 is (alarm) On

10 is (alarm) Off

11 is Open (the gate).

The other six bits may be used to carry some other information such as keypad status. An assembly

language instruction, IN, puts this 8-bit word onto the system bus and copies it into the accumulator.

This word is then saved at RAM location MESSAGE. Some fimctions such as checking the keypad

status are then performed. Then the content of MESSAGE is copied into the accumulator so that the

selected command can be determined. Next the six bits in the accumulator other than the two command

bits are set to zero. The content of the accumulator is now compared with the three two-bit command

values and the program branches to the appropriate routine. If the Open branch is taken, the output

message is copied from memory into the accumulator. An assembly language instruction, OUT, then

puts the contents of the accumulator onto the system bus where it is available to the gate controller.

8

I

START i-J
Read input

message into I accumulator (IN) I
Copy accumulator
contents to RAM

location, MESSAGE

Perform some
other functions I I

Copy MESSAGE
contents to r-l accumulator

accumulator bits
except command

bits

I
Compare command
bits in accumulator to
command bits stored
in program memory

OTHER
COMMANDS

YES

copy output
message from
memory into

message
(OUT)

Figure 3. Example Flow Diagram

Referring to the example fault tree in Figure 4, the top event,

1) send open message inadvertently

is equivalent to

2) OUT instruction is performed with an Open message in the accumulator when the gate

command was not selected.

Referring to the flowchart, we reason that fault 2 could occur in only two ways:

3) the Open message was sent when not executing code in the Open branch, or

4) the Open message was sent when executing code in the Open branch.

Fault 3 can happen only if

5) the accumulator contains the Open message, and

6) an OUT instruction is executed.

We know that the Open message is copied from memory into the accumulator only in the Open branch

of the software and that the only OUT instruction is in the Open branch. We may argue (incorrectly)

that 5 and 6 represent two faults - one that places the Open message into the accumulator and one that

causes an OUT instruction to be performed. But the Open message is just a particular 8-bit word, and

9

1) Send open

inadvertenily

performed with open
message in AC when
open command is noi
part of input message

message sent
but not from

7) Bit failure in
program memory

when Instruction is one
bit different from OUT

-
4) Open

message sent
because OPEN
branch is taken

I I

5) Open 6) OUT 9) OPEN branch I O) inadvertent
lump inio OPEN

branch
message Is in Instruction is taken as result

of compare AC performed

I I I

3) Bit failure in program
memory changes
instruction forcing

ryslem l o a n unknown
stale

12) OPEN
flag fails to branch taken

when flag is OK

-
13) Accumulator
contains OPEN

blts

I
least significant

accumulator

value Is no i copied has Yl. in least
from MESSAGE. signlcant blts

instruction
20) Last value copied
into MESSAGE has

-1I.in least
21) Bit

failure in

23) MESSAGE
overwritten after input
command is copied to

22) Failure to copy
input command from

accumulator to

instruction
bit failure

Figure 4. Example Fault Tree
we don't know whether or not that 8-bit value appears in the accumulator during some other operation

such as the result of a calculation. Since we cannot assume that the Open message appearance in the

accumulator outside the Open branch is a fault, we assume that if an OUT instruction is performed, the

Open message is sent.

10

Fault 6 can occur if there is a

7) bit failure in program memory when the intended instruction is one bit different from OUT,

or

8) a bit failure in program memory changes an instruction forcing the system into an incorrect

state.

To expand 7 any farther would require identifjring every place in the software where an instruction one

bit different than an OUT instruction is used. Expanding 8 is even more problematic; it requires

examining the effect of every stuck bit in program memory. Instead, we assume that 7 and 8 can each

occur due to single bit failures.

Fault 4 can occur if

9) the Open branch is taken as the result of the designed compare, or there is an

10) inadvertent jump into the Open branch.

To expand 10 would be very difficult so we assume that it can occur due to a single bit failure.

To see how Fault 9 can occur we need to look at the section of code where the compare is

implemented.

In this design, the compare is implemented with the series of Compare and Jump instructions

below:

Cmp 03

JZ Open

Cmp 02

JZ AlarmOn

Cmp 01

JZ AlarmOff

Cmp compares the hexadecimal (base 16) operand (03,02, or 01) to the value in the accumulator and

sets the zero flag in the flag register to 1 if they are equal. JZ jumps to the location indicated in the

operand (Open, Alarm On, or Alarm Off) if the zero flag is set to 1. If the zero flag is set to 0, no jump

occurs and program execution passes to the next instruction.

Fault 9 occurs if

1 1) the zero flag bit is failed to 1 or

12) the Open branch is taken when the flag is OK.

Note that Fault 11 would cause the Open branch to be taken no matter which command was selected.

Fault 12 occurs if the

11

13) accumulator contains the Open command bits (02 hex) or there is a

14) bit failure in program memory where the compare is implemented.

