Pragmatic Study of Parametric Decomposition Models
for Estimating Software Reliability Growth

Chin-Yu Huang, Jung-Hua Lo and Sy-Yen Kuo
Department of Electrical Engineering
National Taiwan University
Taipei, Taiwan
sykuo@cc.ee.ntu.edu.tw
http://lion.ee.ntu.edu.tw

Abstract univ'ersity computer centers to general .industrial
applications or home personal computers. Since these
. . demands for complex and large-scale software systems
Numerous stochastic models for the software failure have increased more rapidly than before, the possibility of

phenomenon based on Nonhqmogeneous Paisson Proceﬁ?ogrammers‘ design errors and incompleted debugs will
(NHPP) have been proposed in the recent three decades

. grow relatively. Consequently, the possibility of crises due
Although these models are quite hglpfql for fsoanare to computer failures increases significantly. These failures
developers and have been widely applied in the industrial

it h ; il d1od may generate enormous losses of revenues for many
organizations or research centers, we stilf need 1o do Mor€y 1o hises.  Therefore, in order to determine the overall

works on examining/estimating the parameters of existing : P o

- . @system’'s reliability, the software reliability must be
software rel'lablhty growth models (SRGMs). —In th|s considered and we should pay more attention to it.
papﬁr, \?ve ]l{lvestgatel gmd a_lccour?t for three d p(.)ss'brie Software reliability is similar to hardware reliability
tren' S 0f S0 "_Va.re au t. etection p 1enomenon uring teg;nce photh can be described by probability distributions.
testing phase: increasing, decreasing and_ste_:ady St?‘teBut software faults are harder to visualize, detect, and
We present empirical results from the quantitative StUd'escorrect because they are not like the hardware's physical

on evaluating the fault detection process and develop Aaults. According to the ANSI definition [17]: Software
valid time-variable fault detection rate model which has reliability is the probability of failure-free software

the [Ererfentlt ﬂ;xtibilifty Otf c?jptu;i_?]g a V\Il.ideb.lr.?ngi t?nf operation for a specified period of time in a specified
possibie fault detection trends. the applicabiliity of € o ionmert  Hence, accurately modeling software

groposed _rtnodel an_ﬂ tr;e tre(;aiﬁd mithOdS Ofl par?rgeir'creliability, and predicting its possible trends are essential
ecomposition are fllustrated through several réal aala i, yatermining the overall system reliability. In order to

setsltfroT] d|fftiretn:hsoftwelmta_ prOjects.t_ O(;Jr evalua_ttl_on achieve a highly reliable software system, a number of
results show that the analylic parametric decomposilion g \yare fault detection/removal techniques are widely

appro"?‘?“ for SR.G.M have a falrly accurate predicting used by the program developers or testing teams to detect
capability. In addition, the testing-effort control problem and remove software faults. In fact, no matter how the

based on the proposed model is also demonstrated. fault detection/removal techniques are applied, the

Software Reliability Growth Mode(SRGMs) always play
) a rather important role and can provide quite useful
1. Introduction information for developers during the testing/debugging
hase.

Due to the rapid development of computer and P There are numerous fault-prediction models published
information technology, modern society has becomejn the literature and many efforts have been made to
increasingly dependent on software-intensive systems inestimate the software reliability from real data sets. Most
the recent three decades. Software is embedded iR them are based on calendar-time (such as
everything and plays an important role from expensive jelinski-Moranda Model [17]), manpower-time (such as
scientific computing systems, financial banking systems or shooman Model [17]) or computer-time (such as Musa



Model [5, 17]). In the field of software reliabilty model gives a more accurate prediction. Further, the
modeling, Musa [5] first discussed the validity of testing-effort control problem based on the derived model
execution time theory by taking data sets from realis also discussed.

software systems. In fact, from the literature, we can find There are six sections in this paper. Section 2
that most existing software reliability models do not provides a detailed description of characteristics of model's
incorporate the execution time concept into their derived parameters in the literature. Section 3 derives a software
models. Recently, Yamada et al. [1-5] and Huang et al. [8,reliability growth model which combines the testing-effort
18] proposed two simple and new software reliability function and the time-variable fault detection rate. We
growth models with Weibull-type and Logistic testing- estimate these parameters of the proposed SRGM based on
effort function respectively, which attempt to account for the actual observed software failure data, plot the mean
the relationship among the calendar testing, the amount of/alue functions, and give a fair comparison with other
testing-effort, and the number of software faults detectedexisting models in section 4. Section 5 is concerned with
by testing. The testing-effort can be measured by the manhe applications of testing-effort control and management
power, the number of test cases, the number of CPUproblem. Finally, section 6 presents the concluding
hours, ...,etc. By applying these models extensively onremarks and possible future extensions of this work.

real software development projects, we know that the

testing-effort dependent software reliability model 2. Basics for Software Reliability Modeling
provides a reasonable fit to the observed data and gives a

very good interpretation for the resource consumptionp Assumptiong1-4, 8, 10]

process during software development [8, 18].

In general, among the various software reliability 1.The fault removal process follows th&lon
growth models, there are two most important parameters Homogeneous Poisson ProcéssiPP).
which will impact the reliabilitythe total number of initial 2.The software system is subject to failures at random
faults and the fault detection rate The total number of times caused by faults remaining in the system.

initial faults are the number of faults in the software at the 3.The mean number of faults detected in the time
beginning of test. The fault detection rate is used to interval ¢, t+Af] by the current testing-effort
measure the effectiveness of fault detection for test expenditures is proportional to the mean number of
techniques and test cases. Based on the vast literature remaining faults in the system.

