
                            Abstract

Numerous stochastic models for the software failure
phenomenon based on Nonhomogeneous Poisson Process
(NHPP) have been proposed in the recent three decades.
Although these models are quite helpful for software
developers and have been widely applied in the industrial
organizations or research centers, we still need to do more
works on examining/estimating the parameters of existing
software reliability growth models (SRGMs).  In this
paper, we investigate and account for three possible
trends of software fault detection phenomenon during the
testing phase: increasing, decreasing and steady state.
We present   empirical results from the quantitative studies
on evaluating the fault detection process and develop a
valid time-variable fault detection rate model which has
the inherent flexibility of capturing a wide range of
possible fault detection trends. The applicability of the
proposed model and the related methods of parametric
decomposition are illustrated through several real data
sets from different software projects.  Our evaluation
results show that the analytic parametric decomposition
approach for SRGM have a fairly accurate predicting
capability.  In addition, the testing-effort control problem
based on the proposed model is also demonstrated.        

1.  Introduction

Due to the rapid development of computer and
information technology, modern society has become
increasingly dependent on software-intensive systems in
the recent three decades.  Software is embedded in
everything and plays an important role from expensive
scientific computing systems, financial banking systems or

university computer centers to general industrial
applications or home personal computers.  Since these
demands for complex and large-scale software systems
have increased more rapidly than before,  the possibility of
programmers' design errors and incompleted debugs will
grow relatively.  Consequently, the possibility of crises due
to computer failures increases significantly.  These failures
may generate enormous losses of revenues for many
enterprises.  Therefore, in order to determine the overall
system's reliability, the software reliability must be
considered and we should pay more attention to it. 

Software reliability is similar to hardware reliability
since both can be described by probability distributions.
But software faults are harder to visualize, detect, and
correct because they are not like the hardware's physical
faults.  According to the ANSI definition [17]: " Software
reliability is the probability of failure-free software
operation for a specified period of time in a specified
environment".  Hence, accurately modeling software
reliability, and predicting its possible trends are essential
to determining the overall system reliability.  In order to
achieve a highly reliable software system, a number of
software fault detection/removal techniques are widely
used by the program developers or testing teams to detect
and remove software faults.  In fact, no matter how the
fault detection/removal techniques are applied, the
Software Reliability Growth Models (SRGMs) always play
a rather important role and can provide quite useful
information for developers during the testing/debugging
phase.  

There are numerous fault-prediction models published
in the literature and many efforts have been made to
estimate the software reliability from real data sets.  Most
of them are based on calendar-time (such as
Jelinski-Moranda Model [17]), manpower-time (such as
Shooman Model  [17]) or  computer-time (such  as   Musa 
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Model [5, 17]).  In the field of software reliability
modeling, Musa [5] first discussed the validity of
execution time theory by taking data sets from real
software systems.  In fact, from the literature, we can find
that most existing software reliability models do not
incorporate the execution time concept into their derived
models.  Recently, Yamada et al. [1-5] and Huang et al. [8,
18] proposed two simple and new software reliability
growth models with Weibull-type and Logistic testing-
effort function respectively, which attempt to account for
the relationship among the calendar testing, the amount of
testing-effort, and the number of software faults detected
by testing.  The testing-effort can be measured by the man
power, the number of test cases, the number of CPU
hours, ...,etc.  By applying these models extensively on
real software development projects, we know that the
testing-effort dependent software reliability model
provides a reasonable fit to the observed data and gives a
very good interpretation for the resource consumption
process during software development [8, 18].

In general, among the various software reliability
growth models, there are two most important parameters
which will impact the reliability: the total number of initial
faults and the fault detection rate.  The total number of
initial faults are the number of faults in the software at the
beginning of test.  The fault detection rate is used to
measure the effectiveness of fault detection for test
techniques and test cases.  Based on the vast literature
[1-5, 9-11, 16-17, 19, 21, 24, 28-29], we know that most
researchers assume a constant fault detection rate in
deriving their original software reliability growth models.
That is, they assume that all faults are equally exposed
during the software testing process and the rate remains
constant over the intervals between fault occurrences.  In
fact, the fault detection rate strongly depends on the skill
of test teams, program size, or testability.  From our
studies [20], through the real data experimrnts/analysis on
several software development projects, we can find that the
fault detection rate has three possible trends as time
progresses: increasing, decreasing or steady state.  We
thus analyze and view the fault detection rate as a function
of time to interpret these possible trends, that is, a
time-variable fault detection function.  Furthermore, we
will consolidate the above two concepts, testing-effort
function and time-variable fault detection rate, in the
following analysis of software reliability modeling.  In this
paper, the SRGM's parameters are estimated by the
Maximum Likelihood Estimation (MLE) and the Least
Squares Estimation (LSE).  We will take the estimated
parameters into the proposed software-fault prediction
model and compare the predicted results with other
existing software reliability models.  From the comparison
results, analysis to determine the reasons why the predicted
results do or don't agree with the actual results is
performed.  Experimental results show that the combined

model gives a more accurate prediction.  Further, the
testing-effort control problem based on the derived model
is also discussed.  

There are six sections in this paper.  Section 2
provides a detailed description of characteristics of model's
parameters in the literature.  Section 3 derives a software
reliability growth model which combines the testing-effort
function and the time-variable fault detection rate.  We
estimate these parameters of the proposed SRGM based on
the actual observed software failure data, plot the mean
value functions, and give a fair comparison with other
existing models in section 4.  Section 5 is concerned with
the applications of testing-effort control and management
problem.  Finally, section 6 presents the concluding
remarks and possible future extensions of this work. 

2. Basics for Software Reliability Modeling

A. Assumptions [1-4, 8, 10]

1.The fault removal process follows the Non
Homogeneous Poisson Process (NHPP).