Fault 14 may occur several ways. For example, if Alarm On is selected a single bit error in the first

compare operand changes Cmp 03 to Cmp 02 and instead of sounding the alarm, the gate opens. We

might discover that a single bit failure in the first JZ instruction opcode bit pattern changes the

instruction to JNZ, jump if not zero, causing the gate to open if either an Alarm On or an Alarm Off

instruction is selected. Several other bad things can happen here. Rather than identifl them all, we will

assume that we have a problem.

Fault 13 can occur if

15) the correct bits are copied into the accumulator, but the zeroing function fails, or

16) an 8-bit word with bit pattern 11 in least significant bits is copied into the accumulator

before the zeroing occurs.

To see how Fault 15 might occur we look at the assembly code and note that the zeroing is

implemented with the instruction "AND 03". This instruction performs a logical AND of the

accumulator contents with the hexadecimal value 03 and puts the results in the accumulator. Because

of a fortunate assignment of bit pattern to command, a bit failure in the operand, 03, may cause the

alarm to sound when gate opening is desired, but will not cause the gate to inadvertently open. If

there was a single bit difference in the opcode bit patterns for AND and OR, we would have a problem.

The instruction "OR 03" would cause the gate to open when Alarm On was selected.

Fault 16 might occur if

17) the accumulator value was not copied from MESSAGE, or

18) MESSAGE has a value with the bit pattern 11 in the command bits.

Fault 17 occurs if

19) there is an instruction bit failure which changes either the copy opcode or the address in the

operand.

Fault 18 occurs due to either

20) the last value copied into MESSAGE has bit pattern 11 in least significant bits, or

21) bit failure in MESSAGE.

Fault 20 occurs if

22) there is a failure to copy the accumulator contents to MESSAGE, or

23) MESSAGE was inadvertently written to after the input command was copied to

MESSAGE.

12

, Fault 22 occurs if

24) there is an instruction bit failure which changes either the copy opcode or the address in the

operand

Rather than conduct an exhaustive, and probably exhausting search of all possible bit failures that might

overwrite MESSAGE, we assume that Fault 23 represents an undetermined number of single bit

failures.

At this point we pause in the fault tree development. We have identified some locations (faults

11, 14, 15, 19, 21, and 24) where single hardware faults could occur that would cause the top event.

The designer can build in some appropriate redundancy or make use of checksums to get rid of these.

We have also stopped development of some branches (at faults 7, 8, 10, and 23) that may be difficult to

analyze and for which we would like to incorporate software features that will make the analysis more

tractable.

4.3 Apply Fault Tolerance Features

Incorporating features in the software is the key to making the fault tree analysis tractable.

When the number of possible bit failures to consider for one fault tree branch is large, we would like a

strategy where we don't have to identifl all of them. Instead, we assume they exist and provide

protection against them. This not only keeps the tree size small, but helps to present an understandable

case for how well you have addressed the single bit failure issue. Remember, it is desirable both that a

good analysis is performed and that your customer understands the analysis. Keeping the fault tree

small has the advantage of making the analysis more understandable as well as allowing the analyst to

focus on fewer problems enabling them to be addressed more carefully.

Examples of how fault tolerance techniques might be used to provide protection against the

above identified and assumed single faults follow.

The flag in Fault 11 could be checked by adding a few lines of code to make sure that it can be

set and cleared before performing the compare.

Faults 14, 15, 19, and 24 occur in program memory. A checksum of these critical sections of

code might be used to detect single bit failures here.

Faults 7 and 8 also occur in the program memory. A checksum of the entire memory is needed

to detect either of these single bit failures. If performing the checksum incurs an unacceptable cost (say

it takes too long) it may be possible to change the format of the open message form one word to two

words which would protect against the single failure in fault 7 and make fault 8 much more unlikely to

13

occur. Once in the unknown state, two OUT instructions would need to be performed while the correct

message portions are in the accumulator.

Fault 10, the inadvertent jump into the OPEN branch, can be addressed by adding a protective

feature that detects security compromising program flow. This can be done by considering the flow

diagram for an OPEN command, and modifying a flow control word at several points in this flow. An

inadvertent jump into the OPEN branch would bypass one or more of these modifications and would be

detected by checking the word immediately before performing the OUT instruction.

In our example, we could:

1. Initialize a Flow Control Word before reading the input message into the accumulator.

2. Modify the command compare and branch instructions as follows:

Cmp 00

JZ Error

Cmp 01

JZ AlarmOff

Cmp 02

JZ AlarmOn

(Modi@ flow control word here)

Cmp 03

JZ Open

3. Reset the Flow Control Word to its initialized value immediately after sending the Open

message. We don't want the modified Flow Control Word stored at the beginning of the

next command.

Fault 21 is due to a bit failure in the RAM location MESSAGE. Multiple storage of the

contents could be used here.

Fault 23 is due to an assumed but unidentified fault in the program memory. Multiple storage of

the contents of MESSAGE could also be used here.

Once these strategies are implemented, the fault tree is revised so that each branch of the fault

tree that ended with an single fault, now terminates with an AND gate whose inputs represent two

different failures. Figure 5. shows how these modifications look.