(1-5, 9-11, 16-17, 19, 21, 24, 28-29], we k'now that most 4.The proportionality is a function of time.

researchers assume anstant fault detection rate in 5.The time-dependent behavior of testing effort can be
deriving their original software reliability growth models. modeled by a Logistic or a Weibull-type
That is, they assume that all faults are equally exposed distribution.

during the softwarfe testing process and the rate remains 6.Each time a failure occurs, the fault which caused it
constant over the intervals between fault occurrences. In is immediately and perfectly removed (i.e. no new

fact, the fault detection rate strongly depends on the skill faults are introduced) by the system programmers
of test teams, program size, or testability. From our '
studies [20], through the real data experimrnts/analysis on Based on the above assumptions, the mathematical

several software development projects, we can find that thedevelopment of software reliability growth model is as
fault detection rate has three possible trends as tim%llowing'

progressesincreasing decreasingor steadystate We a1

thus analyze and view the fault detection rate as a function & Xwo - r(t) x[a-m(t)] , a>0,0<r(t)<1 (1)

of time to interpret these possible trends, that is, a 4.

time-variable fault detection function. Furthermore, we thatis,—~ =w(t) xr(t) x[a-m(t)] .

will consolidate the above two conceptesting-effort  Rearranging the above equation andr(fj is a constant
function and time-variable fault detection ratein the over time, we get

following analysis of software reliability modeling. In this amy _

paper, the SRGM's parameters are estimated by the —a = WO xrx[a-m(t)] ()
Maximum Likelihood EstimatiofMLE) and theleast  \here m(t)=expected mean number of faults detected in
Squares EstimatiofLSE). We will take the estimated time (Of].

parameters into the proposed software-fault prediction a=expected number of initial faults.

model and compare the predicted results with other r=fault detection rate (FDR) per unit testing-effor.
existing software reliability models. From the comparison w=current testing-effort consumption.

results, analysis to determine the reasons why the predictedolving Eq. (2) under the boundary conditim(0)=0, we
results do or don't agree with the actual results iSphaye

performed. Experimental results show that the combined m(t) = ax (1 - e *WO-WO)) (3)



B. Testing-Effort Modeling phenomenon [6, 8, 18]. Therefore, we try to use a Logistic
testing-effort function to describe the test effort patterns.

During the software testing/debugging phase, it Besides, Demarco also reported that this function was

consumes significant test-effort, such as volume of testfairly accurate in the Yourdon 1978-1980 project survey

cases, man power, and CPU time, ...etc. The consumefB, 18]. The cumulative testing effort consumption of

testing-effort can indicate how effective the faults are Logistic testing-effort function in time (G} is

detected in the software. Hence, resource consumption or W) = 1+A'\\‘e"“ (10)

allocation of man power can be modeled by different o Lo

distributions. From the studies in [1-4, 6-8, 18], several andthe current testing-effort consumption is

testing-effort pattern expressions exist as shown in the W(t)=$= aANe® - __aNA (11)
- (1+Ae™™) %Q+A —at (1
following. 25 0
where N is thetotal amount of testing effort to be
B.1. Constant Testing-Effort Consumption eventually consumed,
In the derivation of most classical software reliability o is the consumption rate of testing-effort
growth models [10-11, 16-17, 19, 24-25, 28, 30-31], the expenditures
researchers assumed that the testing-effort (workload) of a andA is a constant.
software system is constant.
WO=W,, t=1, 2, ... (4) C. Fault Detection Rate

wherew, is the initial testing effort.

) ) . The second parameter of Eq. (2) is faelt detection
B.2. Weibull-Type Testing-Effort Function rate. It is the rate of discovering new faults in software
According to Yamada et al. [1-4], Musa et al. [S] and qing the testing phase. First, we should distinguish
Putnam [27], we know that the cumulative consumption of error, fault and failure. In considering a computer

testing-effort during the testing phase may not be agsfhvare system, an error occurs when some parts of the
constant and grows from zero to some finite value. Henceggvare produce an undesired state or it is the

the testing-effort can be described by a Weibull-type h-oqrammer action or omission that results in a fault. A

distribution: ot . fault is created in the written software (faulty instructions
W(t):cxxgl—em og(x)dXDE (5) or data patterns) when a programmer makes an error.

t t Consequently, a fault is a defective, missing, or extra

where a is the total amount of testing effort to be instruction which is the cause of one or more actual
eventually consumed. failures. A fault causes failures and is uncovered when a

dt) is the consumption rate of the testing effort ~ failure occurs within the program [5]. Hence, we can

expenditures at instant clearly know that software reliability is the probability of
And W(t) is defined as follow: failure-free operation of a software component or system
ot in a specified environment for a specified period time.

WCD = fo wlx)dx ©6) Secondary, if a computer software program is
where w(t) is the current testing-effort consumption at designed by software designers or programmers, then the
timet. tasks of testing/debugging software may be performed by
1.If g(t)=Pp, thenw(t)=aBexgd—Bt], we have arExpon- these people or other test teams after coding. Therefore,
ential curve and the cumulative testing-effort cons- they should understand the characteristics of programming
umed in time (0] is W(t)=a(1-exp [Bt]). ) (such as number of lines of source code (LOC), language

type, program size, modularity or complexity), inspection,
testing, and operational environments. That is, whether the
software faults can be detected or not depends on the

2.0f g(t) = Bt, thenw(t):aBtexp[-gtz] and we have a
Rayleigh curve and the cumulative testing-effort

consumed iSN(t):a(l—exp[-%tZ] )- (8) abilities of programmers/debuggers, the software structure,
3.And if w(t)=apmt™exp[-pt], we have aneibull the maturity of software development procedure, and the
curve and the cumulative testing-effort consumed is correlation among modules. At the beginning of the