2.The software system is subject to failures at random
times caused by faults remaining in the system. 

3.The mean number of faults detected in the time
interval (t, t+∆t] by the current testing-effort
expenditures is proportional to the mean number of
remaining faults in the system.

4.The proportionality is a function of time.
5.The time-dependent behavior of testing effort can be

modeled by a Logistic or a Weibull-type
distribution.

6.Each time a failure occurs, the fault which caused it
is immediately and perfectly removed (i.e. no new
faults are introduced) by the system programmers.

Based on the above assumptions, the mathematical
development of software reliability growth model is as
following:  

             , a>0, 0<r (t)<1 (1)
dm(t)

dt
× 1

w(t) = r(t) × [a − m(t)]

that is, .
dm(t)

dt
= w(t) × r(t) × [a − m(t)]

Rearranging the above equation and  if r(t) is a constant
over time, we  get 

(2)
dm(t)

dt
= w(t) × r × [a − m(t)]

where m(t)=expected mean number of faults detected in 
         time (0, t].  

     a=expected number of initial faults. 
r=fault detection rate (FDR) per unit testing-effor.
w=current testing-effort consumption.

Solving Eq. (2) under the boundary condition m(0)=0, we
have 
                 (3)m(t) = a × (1 − e−r×(W(t)−W(0)))

  



B. Testing-Effort Modeling

During the software testing/debugging phase, it
consumes significant test-effort, such as volume of test
cases, man power, and CPU time, ...etc.  The consumed
testing-effort can indicate how effective the faults are
detected in the software.  Hence, resource consumption or
allocation of man power can be modeled by different
distributions.  From the studies in [1-4, 6-8, 18], several
testing-effort pattern expressions exist as shown in the
following. 
   
B.1. Constant Testing-Effort Consumption 

In the derivation of most classical software reliability
growth models [10-11, 16-17, 19, 24-25, 28, 30-31], the
researchers assumed that the testing-effort (workload) of a
software system is constant.     
                   w(t)=w0, t=1, 2, ...., n. (4)
where w0 is the initial testing effort.

B.2. Weibull-Type Testing-Effort Function  
According to Yamada et al. [1-4], Musa et al. [5] and

Putnam [27], we know that the cumulative consumption of
testing-effort during the testing phase may not be a
constant and grows from zero to some finite value.  Hence,
the testing-effort can be described by a Weibull-type
distribution: 

                     (5)W(t) = α × 

1 − e


−∫0

t
g(x)dx

 



where α is the total amount of testing effort to be       
eventually consumed.

      g(t) is the consumption rate of the testing effort 
expenditures at instant t.

And W(t) is defined as follow: 

                         (6)W(t) ≡ ∫0
t w(x)dx

where   w(t) is the current testing-effort consumption at      
           time t.

1.If g(t)=β, then w(t)=αβexp[−βt], we have an Expon-
ential curve and the  cumulative testing-effort cons-
umed  in time (0, t] is W(t)=α(1−exp [-βt]).  (7)

2.If g(t) = βt, then w(t)=αβtexp[- ] and we have a
β
2t2

Rayleigh  curve and the cumulative testing-effort
consumed is W(t)=α(1−exp[- ] ).  (8)

β
2 t2

3.And if w(t)=αβm exp[-β ], we have a Weibulltm−1 tm

curve and the cumulative  testing-effort consumed is
W(t)=α(1−exp[-β ]). (9)tm

where β is the scale parameter and m is the shape
parameter.

B.3. Logistic Testing-Effort Function
In the Weibull-type curves, when m>3, we find that

Weibull-type testing-effort curves have an apparent peak

phenomenon [6, 8, 18].  Therefore, we try to use a Logistic
testing-effort function to describe the test effort patterns.
Besides, Demarco also reported that this function was
fairly accurate in the Yourdon 1978-1980 project survey
[8, 18].  The cumulative testing effort consumption of
Logistic testing-effort function in time (0, t] is

                             (10)W(t) = N
1+Ae−αt

and the current testing-effort consumption is 

           (11)w(t) = dW(t)
dt

= αAN e−αt

(1+Ae−αt)2 = αNA


eαt

2
+Ae−αt

2



2

where N is the total amount of testing effort to be 
eventually consumed,
α is the consumption rate of testing-effort 
expenditures,
and A is a constant. 

C. Fault Detection Rate 

The second parameter of Eq. (2) is the fault detection
rate.  It is the rate of discovering new faults in software
during the testing phase.  First, we should distinguish
error, fault and failure.  In considering a computer
software system, an error occurs when some parts of the
software produce an undesired state or it is the
programmer action or omission that results in a fault.  A
fault is created in the written software (faulty instructions
or data patterns) when a programmer makes an error.
Consequently, a fault is a defective, missing, or extra
instruction which is the cause of one or more actual
failures.  A fault causes failures and is uncovered when a
failure occurs within the program [5]. Hence, we can
clearly know that software reliability is the probability of
failure-free operation of a software component or system
in a specified environment for a specified period time.

Secondary, if a computer software program is
designed by software designers or programmers, then the
tasks of testing/debugging software may be performed by
these people or other test teams after coding.  Therefore,
they should understand the characteristics of programming
(such as number of lines of source code (LOC), language
type, program size, modularity or complexity), inspection,
testing, and operational environments.  That is, whether the
software faults can be detected or not depends on the
abilities of programmers/debuggers, the software structure,
the maturity of software development procedure, and the
correlation among modules.  At the beginning of the
testing phase, most faults can be easily discovered by
inspection and the fault detection rate depends on the
discovery-to-fault relationship, the fault density, the
testing-effort, and the inspection rate.  On the other hand,
in the middle stage of testing phase, the fault detection rate
normally depends on other parameters such as the
execution rate of CPU instruction, the failure-to-fault

  



relationship, the code expansion factor, and the scheduled
CPU hours per calendar day [17].  Consequently, we know
that the fault detection rate can be calculated and is used to
track the progress of checking activities and evaluate the
effectiveness of planning how to test and the checking
methods we adopted.  
  