RAM bit failure I Undeteded I

RAM bit
Failure

I

Failure in routine
that compares
redundant RAM

locations

ROM bit failure 1 Undetected I

Undetected
indavertent jump
into Open branch

Inadvertent
jump into

Open branch

Failure in Flow
Co ntro I Word

check execution

ROM bit failure I Checksum
failure

Zero flag
failure

I

Failure in routine
that checks Zero Zero flag

failure
flag

~

Figure 5. Example Fault Tree Branch Terminations

The revised fault tree documents your efforts to identify and protect against single hardware

failures causing the open message to be inadvertently sent.

4.4 Software Fault Tree (Fault-Free Hardware)

For each hardware fault tree, we can construct a corresponding software fault tree assuming

fault-free hardware.

Some of the higher level faults on the software fault tree are identical to those on the hardware

fault tree. Lower level faults will be different since they are associated with s o h a r e design mistakes

instead of hardware failures.

Like we did for the hardware fault tree, we use the simplified flow diagram to guide us.

For the example software fault tree in Figure 6, the top event,

1) send open message inadvertently,

is equivalent to saying that an

2) OUT instruction is performed with an open message in the accumulator when the input

message does not indicate an Open command.

15

I I__-- - --

message

2) OUT h ~ b ~ ~ c b ~ k
perfmedwthopen

message in accumulator
when open mmmand k
not part oihput message i;!

3) Open message
sent but not from r-l OPEN branch

5) OUT VAULT
uxnmand occurs

cutside of (he OPEN
islaken arreorll

of compare OPEN branch

8) Logk OK,

Icgic is bad bad inputtto

acsumulalor value
when compare

11) Value copied lo
ammulalor from

mono localion (or not
wpied alall)

12) Coned
localion has

14) lnadveflenlwte lo
MESSAGE ancr

wrred nluc isvmtlen
to MESSAGE

pef fmsvmle lo
MESSAGE

Figure 6. Software Fault Tree (fault-free hardware)

Referring to the flow chart, we reason that fault 2 could occur in only two ways:

3) the open message was sent when not executing code in the Open branch, or

4) the open message was sent when executing code in the Open branch.

Fault 3 can happen only if

5) an OUT instruction is performed when the open message is in the accumulator.

We will assume that the open message is in the accumulator if an OUT instruction occurs outside the

Open branch.

Fault 4 occurs if

6) the Open branch is taken as the result of the compare, or

7) there is an unintended path into the Open branch.

Fault 6 occurs if

16

8) the compare logic is good but inputs to the logic are bad, or

9) the compare logic is bad.

Fault 8 is equivalent to

10) the accumulator has the wrong value when the compare logic is performed.

Fault 10 occurs if

11) the value to compare is copied to the accumulator from the wrong memory location (or not

copied at all) or,

12)MESSAGE has the wrong value when it is copied to the accumulator.

Fault 12 occurs if

13) the logic that performs the write to MESSAGE is bad, or

14) there is a write to MESSAGE after the input message is correctly written to MESSAGE.

We can use this fault tree to derive a code inspection procedure. If the code has certain easily

verifiable properties which are derived from the fault tree, it can be deemed "safe." That is, in the

absence of hardware failures, the high-consequence event will not occur. The code inspection is the

software fault tree analog of the s o h a r e features that we added for the hardware fault tree.

For the example, we must veri@ that:

1. There are no OUT instructions outside of the Open branch (fault 5);

2. there are no unintended paths into the Open branch (fault 7);

3. the compare logic is not bad (fault 9);

4. the contents of MESSAGE are copied into the accumulator just before the compare logic is

executed (fault 11);

5. the input command is copied to MESSAGE (fault 13); and,

6. there are no writes to MESSAGE after the input command is written to MESSAGE (fault

14).

These code inspections are performed looking at an assembly language listing.

4.5 Other Hardware Failures

In this example, we focused on faults in ROM and RAM. The CPU registers and the

accumulator can be checked for failures with a register test routine. The routine can be called at the

beginning of each command. By doing this, we effectively have a separate fault tree for this hardware.

This keeps the fault tree in Figure 4 from getting too cluttered. The ALU and Control Unit can also be

a source of faults. This hardware can be exercised to see if it is hnctioning properly by designing a

series of instructions that will yield a certain result only if there are no failures. A separate analysis of

this checking routine will be necessary to try to determine how effective it is.

5. Conclusions
We have shown how to use the top-down high-consequence fault analysis methodology to

construct both hardware and software fault trees. We have also shown how to use the fault trees to

make the design more analyzable. This approach is much more effective than bottom-up approaches

based upon Failure Modes and Effects Analysis.

While this top-down methodology is usehl in analyzing systems after they are designed, it is

even more valuable if used as part of a design methodology. Protection against high-consequence

events can be designed in rather than added on.

6. Reference

(1) N. H. Roberts, W. E. Vesely, D. F. Haasl, F.F. Goldberg. Fault Tree Handbook. U.S. Nuclear

Regulatory Commission, Washington, D. C. January 198 1.

Sandia is a multiprogram laboratory
operated by Sandia Corporation, a
Lockheed Martin Company, for the United
States Department of Energy under
Contract DE-AC04-94AL85000.

18