W(t)=a(1-exp[-pt™]). (9) testing phase, most faults can be easily discovered by

wherep is the scale parameter amdis the shape inspection and the faqlt de'tection rate depend.s on the
parameter. discovery-to-fault relationship, the fault density, the
testing-effort, and the inspection rate. On the other hand,
in the middle stage of testing phase, the fault detection rate
normally depends on other parameters such as the
kexecution rate of CPU instruction, the failure-to-fault

B.3. Logistic Testing-Effort Function
In the Weibull-type curves, whem>3, we find that
Weibull-type testing-effort curves have an apparent peal



relationship, the code expansion factor, and the scheduledd), (g), (k), and (m) indicate that FDR is non-increasing in
CPU hours per calendar day [17]. Consequently, we knowtime t. Besides, Fig. 1 (h), (i), (I) show that FDR seems to
that the fault detection rate can be calculated and is used tbe in a steady state. Here, we must point out: there are
track the progress of checking activities and evaluate thesome peaks and valleys in describing the possible FDR
effectiveness of planning how to test and the checkingstates because these test cases may probably be switched to

methods we adopted.

C.1. Constant fault detection rate

other test teams or make some modifications during the
software testing phase. Additionally, in these experiments,
we also eliminate some oscillatiophenomenain the

From our studies in [10-11, 16-17, 19, 24-25, 28], beginning.

In factduring the software testing process,

most existing SRGMs assumed that the fault detection ratehere are several testing stages which incluphitstesting
remains constant over the intervals between faultintegration testingsystem testingnd installation test. If
occurrences. That is, the whole software system is very complex and large, such
FQ)=r,, t=1, 2, 3, 4, ..., as the space shuttle project, the weather prediction or
_ o . airplane reservation systems, the programmers should
wherer, is the initial fault detection rate. remove all easy-to-detect errors in their own programs at
_ _ ) the early stage of software testing phase. As time passes,
C.2. Time-variable fault detection rate  the testing phase proceeds to the integration testing and
In our experiments, we know that the fault detection gystem testing phase, such that it is relatively more difficult
rate can be measured by the average number of faultgy programmers to detect other embedded errors. That is,
detected per testing-effort expenditure or the number Ofjpitially FDR is increasing and then the FDR is decreasing
faults detected by special checking activities. It is VerY in this case (see Fig. 1(b), (k) or (m)). On the other hand,
hel_pf_u_l for 'ghe system developers to plan the checkingjt the software projects are designed for median to small
activities, diagnose problems and assess the effects ofcale pusiness/company, they are usually not large in scale
changes. Besides, it provides enough information whichgng does not own many program modules. As time
we want to know about the cost-effectiveness of variousprogresses, the testing skill of programmers also improves
checking activities during the long-term running. or they have modified their testing techniques and tools
Therefore, in order to interpret the possible variation in\when new technologies are discovered and become
fault detection rate (FDR) with time, we survey some real 5yajjaple. They can assimilate some new methodologies in
test/debug data sets given in [5, 10-12, 14-15, 25-28].¢3,1t detection, fault correction, or fault avoidance which
From those different software systems (from USA, Japangre described in the professional journals, proceedings or
and France) in Table 1, we obtain adequate knowledg&rade publications. These modifications may help the
about the fault detection processes and observe the VariOLﬁrogrammers or testers in creating tests and easily
fault detection behavior.s. Most of the grouped data sets irleliminating some redundant tests. Accordingly, the FDR
Table 1 have the following form: may have an increasing trend (see Fig. 1(f), () or (n)).
(t, my), . m), G, m), &, my), (€, M)y » om) Sometimes, if the requirements are changed or new faults
wherem is the total number of faults detected by time  5re introduced during corrective activities, the FDR will
Generally, the obtained data based on calendar tim&ncrease. Hence, through real project data analysis, we
tends to be noisy (short-term randomness) and might nokjearly observe that the fault detection rate (FDR) have
comply with most existing assumptions for SRGMs [5, 18, ipree possible trends as time progressesreasing

22]. If possible, it must be filtered by applying some : :
data-smoothing techniques. One way of interpreting FDRdecreasmgandsteady state

(12)

at different times is to useomputational approachi22].
From Eq. (3) and usingi(t) andm(t,,), the FDR during

the timet, andt,,, can be estimated as following:

mt) _ ax(l_e—f(W(‘i)—W(O)))
m(tivg) ax(1-e"Wiix1)-WO))

(13)
Rearranging the above equation, we obtain
M(t;) X (1 - e W) WOD) — mt;,) x (1 - e"W-wo)y = (14)

We can solve the above equation by numerical methods.
After some numerical calculations by computer, Fig. 1
shows that the fault detection rate varies with time for
different real data sets. Fig. 1 (a), (e), (f), (j) and (n) show
that FDR has a rise trend as time increases. Fig. 1 (b), (c),
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Table 1: Summary of real data sets studied.
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Fig 1. Variation of FDR with time.