C.1. Constant fault detection rate 

From our studies in [10-11, 16-17, 19, 24-25, 28],
most existing SRGMs assumed that the fault detection rate
remains constant over the intervals between fault
occurrences.  That is,

                  r(t)=r 0, t=1, 2, 3, 4, ...., n. (12)

where r0 is the initial fault detection rate.

C.2. Time-variable fault detection rate 
In our experiments, we know that the fault detection

rate can be measured by the average number of faults
detected per testing-effort expenditure or the number of
faults detected by special checking activities.  It is very
helpful for the system developers to plan the checking
activities, diagnose problems and assess the effects of
changes.  Besides, it provides enough information which
we want to know about the cost-effectiveness of various
checking activities during the long-term running.
Therefore, in order to interpret the possible variation in
fault detection rate (FDR) with time, we survey some real
test/debug data sets given in [5, 10-12, 14-15, 25-28].
From those different software systems (from USA, Japan
and France) in Table 1, we obtain adequate knowledge
about the fault detection processes and observe the various
fault detection behaviors.  Most of the grouped data sets in
Table 1 have the following form: 
(t0 , m0), (t1 , m1), (t2 , m2), (t3 , m3), (t4 , m4),.........., (tn , mn)
 where mj  is the total number of faults detected by time tj.  

Generally, the obtained data based on calendar time
tends to be noisy (short-term randomness) and might not
comply with most existing assumptions for SRGMs [5, 18,
22].  If possible, it must be filtered by applying some
data-smoothing techniques.  One way of interpreting FDR
at different times is to use computational approach [22].
From Eq. (3) and using m(ti) and m(ti+1), the FDR during
the time ti and ti+1 can be estimated as following: 

                   (13)
m(t i)

m(ti+1) = a×(1−e−r(W(t i )−W(0)))
a×(1−e−r(W(ti+1)−W(0)))

Rearranging the above equation, we obtain

(14)m(t i) × (1 − e−r(W(ti+1)−W(0))) − m(t i+1) × (1 − e−r(W(ti)−W(0))) = 0

We can solve the above equation by numerical methods.   
After some numerical calculations by computer, Fig. 1

shows that the fault detection rate varies with time for
different real data sets.  Fig. 1 (a), (e), (f), (j) and (n) show
that FDR has a rise trend as time increases.  Fig. 1 (b), (c),

(d), (g), (k), and (m) indicate that FDR is non-increasing in
time t.  Besides, Fig. 1 (h), (i), (l) show that FDR seems to
be in a steady state.  Here, we must point out: there are
some peaks and valleys in describing the possible FDR
states because these test cases may probably be switched to
other test teams or make some modifications during the
software testing phase. Additionally, in these experiments,
we also eliminate some oscillation phenomena in the
beginning.  In fact, during the software testing process,
there are several testing stages which includes unit testing,
integration testing, system testing and installation test.  If
the whole software system is very complex and large, such
as the space shuttle project, the weather prediction or
airplane reservation systems, the programmers should
remove all easy-to-detect errors in their own programs at
the early stage of software testing phase.  As time passes,
the testing phase proceeds to the integration testing and
system testing phase, such that it is relatively more difficult
for programmers to detect other embedded errors.  That is,
initially FDR is increasing and then the FDR is decreasing
in this case (see Fig. 1(b), (k) or (m)).  On the other hand,
if the software projects are designed for median to small
scale business/company, they are usually not large in scale
and does not own many program modules. As time
progresses, the testing skill of programmers also improves
or they have modified their testing techniques and tools
when new technologies are discovered and become
available.  They can assimilate some new methodologies in
fault detection, fault correction, or fault avoidance which
are described in the professional journals, proceedings or
trade publications.  These modifications may help the
programmers or testers in creating tests and easily
eliminating some redundant tests.  Accordingly, the FDR
may have an increasing trend (see Fig. 1(f), (j) or (n)).
Sometimes, if the requirements are changed or new faults
are introduced during corrective activities, the FDR will
increase.  Hence, through real project data analysis, we
clearly observe that the fault detection rate (FDR) have
three possible trends as time progresses: increasing,
decreasing and steady-state. 
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 Fig 1. Variation of FDR with time.

Table 1: Summary of  real data sets studied.

Data
 Set

Refere-
nce   

 No. of
Faults     
Detected

Observati-
on Period

Software Project/Program Descriptions and
Characteristics

DS 1   [10]     328      
    

   19 weeks PL/I Application Program, Execution Time:
47.65 CPU hours, Software Size:
1,317KLOC

DS 2   [12]     136      
    

   21 weeks Real-Time Command and Control Application
(System T1), Execution Time: 25.3 CPU
hours, 9 Programmers, Software Size: 21,700
LOC

DS 3   [11]     227         38 weeks Execution Time: 2456 CPU hours

DS 4   [21] 73          18 days PL/I Assembler Language,418 Executions,
Software Size: 50,000 LOC

DS 5   [28] 137         25 days 418 Executions

DS 6   [15]  107         15 days F11-D  Fortran Program, Execution Time:
226.11  Seconds of CPU Time, Software
Size: 3~4KLOC

DS 7    [5] 32          11 weeks System T38

DS 8    [5] 77          19 weeks System T39

DS 9   [25] 86          22 days Execution Time: 93 CPU hours

DS10   [17]  3,207      13months 240,000 LOC

DS11   [29]      27    27 days Compiler Project, Software Size: 1,000 LOC

DS12   [14]     211    32 weeks Switching System TROPICO-4096, Software
Size: 300,000 LOC

DS13   [10]    46         21 days Software Size: 40,000 LOC

DS14   [26]     198    16 days Real-Time Control System Consisting of
About 90 Modules.  Software Size: 1 KLOC
of PL/1, Fortran, and Assembly languages.