Data |Refere- [No. of Observati- | Software Project/Program Descriptiaand
Set [nce Faults on Period | Characteristics
Detected

DS1 [10] 328 19 weeks | PL/I Application Program, Execution Timd
47.65 CPU hours, Software Size:
1,317KLOC

DS2 | [12] 136 21 weeks | Real-Time Command and Control Applicgfion
(System T1), Execution Time: 25.3 CPU
hours, 9 Programmers, Software Size: 21,{{00
LOC

DS3 | [11] 227 38 weeks  Execution Time: 2456 CPU hours

DS4 | [21] 73 18 days PL/I Assembler Language,418 Executioffs,
Software Size: 50,000 LOC

DS5 | [28] 137 25 days 418 Executions

DS 6 | [15] 107 15 days F11-D Fortran Program, Execution Timg:
226.11 Seconds of CPU Time, Software
Size: 3~4KLOC

DS7 [5] 32 11 weekg System T38

DS 8 [5] 77 19 weekg  System T39

DS 9 [25] 86 22 days Execution Time: 93 CPU hours

DS10| [17] 3,207 13monthg 240,000 LOC

DS11| [29] 27 27 days Compiler Project, Software Size: 1,000 [JOC

DS12| [14] 211 32 week Switching System TROPICO-4096, Softjyare
Size: 300,000 LOC

DS13| [10] 46 21 days Software Size: 40,000 LOC

DS14| [26] 198 16 days Real-Time Control System Consisting off
About 90 Modules. Software Size: 1 KLO
of PL/1, Fortran, and Assembly languages|

3. Software Reliability Growth Modeling

Since the fault detection task is performed by
programmers or computers after coding, they will analyze
the source code or the results of object code executions.
From the detailed discussions in subsection 2.B.2, it
suggests that we can use a time-dependent coefficient to
replace theconstantFDR [20]. In order to interpret the
observed results, we assume that the FDR is a function of
m(t). That is, there exist some relationships between the
number of initial faults, the number of detected faults and
the fault detection rate.  From Eg. (1), making some
rearrangements, the fault detection rate per remaining error
at testing time is described as following and it represents
the detectabilityof an error for the current error content

[3]: d() = Tg2/(a~m(D) = () xw() (15)
that is, r(t):% . Eq. (15) implies thad(t) O r(t) , i.e.

rt) +, d@t) randr(t) 4, dt) ¢ . It also indicates that the
fault detection rate per remaining error is a function of the
current testing- effort expendituregt). Here we can view
the d(t) as a software reliability growth index and
efficiency of testing. Besides, since most software
reliability models assume thedt) is a constant or even do
not consider the testing-effort, and equally they also set the
value ofr as a constant rate [5, 10-11, 16-17]. Therefore,
with the above assumptions, we can géf)=constant
which indicates that this model has a homogeneous fault



detection rate Otherwise, Eqg. (15) should give us a more This case describes a fact: a large number of trivial faults

precise description about the behaviod(tj. are easily detected in the beginning and the last few faults
are difficult to detect.
Discussion 1ir(t) is at a steady state with time Casel: r(t)=rox(1- @) (25)
Case: r(t)=r (16) Substituting Eq. (25) into Eq. (1), the solution of this
The above equation describes that all faults are equallgguation is given by
; . . ) : ~ ~ 1 0
exposed during testing. Under this assumption, it means ift)=a x Ell PeTETEEAR (26)

that the fault detection rate per unit testing-effort is in a
steady-state. Hence, substitute Eq. (16) into Eq. (1) androm Eq. (15), the fault detection rate per remaining error
solve the differential equation under the boundary at testing time is

conditionm(0)=0, we have [8, 18]: d(t) = WW\E\ZQH (27)
nft)=a < (1- exd-r (W(H)-W0)) ]) an i
And from Eg. (15), the fault detection rate per remaining Casell: r(t) =ro +kx ==, k<O (28)
error at testing timeis Substituting Eqg. (28) into Eq. (1), the solution of this
d(t) = r x w(t) (18) equation is given by
The above equation indicates that whetldé) is a m(t) =ax(1- (fo*) ) (29)

roxexp[(ro+k)x(W(t)-W(0))] +k
ind from Eqg. (15), the fault detection rate per remaining
error at testing timeis

homogeneous or nonhomogeneous fault detection rate i
totally dominated by the current testing-effort pattevgt).

Discussion 2 (t) is non-decreasing with tinte

— _ k
@) =W(O)*(1 - oo -wonk) (30)

m(t)

_ )
Casel: r(t)=ro+kx™ k>0 (19 Caselll: r(t)=ro+(ri-ro)™, r,>r, (31)

Under this assumptlon we use a linear regression model tg
estimate the FDR. In Eq. (19),is the initial FDR and Substltutmg Eq. (31) into Eqg. (1), the solution of this
is the slope (model parameter) which can be estimated eavation is given by r

from least squares. It is used to track and predict the nt)= ax %l— ! u (32)

X X = (0) —| |:|
possible increasing FDR trends. Substituting Eq. (19) into foeplr O W(_))]Hf o .
Eq. (1) and solving this differential equation, we obtain And from Eq. (15), the fault detection rate per remaining

(ro+K) error at testing timeis
I’(I) ax (l roxexp[(ro+k)x(W(t)- V\/(O))]+k) (20) — _ o O
P C(t) ‘W(t)xl’f % roxexp[r < (W(t)-W(0))]+r¢-—r g (33)
From Eq. (15), the fault detection rate per remaining error oXexpIr I*Ti~ro
is In order to check the validity of the proposed model
_ K . X . T
dt) =w(t)x(1 o (ro+k)x(vv(t)_w(0))]+k) (21) and make a fair comparison with other existing SRGMs,

o , , o L . we divide the above equations (i.e. Eq. (16), (19), (22),
and it is monotonically increasing in testing titneThat is, (25) , (28), and (31)) into four groups:

Eg. (21) means that Eq. (20) describes a fault detection "1 sroup Ar() =r.
process in which the detecability of an error increases with _ M)
the progress of software testing. 2GROUP Br() =ro+(rr=ro)73", 0<o<r, or 0«