3. Software Reliability Growth Modeling 

Since the fault detection task is performed by
programmers or computers after coding, they will analyze
the source code or the results of object code executions.
From the detailed discussions in subsection 2.B.2, it
suggests that we can use a time-dependent coefficient to
replace the constant FDR [20].   In order to interpret the
observed results,  we assume that the FDR is a function of
m(t).  That is, there exist some relationships between the
number of initial faults, the number of detected faults and
the fault detection rate.   From Eq. (1), making some
rearrangements, the fault detection rate per remaining error
at testing time t is described as following and it represents
the detectability of an error for the current error content
[3]: (15)d(t) = dm(t)

dt
/(a − m(t)) = r(t) × w(t)

that is,  .  Eq. (15) implies that , i.e.r(t) = d(t)
w(t) d(t) ∝ r(t)

and .  It also indicates that ther(t) ↑, d(t) ↑ r(t) ↓, d(t) ↓
fault detection rate per remaining error is a function of the
current testing- effort expenditures w(t).  Here we can view
the d(t) as a software reliability growth index and
efficiency of testing. Besides, since most software
reliability models assume that w(t) is a constant or even do
not consider the testing-effort, and equally they also set the
value of r as a constant rate [5, 10-11, 16-17].  Therefore,
with the above assumptions, we can get d(t)=constant
which indicates that this model has a homogeneous fault

  



detection rate.  Otherwise, Eq. (15) should give us a more
precise description about the behavior of d(t).

Discussion 1: r(t)  is at a steady state with time t.

Case : r(t) = r       (16)
The above equation  describes that all faults are equally
exposed during testing.  Under this assumption, it means
that the fault detection rate per unit testing-effort is in a
steady-state.  Hence, substitute Eq. (16) into Eq. (1) and
solve the differential equation under the boundary
condition m(0)=0, we have [8, 18]: 
          m(t)=a�(1- exp[-r (W(t)-W(0) ) ] ) (17)
And from Eq. (15), the fault detection rate per remaining
error at testing time t is 

  (18)d(t) = r × w(t)
The above equation indicates that whether d(t) is a  
homogeneous or nonhomogeneous fault detection rate is
totally dominated by the current testing-effort pattern, w(t).

Discussion 2: r(t)  is non-decreasing with time t. 

Case I:   , k>0 (19)r(t) = r0 + k × m(t)
a

Under this assumption, we use a linear regression model to
estimate the FDR.  In Eq. (19), r0 is the initial FDR and k
is the slope (model parameter) which can be estimated
from least squares.  It is used to track and predict the
possible increasing FDR trends.  Substituting Eq. (19) into
Eq. (1) and solving this differential equation,  we obtain
              m(t)= (20)a × (1 − (r 0+k)

r0×exp[(r0+k)×(W(t)−W(0))]+k
)

From Eq. (15), the fault detection rate per remaining error
is 

        d(t) =w(t) (21)×(1 − k
exp[(r 0+k)×(W(t)−W(0))]+k

)

and it is monotonically increasing in testing time t.  That is,
Eq. (21) means that Eq. (20) describes a fault detection
process in which the detecability of an error increases with
the progress of software testing.  
Case II:  , 0<r0 <r f (22)r(t) = r0 + (r f − r0)m(t)

a

Under this assumption, in Eq. (22), r0 is the initial FDR
and rf is the final FDR.  Substituting Eq. (22) into Eq. (1),
we obtain a Riccati differential equation and solve it:

      m(t)= , 0<r0 <r f (23)a × 
1 − r f

r 0×exp[r f×(W(t)−W(0))]+r f−r 0




Similarly, from Eq. (15), the fault detection rate per
remaining error at testing time t is

       d(t) =w(t) (24)×r f × 
1 − r f−r0

r0×exp[r f×(W(t)−W(0))]+r f−r0




and it is monotonically increasing.  Similarly, Eq. (24)
means that Eq. (23) describes a fault detection process in
which the detecability of an error increases with the
progress of software testing.

Discussion 3: r(t) is non-increasing with time t. 

This case describes a fact: a large number of trivial faults
are easily detected in the beginning and the last few faults
are difficult to detect. 
 Case I: (25)r(t) = r0 × (1 − m(t)

a )
Substituting Eq. (25 ) into Eq. (1), the solution of this
equation is given by 

                      m(t)= (26)a × 
1 − 1

r 0×(W(t)−W(0)+1



From Eq. (15), the fault detection rate per remaining error
at testing time t is
                                (27)d(t) = r0×w(t)

r0+(W(t)−W(0))+1

Case II:  , k<0 (28)r(t) = r0 + k × m(t)
a

Substituting Eq. (28 ) into Eq. (1), the solution of this
equation is given by  
            (29)m(t) = a × (1 − (r0+k)

r0×exp[(r0+k)×(W(t)−W(0))]+k
)

And from Eq. (15 ), the fault detection rate per remaining
error at testing time t is

                 d(t) =w(t) (30)×(1 − k
exp[(r0+k)×(W(t)−W(0))]+k

)

Case III: , r0 >rf (31)r(t) = r0 + (r f − r 0)m(t)
a

Substituting Eq. (31) into Eq. (1), the solution of this
equation is given by 

               m(t)=  (32)a × 
1 − r f

r 0×exp[r f×(W(t)−W(0))]+r f−r 0




And from Eq. (15 ), the fault detection rate per remaining
error at testing time t is

         d(t) =w(t) (33)×r f × 
1 − r f−r0

r0×exp[r f×(W(t)−W(0))]+r f−r0




In order to check the validity of the proposed model
and make a fair comparison with other existing SRGMs,
we divide the above equations (i.e. Eq. (16), (19), (22),
(25) , (28), and (31))  into four groups:

1.GROUP A: r(t) = r .  
2.GROUP B: , 0<r0 <r f  or 0<rf   r(t) = r0 + (r f − r0)m(t)

a

                     <r0 . 
3.GROUP C: ,  k>0 or k<0. r(t) = r0 + k × m(t)

a

4.GROUP D:  ,  r0>0.r(t) = r0 × (1 − m(t)
a )

Furthermore, if we want to accept/reject some SRGMs
under a specific software development experiment, we
must have some clear criteria for evaluation and
comparison among the acceptable models.The comparison
criteria for estimation are described as follows:
(1) The Accuracy of Estimation [5, 8-9] (AE)= (34)Ma−m

Ma

where Ma is the actual cumulative number of detected
faults during the test and after the test, and m is the
estimated number of initial faults.

(2) The Mean of Square fitting Faults (MSF)=  Σ
i=1

k
[m(ti )−mi ]2

k

(35)

  



A smaller MSF indicates fewer number of fitting faults and
better performance.  

When completing the derivation of software reliability
growth models, we also can get some useful quantitative
measures in order to assist in determining the number of
residual faults and the probability of software system
survivability for software developers/testers.  They are (1)
Maximum faults (MF), i.e. the total number of initial
faults, ; (2) Remaining faults (RF) in the system atm(∞)
testing time t, i.e.,  which is an importantm(∞) − m(t)
indicator of the software reliability and very useful for
planning maintenance activities and discussions; (3)
Time-Interval Between Software Failures (TBSF), and (4)
Software Reliability (SR) [8, 18]. 

4. Experimental Results

First Data Set
The first set of real data to be analyzed came from

Ohba [10].  The system is a PL/I database application
software and the size of software is approximately
1,317,000 lines of code (LOC).  During the testing period
of nineteen weeks,  47.65 CPU hours were consumed and
about 328 software faults were removed.  The original data
report gives that the total cumulative number of detected
faults after a long period of testing is 358 faults.  The
parameters α, β, and m of the Weibull-type testing effort
function in Eq. (7), (8), and (9), and N, A, and α of the
Logistic testing effort function in Eq. (10) can be derived
by using the method of Maximum Likelihood Estimation
and Least Squares Estimation.  Similarly, the other
parameters a, r0 , rf and k of the mean value function can
also be solved numerically.  Fig. 2 plots the fitting of the
estimated testing effort by using Eq. (7), (8), (9), and (10).
Table 2 summarizes the estimated parameters for different
testing-effort functions, mean value function, and the
comparison criteria.  We can find that our proposed
software reliability growth function fits pretty well at the
5% level of significance through the Kolmogorov-Smirnov
goodness-of-fit.  Fig. 3(a)-(d) graphically shows the actual
(observed) and the fitted number of software faults,
according to different groups in Table 2.  From Table 2,
both MSF and AE in Group B are less than those in other
groups/existing SRGMs and it is conceivable that Group B
has a better goodness-of-fit.  In fact, for Group B, it uses
two parameters to interpret the various fault detection
patterns instead of the traditional assumption of constant
fault detection rate, and indeed has a very good
performance.  But we must point out that by adding an
extra parameter in modeling the fault detection pheno-
menon, the estimation becomes more difficult because
more numerical calculations are involved. However, if
very high reliability is needed in some critical applications,
such as very large scale commercial software or space

shuttle software, we may not avoid the extra complex
numerical operations.  Besides, from Fig. 3(b), we see that
these continuous curves of estimated mean value function
have an inflection point.  That is, they show S-shaped
behavior due to rf >>r 0 in Group B of Table 2.  The
derived software reliability model under such assumption
(i.e. Eq. (22)) has been used by Yamada [10-11, 20].
Finally, we can conclude that the combined model (Group
B) of incorporating testing-effort function and
time-variable fault detection actually fits the data set
satisfactorily in this experiment.                         

 Table 2: Summary of model parameters and     
                    comparisons for the first data set.