Casell: r(t)=ro+(ri—ro)™, 0<r,< 22 N
asell: r(t) =ro+(rf—ro)=5", 0, rf. o (22) 3.GROUP Cr(t)=ro+kx ™, k>0 ork<0.
Under. this a;sumptmn, in Eq. (22),, is the |n.|t|al FDR 4GROUP Dr(t) = rOX(l—@) , 1>0.
andr, is the final FDR. Substituting Eg. (22) into Eq. (1), _ _
we obtain a Riccati differential equation and solve it: Furthermore, if we want to accept/reject some SRGMs

mt)=ax %l— Iy under a specific software development experiment, we
roxexp[r px(W(H-W(0))] +r~To must have some clear criteria for evaluation and

Similarly, from Eq. (15), the fault detection rate per comparison among the acceptable models.The comparison

H, 0<ro<r, (23)

remaining error at testing tintés criteria for estimation are de_scribed as foIIovl\\flsim
d(t) =w(t)xr x %l— ri-ro _ E (24) (1) The Accuracy of Estimation [5, 8-9] (AE|M—a| (34)
Foxexplrex(WO-WONJ#rrro where M, is the actual cumulative number of detected

and it is monotonically increasing. Similarly, Eq. (24) faults during the test and after the test, andis the
means that Eq. (23) describes a fault detection process imstimated number of initial faults.
which the detecability of an error increases with the Z .
progress of software testing_ (2) The Mean of Square flttlng Faults (MS‘ [m(ti)= m]

k
Discussion 3ir(t) is non-increasing with time (35)



A smaller MSF indicates fewer number of fitting faults and shuttle software, we may not avoid the extra complex
better performance. numerical operations. Besides, from Fig. 3(b), we see that
When completing the derivation of software reliability these continuous curves of estimated mean value function
growth models, we also can get some useful quantitativehave an inflection point. That is, they show S-shaped
measures in order to assist in determining the number obehavior due tar; >>r; in Group B of Table 2. The
residual faults and the probability of software system derived software reliability model under such assumption
survivability for software developers/testers. They are (1) (i.e. Eq. (22)) has been used by Yamada [10-11, 20].
Maximum faults(MF), i.e. the total number of initial Finally, we can conclude that the combined mob(p
faultsm() : (2) Remaining fault{RF) in the system at B) of incorporating testing-effort function and
testing timet, i.e., m(e) —m(t) which is an important time-variable fault detection actually fits the data set

indicator of the software reliability and very useful for Safisfactorily in this experiment.

planning maintenance activities and discussions; (3)
Time-Interval Between Software Failur@eBSF), and (4)
Software ReliabilitfSR) [8, 18].

Table 2: Summary of model parameters and
comparisons for the first data set.

. ModelGroup A) a r MSF AE
4' Expenmental ReSUItS Eq. (17) with Logistic function 394.07¢ 0.0427223 118.29] 10.06
Eq. (17) with Weibull function 565.35 | 0.0196597 122.09| 57.91
First Data Set Eq. (17) with Rayleigh function | 459.08 | 0.0273367] 268.42| 28.23
The ﬁrst set Of real data to be analyzed came from Eq. (17) with Exponential 828.252| 0.0117834 140.66| 131.35
. j . ModelGroup B) a 5 1 MSF AE
Ohba [10]. The system is a PL/I database application |gg zs)win Logistic function | 337.41 | 0.018962 | 0.113343 163,099 5.75
software and the size of software is approximately Eq. (23) with Weibull function | 345.684 0.0125642 0.106949 91.0224 3.43
1,317'000 |ines Of Code (LOC) During the teSting periOd Eq. (23) with Rayleigh function | 371.43§ 0.0137198 0.08050 |158.91§ 3.75
Of nineteen WeekS 4765 CPU hOUrS were Consumed and Eq. (23) with Exponential 352.52] 0.0108348 0.10819 |83.998| 1.53
about 328 software faults were removed. The original data ModelGrow @) il B K| MSF | A®
report iVES that the total Cumulative number Of detected Eq. (29) with Logistic function | 430.664 0.0409427 -0.014653103.03 | 20.11
p g . A . Eq. (20) with Weibull function 385.39| 0.022903¢ 0.03938294 87.5831 7.65
faUItS aﬂer a Iong perIOd Of tes'tlng IS 358 faUIts The Eq. (20) with Rayleigh function | 379.947 0.0239006 0.0385439 406.71| 6.13
parametersx, B, andm of the Weibull-type testing effort [Eq. (20) with Exponential 385.174 0.0180857 0.054702183.3454 7.69
function in Eq. (7), (8), and (9), ard, A, anda of the Model(Group D) a b MSF | AE
Logistic testing effort function in Eq (10) can be derived Eq. (26) with Logistic function | 582.53§ 0.0308452 96.9321 62.72
by USing the methOd dﬂaximum lee“hOOd EStimation Eq. (26) with Weibull function 958.714 0.0118215 124.394 167.79
. . .. Eq. (26) with Rayleigh function | 702.693 0.019120§ 247.84| 96.09
and Least Squares Estimation Similarly, the other Eq. (26) with Exponential 1225.6 0.0082272 160.72| 242.36
parameters, r, , r, andk of the mean value function can GOME;iSIt[Tg]SRGMS 2 r 1“5/'7555 5?28
. . o - odel . * . .
alsp be SOIVed_ numerlca"y' Flg 2 pIOtS the flttlng Of the Inflection S-Shaped Model [10]| 389.1 | 0.0935493 133.53| 8.69
estimated testing effort by using Eq. (7), (8), (9), and (10). |Pelayed S-Shaped Model [8] | 374.05] 0.197651 168.67| 4.48
. . . Exponential Model [10] 455.371 0.02673p8 206|93  27]09
Table 2 summarizes the estimated parameters for different =550 Tl 351 s3d
testing-effort functions, mean value function, and the |Logarithmic Poisson Modells] | NA - 17143+
comparison criteria. We can find that our proposed
software reliability growth function fits pretty well at the
5% level of significance through théIlmogorov-Smirnov ~ Testing Effort (CPU Hours)
goodness-of-fit. Fig. 3(a)-(d) graphically shows the actual )
(observed) and the fitted number of software faults, o — Log
according to different groups in Table 2. From Table 2, 3 / > I‘ny‘
both MSF and AE in Group Bare less than those in other e N T B
groups/existing SRGMs and it is conceivable tBetup B 2 [ X
has a better goodness-of-fit. In fact, droup B it uses X / AN N
two parameters to interpret the various fault detection 7 st
patterns inst_ead of the traditi_onal assumption of constan oL Ti e (Weeks)
fault detection rate, and indeed has a very good 0 25 5 7.5 10 12.5 15 17.5

performance. But we must point out that by adding an
extra parameter in modelinthe fault detectionpheno-
menon the estimation becomes more difficult because
more numerical calculations are involved. However, if
very high reliability is needed in some critical applications,
such as very large scale commercial software or space

Fig. 2: Plot of observed/estimated testing-effort

vs. time.
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Fig. 3: Cumulative number of observed/
estimated failures vs. time.

Second Data Set
The second set of real data is the pattern of discovery

of errors by Thoma in [26]. The debugging time and the
number of detected faults per day are reported. The
cumulative number of discovered faults up to twenty-two
days is 86 and the total consumed debugging times is 93
CPU hours. All debugging data are used in this
experiment. Similarly, we can estimate each parameter by
MLE andLSEin the proposed SRGM and they are shown
in Table 3. Fig. 4 plots the fitting of the estimated testing
effort by using Eq. (8), (9), and (10). Fig. 5(a)-(d)
graphically shows the fitted number of software failures as
compared with the observed error data, according to the
different groups in Table 3. We observed that the fithess
of mean value function to actual failure data is still good.
From Table 3, we can clearly see thatMfeFsfor Group

C andGroup Dare less than those of other groups/existing
SRGMs and the results of measures indicate that they
perform better. Similarly, from Fig. 5(b), we see that these
continuous curves of estimated mean value function have
an inflection point. They also show S-shaped behavior due
to r, >r, in Group B of Table 3. From the above
discussion, we know that the combined moéebip C &

D) of incorporating testing-effort function and
time-variable fault detection fits this data set better than

others.

Table 3: Summary of model parameters and
comparisons for the second data set.

Mode(Group A) a r MSF
Eq. (17) with Logistic function 88.893 0.03905] 25.2279
Eq. (17) with Weibull function 87.0314 0.03454 7.772
Eq. (17) with Rayleigh function| 86.1616 0.0359 3.91643
Mode(Group B) a 4 4 MSF

Eq. (23) with Logistic function 89.452 0.0188499 0.0543846 14.0¢603
Eq. (23) with Weibull function 87.3124 0.017449 0.0522P58 18.946772
Eq. (23) with Rayleigh function| 87.3472  0.0177506 0.0513699  20.4568
Mode(Group C) a 4 k MSF

Eq. (29) with Logistic function 97.533R 0.0472247 -0.0389523  7.35{363

Eq. (29) with Weibull function 97.684[L 0.03606f8 -0.0227224 6.59p9

Eq. (29) with Rayleigh function| 112.182  0.0335d12 -0.033%811 6.60318
Mode(Group D) a 4 MSF

Eq. (26) with Logistic function 106.1 0.04371J78 7.337p7

Eq. (26) with Weibull function 114.52 0.03147f6 6.365B1

Eq. (26) with Rayleigh function| 112.188  0.0335412 6.60318

Existing SRGMs a r MSF

G-O Model 137.072| 0.0515445 25.39

Delay S-Shaped Model [8] 88.65B3 0.228148 6.31258

HGDM [26] 88.3 * 33.6812
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Fig. 5: Cumulative number of observed/
estimated failures vs. time.

Third Data Set

The third set of real data in this paper is the System T1
data of the Rome Air Development Center (RADC)
projects in [12] and the failure data is generally of the best
quality. The number of object instructions for the System
T1 which is used for a real-time command and control
application was 21,700 and it was developed by Bell
Laboratories. It took twenty-one weeks and nine
programmers to complete the test. The intervals are
measured by the wall clock time, which is proportional to
execution time. Similarly, the parameters in the proposed
SRGM under the assumptions of different possible trends
are shown in Table 4. Furthermore, we know that the
proposed mean value function based on NHPP adequately
fits the actual error data at a 5% level of significance
through the Kolmogorov-Smirnovgoodness-of-fit test.
Fig. 6 plots the fitting of the estimated testing-effort by
using Eq. (7), (8), and (10). Fig. 7(a)-(d) plots the
estimated/observed number of failures vs. time. It can be
seen that for this data seGroup B has a better
goodness-of-fit than other groups and the existing SRGMs.
From Fig. 7(b), we also see that these continuous curves of
estimated mean value function still have inflection points.
Hence, they are S-shaped. The reasaypisr , in Group
B of Table 4. Note, however, th&roup Cor D is the
next advisable option if we want concurrently a good
estimation and a simpler model. From the above
discussion, we know that the combined mod&oup B
of incorporating testing-effort function and time-variable
fault detection fit this data set better than others. In fact, in
this software project, we can see that if we use a constant
fault detection rate model instead of a time-variable model
in order to obviate complex numerical operations, we still
can get a reasonable prediction in estimating the number of
software faults.