            Model (Group A)          a         r    MSF      AE

Eq. (17) with Logistic function    394.076  0.0427223 118.29   10.06   

Eq. (17) with Weibull function 565.35     0.0196597 122.09    57.91   

Eq. (17) with Rayleigh function   459.08     0.0273367  268.42     28.23  

Eq. (17) with Exponential  828.252    0.0117836  140.66    131.35  

            Model (Group B)        a          r0         rf    MSF     AE

Eq. (23) with  Logistic function 337.41   0.018962      0.113343 163.095   5.75    

Eq. (23) with Weibull function    345.686  0.0125642  0.106949 91.0226 3.43    

Eq. (23) with Rayleigh function    371.438  0.0137198  0.08050  158.918    3.75 

Eq. (23) with Exponential    352.521  0.0108348  0.10819  83.998    1.53    

           Model (Group C)          a         r0         k   MSF     AE

Eq. (29) with Logistic function    430.662  0.0409427 -0.014653 103.03     20.11   

Eq. (20) with Weibull function    385.39   0.0229036 0.0393828 87.5831   7.65     

Eq. (20) with Rayleigh function    379.947  0.0239006 0.0385439 406.71    6.13     

Eq. (20) with Exponential    385.179  0.0180857  0.0547021 83.3452   7.69     

          Model (Group D)         a          r0    MSF       AE

Eq. (26) with Logistic function    582.538  0.0308452  96.9321   62.72   

Eq. (26) with Weibull function    958.718  0.0118215  124.399  167.79  
Eq. (26) with Rayleigh function    702.693  0.0191208   247.84   96.09   
Eq. (26) with Exponential    1225.66  0.0082272 169.72    242.36  
           Existing SRGMs         a          r    MSF       AE
G-O Model [10]    562.8        *    157.75    56.98   
Inflection S-Shaped Model [10]    389.1  0.0935493   133.53     8.69    
Delayed S-Shaped Model [8]    374.05    0.197651  168.67     4.48    
Exponential Model [10]    455.371   0.0267368  206.93    27.09   
HGDM [9]  387.71          *  138.12     8.30    
Logarithmic Poisson Model[9]     NA        *   171.23       *
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   Fig. 2: Plot of observed/estimated testing-effort
                vs. time.
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   Fig. 3: Cumulative number of  observed/             
               estimated failures vs. time. 

Second Data Set
The second set of real data is the pattern of discovery

of errors by Thoma in [26].  The debugging time and the
number of detected faults per day are reported.  The
cumulative number of discovered faults up to twenty-two
days is 86 and the total consumed debugging times is 93
CPU hours.  All debugging data are used in this
experiment.  Similarly, we can estimate each parameter by
MLE and LSE in the proposed SRGM and they are shown
in Table 3.  Fig. 4 plots the fitting of the estimated testing
effort by using Eq.  (8), (9), and (10).  Fig. 5(a)-(d)
graphically shows the fitted number of software failures as
compared with the observed error data, according to the
different groups in Table 3.   We observed that the fitness
of mean value function to actual failure data is still good.
From Table 3, we can clearly see that the MSFs for Group
C and Group D are less than those of other groups/existing
SRGMs and the results of measures indicate that they
perform better.  Similarly, from Fig. 5(b), we see that these
continuous curves of estimated mean value function have
an inflection point.  They also show S-shaped behavior due
to rf >r 0 in Group B of  Table 3.  From the above
discussion, we know that the combined model (Group C &
D) of incorporating testing-effort function and
time-variable fault detection fits this data set better than
others.        

Table 3: Summary of model parameters and    
                    comparisons for the second data set.
  

               Model (Group A)          a           r       MSF 

Eq. (17) with Logistic function   88.8931     0.0390591     25.2279 

Eq. (17) with Weibull function   87.0318    0.0345417    7.772 

Eq. (17) with Rayleigh function   86.1616      0.0359624    3.91643 

             Model (Group B)          a          r0          rf       MSF 

Eq. (23) with Logistic function   89.4528    0.0188499   0.0543846   14.06603

Eq. (23) with Weibull function   87.3126      0.017449   0.0522258   18.956772

Eq. (23) with Rayleigh function   87.3472    0.0177506   0.0515699    20.4568  

              Model (Group C)          a          r0           k       MSF 

Eq. (29) with Logistic function    97.5332   0.0472247  -0.0385523    7.354363 

Eq. (29) with Weibull function    97.6841   0.0360678  -0.0227224    6.5909 

Eq. (29) with Rayleigh function   112.182   0.0335812  -0.0335811    6.60318 

             Model (Group D)          a          r0       MSF 

Eq. (26) with Logistic function   106.1         0.0437178    7.33727 

Eq. (26) with Weibull function  114.52       0.0314776     6.36531 

Eq. (26) with Rayleigh function   112.183     0.0335812    6.60318 

               Existing SRGMs        a          r      MSF 

G-O Model   137.072   0.0515445       25.33      

Delay S-Shaped Model [8]     88.6533   0.228148    6.31268 

HGDM [26]     88.3          *   33.6812
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       Fig. 4: Plot of observed/estimated testing-      
                   effort vs. time.
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           Fig. 5: Cumulative number of observed/      
                       estimated failures vs. time.

Third Data Set
The third set of real data in this paper is the System T1

data of the Rome Air Development Center (RADC)
projects in [12] and the failure data is generally of the best
quality.  The number of object instructions for the System
T1 which is used for a real-time command and control
application was 21,700 and it was developed by Bell
Laboratories.  It took twenty-one weeks and nine
programmers to complete the test.  The intervals are
measured by the wall clock time, which is proportional to
execution time.  Similarly, the parameters in the proposed
SRGM under the assumptions of different possible trends
are shown in Table 4.  Furthermore, we know that the
proposed mean value function based on NHPP adequately
fits the actual error data at a 5% level of significance
through the Kolmogorov-Smirnov goodness-of-fit test.
Fig. 6 plots the fitting of the estimated testing-effort by
using Eq. (7), (8), and (10).  Fig. 7(a)-(d) plots the
estimated/observed number of failures vs. time.   It can be
seen that for this data set, Group B has a better
goodness-of-fit than other groups and the existing SRGMs.
From Fig. 7(b), we also see that these continuous curves of
estimated mean value function still have inflection points.
Hence, they are S-shaped.  The reason is rf >>r 0 in Group
B of Table 4.  Note, however, that Group C or D is the
next advisable option if we want concurrently a good
estimation and a simpler model.  From the above
discussion, we know that the combined model (Group B)
of incorporating testing-effort function and time-variable
fault detection fit this data set better than others.  In fact, in
this software project, we can see that if we use a constant
fault detection rate model instead of a time-variable model
in order to obviate complex numerical operations, we still
can get a reasonable prediction in estimating the number of
software faults.     
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      Table 4: Summary of model parameters and    
                     comparisons for the third data set.