Table 4: Summary of model parameters and
comparisons for the third data set.

Mode(Group A) a r MSF
Eq. (17) with Logistic function 138.026 | 0.145098 62.41
Eqg. (17) with Rayleigh function | 866.94 0.00962 89.2409
Mode(Group B) a 4 1 MSF
Eq. (23) with Logistic function 137.759 | 0.0502167| 0.359256 | 144.6447
Eq. (23) with Rayleigh function | 150.047 | 0.013763 | 0.322236 | 12.137
Eq. (23) with Exponential 187.537 0.00088 | 0.166756 | 19.73719
Mode(Group C) a 4 k MSF
Eq. (29) with Logistic function 142.567 | 0.14881 | -0.0450679 53.4266
Eq. (20) with Rayleigh function| 156.715 | 0.018374f 0.25801 10.9726
Eq. (20) with Exponential 173.064 | 0.000048 | 0.194059 | 48.5971
Mode(Group D) a 3 MSF
Eq. (26) with Logistic function 164.106 | 0.169151 38.121
Eq. (26) with Rayleigh function | 1543.47 | 0.0054604 89.7666
Existing SRGMs a r MSF
Exponential Model [5] 137.2 0.156 3019.66
G-O Model 142.32 0.1246 2438.3
Delayed S-Shaped Model [8] 237.196 | 0.0963446 245.246
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vs. time.
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5. Applications of Testing-Effort Control and
Management

After coding is completed, software testing is a
necessary but expensive process. Once the obvious and
easy-to-detect faults are removed from a new computer
software package, the computer company will need to
determine when to stop the testing and make a software
risk evaluation. If the results meet their requirements, the
company will decorate and declare that this software
package is ready for releasing. Hence, adequately



adjusting some specific parameters of a SRGM in theConsidering the above statements, if we know that
. . . !
proper time interval can help us to speedup getting theRisk(Tz) =1- Y (tz) =1-2" anda’ (@”>m(T2)) is the

desired solution. ) m(t) _
goal number of detected faults at tiffyethen
A. Software Risk Assessment a”=m(Ty) +om'(T2 = T1), a2 m(Tz) (38)

=ax (1-exp[-rx (WTq) +W(T2-T1) -WO0))])
Some people view the risk definition in Webster's New  =ax (1 -exp[-r x W(T, —T1) ] xexp[-r x (W(T1) —W(0))] )

Universal Unabridged Dictionary ask exposuravhichis  here m(T, ) is the cumulative number of faults detected

equal 'to Probability _of an Qnsatisfactory Outcoine at timeT, anddm((T,-T,) is the extra faults needed
[Loss if the Outcome is Unsatisfactpfy3-24, 30]. Based to be detected in order to reach the desired goal at
on this definition, we can see that the risk exposure is timeT, (5m(T,-T,)>dm(T, -T.)

2 2 1 2 /7

mainly dominated by the probability of an u_nsatis_factory Rearranging the above equation, we have
outcome. Therefore, we can map such idea into the
software reliability analysis. We define: a’=m(Ty) = 0m/(T> = Ta) = (@~ m(Ty)) x (1~ exp[-r x W(T> - T.)])

a-a”=(a-m(Ty)) x exp[-r x (W (T2 = T1))] (39)

Re(t) =1- 70 (36) .
1 _ - / =\\/" _ 1
Ry () can be used to evaluate the risk caused by theWheréN(T2 ) I T W) =W(T,) W(Tl)
remaining failure patterns which still exist after the testing N _ __ N (40)
phase. Hence, if we can accurately evaluate the risk of the A€ T2 1+AeT T

tested software, then another other useful index, theSubstituting Eq. (40) into Eq. (39), we get

operational quality, is available. Ti@perational Quality . " . (T [ (41)
Indexis defined as: the degree to which a software is free et Taeen T In %1— ity O

of remaining faults and this quality index is very important -~ ) ) ]

for a widely distributed commercial software [23-24, 30] . The modified testing-effort functioW(T, -T,) during the

Q)= (1-R,()) X 100% 37) time interval T, , T,] can be controlled by usina® , the
. modified consumption rate of testing-effort expenditures
B. Testing-Effort Control Problem which satisfy Eq. (41) and it can be solved numerically.

For example, because of the limitations of space, we only

In order to possess the lowest risk and achieve a give'S€ Ed- (17) with Logistic testing-effort function as the
operational quality at a specified time, we can use theestl.mated value_ fgnctlon for a software development
software reliability growth model to estimate/control the Project. In fact, it is compact and easy enough to apply.
extra testing effort. The major problem is how to estimate Thel_o(tjhe_r '_TI‘O?GE‘ wedproriﬁsed in this pa(ljper allsoﬂc]:ar;_ bte
the number of extra faul@m’(t') which have to be found applied simi ary_ase on_ € same procg ure. nthe firs
[3-4]. Let us consider the following scenario: data set, we sdt, =19 aan2—30, therm(19)—.330.472 and

1.Due to economic/beneficial considerations, software m(30)=347.801, respectively. 1f the desired operational

. , o . 0

testing/debugging will be eventually terminated at a quality mdex Is larger tha@(30):88.25 %, then we have

specified time pointf, the following four cases:

2.Based on the software reliability growth model + Case [1]0" =347.801Q(30)=88.25% (Originally).
selected by software developers or test teams, the « Case [2]a"” =350, the desired operational quality

expected number of initial faults, in this software @30)=88.81%.
system is estimated at tifig(0<T,<T,). _ + Case [3Ja" =355, the desired operational quality
3.By applying the estimated parameters into the @30)=90.08%.
software reliability model, the test teams can predict o+ (cgse [4Ja” =360, the desired operational quality
the cumulative number of faults at tinfg and the Q30)=91.35%.