               Model (Group A)           a          r      MSF 

Eq. (17) with Logistic function     138.026    0.145098      62.41       

Eq. (17) with Rayleigh function  866.94         0.00962   89.2409   

              Model (Group B)           a          r0          rf      MSF

Eq. (23) with Logistic function 137.759      0.0502167    0.359256   144.6442 

Eq. (23) with Rayleigh function     150.047    0.013763   0.322236   12.137 

Eq. (23) with Exponential     187.537     0.00088    0.166756   19.73719

               Model (Group C)           a          r0          k      MSF 

Eq. (29) with Logistic function     142.567    0.14881   -0.0450675  53.4266

Eq. (20) with Rayleigh function     156.715    0.0183746  0.25801   10.9726 

Eq. (20) with Exponential     173.064    0.000048   0.194059   48.5971 

               Model (Group D)          a          r0     MSF 

Eq. (26) with Logistic function     164.106   0.169151   38.121 

Eq. (26) with Rayleigh function     1543.47   0.00546049   89.7666 

                Existing SRGMs           a           r      MSF 

Exponential  Model [5]     137.2    0.156      3019.66   

G-O Model     142.32    0.1246      2438.3 

Delayed S-Shaped Model [8] 237.196      0.0963446      245.246 
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   Fig. 6: Plot of observed/estimated testing-effort
                vs. time.
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              Fig. 7: Cumulative number of  observed/  
                          estimated failures vs. time.  

5. Applications of Testing-Effort Control and  
Management  

After coding is completed, software testing is a
necessary but expensive  process.  Once the obvious and
easy-to-detect faults are removed from a new computer
software package, the computer company will need to
determine when to stop the testing and make a software
risk evaluation.  If the results meet their requirements, the
company will decorate and declare that this software
package is ready for releasing.  Hence, adequately
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adjusting some specific parameters of a SRGM in the
proper time interval can help us to speedup getting the
desired solution.     

A. Software Risk Assessment 

Some people view the risk definition in Webster's New
Universal Unabridged Dictionary as risk exposure which is
equal to [Probability of an Unsatisfactory Outcome]�
[Loss if the Outcome is Unsatisfactory] [23-24, 30].  Based
on this definition, we can see that the risk exposure is
mainly dominated by the  probability of an unsatisfactory
outcome.  Therefore, we can map such idea into the
software reliability analysis.  We define:

                       (36)Risk(t) ≡ 1 − m(t)
m(∞)

Risk(t) can be used to evaluate the risk caused by the
remaining failure patterns which still exist after the testing
phase.  Hence, if we can accurately evaluate the risk of the
tested software, then another other useful index, the
operational quality, is available.  The Operational Quality
Index is defined as: the degree to which a software is free
of remaining faults and this quality index is very important
for a widely distributed commercial software [23-24, 30] .  

                         Q(t)=(1-Risk(t))�100% (37)
        
B. Testing-Effort  Control Problem 

In order to possess the lowest risk and achieve a given
operational quality at a specified time, we can use the
software reliability growth model to estimate/control the
extra testing effort.  The major problem is how to estimate
the number of extra faults δm'(t') which have to be found
[3-4].  Let us consider the following scenario:

1.Due to economic/beneficial considerations, software
testing/debugging will be eventually terminated at a
specified time point, T2.

2.Based on the software reliability growth model
selected by software developers or test teams, the
expected number of initial faults, a, in this software
system is estimated at time T1 (0<T1 <T2 ).

3.By applying the estimated parameters into the
software reliability model, the test teams can predict
the cumulative number of faults at time T2 and the
Risk(T2).  Fortunately the estimated value of Risk(T2)
may sometimes already satisfy the company's desired
goal or has reached the acceptance level.  But if not,
in order to meet the requirements (i.e. R'isk(T2), where
R'isk(T2)<Risk(T2)), the decision-maker must ask these
test personnel to detect extra faults δm'(T2 -T1) during
the time interval T2-T1.  

Considering the above statements,  if we know that 

 and  is theRisk(T2) = 1 − m (t2)
m(∞) = 1 − a∗

m(t) a∗ (a∗ > m(T2))

goal number of detected faults at time T2, then
(38)a∗ =m(T1) + δm (T2 − T1), a∗ ≥ m(T2)

   = a × (1 − exp[−r × (W(T1) + W (T2 − T1) − W(0))] )
   =a × (1 − exp[−r × W (T2 − T1) ] × exp[−r × (W(T1) − W(0) )] )

where  m(T1 ) is the cumulative number of faults detected   
            at time T1 and δm'(T2 -T1) is the extra faults needed 

     to be detected in order to reach the desired goal at  
            time T2 (δm'(T2 -T1)>δm(T2 -T1)).
Rearranging the above equation, we have 
a∗ − m(T1) = δm (T2 − T1) = (a − m(T1)) × (1 − exp[−r × W (T2 − T1)])

(39)a − a∗ = (a − m(T1)) × exp[−r × (W (T2 − T1))]

whereW'(T2-T1)= =W'(T2)-W'(T1 )∫T1

T2
w (t)

                    = (40)N

1+Ae−α∗T2
− N

1+Ae−α∗T1

Substituting Eq. (40) into Eq. (39), we get                           
        (41)N

1+Ae−α∗T2
− N

1+Ae−α∗T1
= −1

r ln 
1 − a∗−m(T1)

a−m(T1)



The modified testing-effort function W'(T2 -T1) during the
time interval (T1 , T2] can be controlled by using , theα∗

modified consumption rate of testing-effort expenditures
which satisfy Eq. (41) and it can be solved numerically.
For example, because of the limitations of space, we only
use Eq. (17) with Logistic testing-effort function as the
estimated value function for a software development
project.  In fact, it is compact and easy enough to apply.
The other models we proposed in this paper also can be
applied similarly based on the same procedure.  In the first
data set, we set T1 =19 and T2=30, then m(19)=330.472 and
m(30)=347.801, respectively.  If the desired operational
quality index is larger than Q(30)=88.25 %, then we have
the following four cases:  

Case [1]: =347.801, Q(30)=88.25% (Originally).α∗

Case [2]: =350, the desired operational quality     α∗

                Q(30)=88.81%.
Case [3]: =355, the desired operational quality     α∗

               Q(30)=90.08%.
Case [4]: =360, the desired operational quality    α∗

               Q(30)=91.35%.

Hence, under the requirements of Case [1]-[4] and
using Eq. (38)-(41), the modified expenditure rate forα∗

the first data set is estimated as 0.226337, 0.0689997,
0.0824989 and 0.0996481 respectively.  It means that α∗

can be used to satisfy Eq. (38) and Eq. (40) during time
interval (T1 , T2] and to achieve the desired operational
quality.  Fig. 8 shows the modified testing-effort function
for this data set.
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 Fig. 8: Modified testing-effort function vs. time.

6. Conclusions and Future Works 

A good software reliability growth model should be
compact as well as simple enough and the required failure
data is easy to collect.  In addition, the model should be
able to estimate/compute useful numerical information .
Hence, it is essential that researchers continue to develope
or improve existing software reliability models so that they
are easy to use, not failure-data resource intensive, and can
be comprehended by programmers or software engineers
readily.  This paper has focused primarily on offering a
reasonable parametric decomposition method to modeling
software reliability and describing each important factor of
a SRGM in further detail, especially in the fault detection
rate which is usually used to measure the expected rates
from the historical records of other similar software
projects and plan the related checking activities.  We use
three real case studies to illustrate the analytic approaches
on how the models can be applied and provide enough
evidences on supporting our arguments.  Consequently,
from the analysis of the data sets and our experiences, we
deduce some conclusions as follow:

1. Fault detection rate is a metric which is used to
indicate a trend.  It decreases when the software has
been used and tested repeatedly.  We also find that
the rate may increase if the testing techniques/
requirements are changed, or new faults are
introduced when performing corrective actions.
From our study in [18], it indicates that the first data
set may have an imperfect debugging phenomenon.
It really reflects the characteristic of increasing FDR.

2. In section 3, we ever used an extra parameter to
describe the fault detection/removal process, such as
k, the slope parameter in Eq. (19) or rf , the final fault
detection rate in Eq. (22).  Just as we stated before:
although adding a parameter in modeling the fault
detection phenomenon, the estimation will become
more difficult since more numerical operations are
involved. But this decomposition approach does offer
a better goodness-of-fit and give results with
acceptable accuracy from the experiments provided
in Table 2-4 when the combination includes either a

well fitting testing-effort function or an adequate
function of fault detection rate.  The relative errors of
different data sets after testing phase are given in
Table 5.  We find that the sample size offered by
original data sets is sufficient to predict the future
failure phenomenon using our methods.  In fact, in
order to assess the fault-prediction capability of the
proposed model, we should not only compute the
relative error for these data sets, but also need to use
more criteria such as u-plot, prequential likelihood
ration, ..etc. in the future.

3. Current ly we know that no one single model has
been shown to be sufficiently trustworthy in all
applications.  If a model is used in practice, it means
that this model usually obtain relatively accurate
measurements of software reliability in most cases.
In this case, we definitely should own more different
categories of failure data sets to verify such a
software reliability model and to support the
conclusions we made.  Due to confidential or
proprietary reasons, the real data sets from industrial
organizations or research institutions are hard to
obtain in recent years.  Presently we are collecting a
new failure data set of software failure from a local
banking information management system which will
include the OS version, wall-clock time of incidence
of each failure, failure identification number and
type, testing-effort expenditures, failure impact,
failure location, failure severity, ...etc.  The source
code is an AP control program written in about
450KLOC of COBOL language.  Issues of how we
collect the valuable data failure set, how we adopt
data-smoothing procedures, how we use the
techniques described in section 3, how we evaluate
the data stability of software reliability growth
models we proposed, and how we assess the
accuracy/performance of fault prediction, will be
addressed.  We plan to study the Failure Physics and
present the censored data set in the future.

        Table 5: Comparisons of predictive errors 
 

            Model (Group B)       RE (DS1)       RE (DS2)      RE (DS3)

Eq. (22) with  Logistic function    -0.00258142 0.0909459       0.0122385     

Eq. (22) with Weibull function 0.00798354        -0.00487272     0.0257411     

Eq. (22) with Rayleigh function  0.015897           -0.0909459     0.0244519

Eq. (22) with Exponential  0.0126933          0.00213582    0.01569224   

           Model (Group C)       RE (DS1)       RE (DS2)      RE (DS3)

Eq. (29) with Logistic function    0.00236482     -0.0235028  -0.00530852   

Eq. (20) with Weibull function    0.0278819     -0.0123287   -0.0225587     

Eq. (20) with Rayleigh function    -0.0143296     -0.0116224    0.0340336      

Eq. (20) with Exponential    0.0279026     -0.0148521    0.01256871    

          Model (Group D)       RE (DS1)       RE (DS2)      RE (DS3)

Eq. (26) with Logistic function    0.00945084     -0.0217074  -0.0211915    

Eq. (26) with Weibull function    0.0585257     -0.00625291   -0.00148956   
Eq. (26) with Rayleigh function   -0.00744914     -0.0123181  -0.0007975     
Eq. (26) with Exponential    0.0585257     0.0364782    0.00142456    

  

Observed Testing-
Effort Pattern

[4]

[3]

[2]

[1]
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