R.(T,). Fortunately the estimated value Bf(T,)
may sometimes already satisfy the company's desired
goal or has reached the acceptance level. But if not
in order to meet the requirements (R, (T,), where
R'(T,)<R(T,)), the decision-maker must ask these
test personnel to detect extra fadits(T,-T,) during

the time intervall,,-T,.

Hence, under the requirements of Case [1]-[4] and
using Eq. (38)-(41), the modified expenditure ra™  for
the first data set is estimated 226337, 0.0689997,
0.0824989 and 0.0996481 respectively. It meansa™at
can be used to satisfy Eq. (38) and Eg. (40) during time
interval (T, , T,] and to achieve the desired operational
quality. Fig. 8 shows the modified testing-effort function
for this data set.
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6. Conclusions and Future Works

A good software reliability growth model should be
compact as well as simple enough and the required failure
data is easy to collect. In addition, the model should be
able to estimate/compute useful numerical information .
Hence, it is essential that researchers continue to develope
or improve existing software reliability models so that they
are easy to use, not failure-data resource intensive, and can
be comprehended by programmers or software engineers
readily. This paper has focused primarily on offering a
reasonable parametric decomposition method to modeling
software reliability and describing each important factor of
a SRGM in further detail, especially in the fault detection
rate which is usually used to measure the expected rates
from the historical records of other similar software
projects and plan the related checking activities. We use
three real case studies to illustrate the analytic approaches
on how the models can be applied and provide enough
evidences on supporting our arguments. Consequently,
from the analysis of the data sets and our experiences, we
deduce some conclusions as follow:

1. Fault detection rate is a metric which is used to

indicate a trend. It decreases when the software has
been used and tested repeatedly. We also find that
the rate may increase if the testing techniques/
requirements are changed, or new faults are
introduced when performing corrective actions.
From our study in [18], it indicates that the first data
set may have an imperfect debuggiplzenomenon.

It really reflects the characteristic of increasing FDR.
2. In section 3, we ever used an extra parameter to
describe the fault detection/remoyabcess, such as

k, the slopeparameterin Eq. (19) orr,, the finalfault
detection rateén Eq. (22) Just as we stated before:
although adding a parameter in modelitng fault
detectionphenomenonthe estimation will become
more difficult since more numerical operations are
involved. But this decomposition approach does offer
a better goodness-of-fit and give results with
acceptable accuracy from the experiments provided
in Table 2-4 when the combination includes either a

well fitting testing-effort function or an adequate
function of fault detection rate. The relative errors of
different data sets after testing phase are given in
Table 5. We find that the sample size offered by
original data sets is sufficient to predict the future
failure phenomenon using our methods. In fact, in
order to assess the fault-prediction capability of the
proposed model, we should not only compute the
relative error for these data sets, but also need to use
more criteria such as-plot, prequential likelihood
ration, ..etc. in the future.

3. Currently we know that no one single model has
been shown to be sufficiently trustworthy in all
applications. If a model is used in practice, it means
that this model usually obtain relatively accurate
measurements of software reliability in most cases.
In this case, we definitely should own more different
categories of failure data sets to verify such a
software reliability model and to support the
conclusions we made. Due to confidential or
proprietary reasons, the real data sets from industrial
organizations or research institutions are hard to
obtain in recent years. Presently we are collecting a
new failure data set of software failure from a local
banking information management system which will
include the OS version, wall-clock time of incidence
of each failure, failure identification number and
type, testing-effort expenditures, failure impact,
failure location, failure severity, ...etc. The source
code is an AP control program written in about
450KLOC of COBOL laguage. Issues of how we
collect the valuable data failure set, how we adopt
data-smoothing procedures, how we use the
techniques described in section 3, how we evaluate
the data stability of software reliability growth
models we proposed, and how we assess the
accuracy/performance of fault prediction, will be
addressed. We plan to study telure Physicsand
present the censored data set in the future.

Table 5: Comparisons of predictive errors

Mode(Group B) RE(DS1) RE(DS2) RE(DS3)

Eq. (22) with Logistic function | -0.00258142| 0.0909459 | 0.0122385

Eq. (22) with Weibull function 0.00798354 | -0.00487272( 0.0257411

Eq. (22) with Rayleigh function | 0.015897 -0.0909459 | 0.0244519

Eq. (22) with Exponential 0.0126933 0.00213582( 0.01569224

o

ModekGroup C) RE(DS1) RE(DS2) RE(DS3)

Eq. (29) with Logistic function | 0.00236482 | -0.0235028 | -0.00530852

2

0.0278819 -0.0123287 | -0.0225587

m
o

. (20) with Weibull function

-0.0143296 -0.0116224 | 0.0340336

m
o

. (20) with Rayleigh function

Eq. (20) with Exponential 0.0279026 | -0.0148521 | 0.01256871

Mode(Group D) RE(DS1) RE(DS2) RE(DS3)

Eq. (26) with Logistic function | 0.00945084 | -0.0217074 | -0.0211915

Eq. (26) with Weibull function 0.0585257 -0.00625291| -0.00148956

Eq. (26) with Rayleigh function | -0.00744914 | -0.0123181 | -0.0007975

Eq. (26) with Exponential 0.0585257 | 0.0364782 | 0.00142456
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