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Abstract

In an ideal situation the requirements for a software system should be completely and un-
ambiguously determined before design, coding and testing take place. In actual practice, of-
ten there are changes in the requirements, causing some of the software components to be re-
designed, deleted or added. Higher requirement volatility will cause the resulting software to
have a higher defect density.

In this paper we analytically examine the influence of requirement changes taking place dur-
ing different times by examining the consequences of software additions, removal and modi-
fications. We take into account interface defects which arise due to errors at the interfaces
among software sections. WWe comparetheresulting defect density in the presence of requirement
volatility, with defect density with that would have resulted in an ideal situation where initial
requirements are perfect. The results show that if the requirement changes take place closer to
the release date, there is a greater impact on defect density. In each case we compute the de-
fect equivalence factor representing the overall impact of requirement volatility. Further work
required to obtain an overall model that can be used in an empirical model for defect density,
IS mentioned.

1 Introduction

Defect density is an important measure of software quality, one which is often used as an
acceptance criteria for a piece of software. For this reason it is desirable to understand how
various aspects of the development process impact defect density, so they can be controlled or
at least used to gain a better understanding of product reliability. The maturity of the devel-
opment process, the skill of the programmers involved, and the complexity of the program all
play asignificant part in the defect density of aprogram [3]. Studies suggest that changesto the
requirements specification aso have a significant impact on defect density [13].

Requirementsvolatility isameasure of how much program’s requirements change once cod-
ing beings. Projects for which the requirements change greatly after coding begins have ahigh
volatility, while projects whose requirements are relatively stable have alow volatility [2, 10,
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11, 12]. The analysis presented here shows that the time at which requirements changes are
made is a significant factor in program defect density. Changes made late in the devel opment
cycle can not only waste development resources, but also reduce the overall testing effective-
ness.

Requirements specifications are often written in natural language. Even when more precise
techniques are used these specificationstend to change as program devel opment and testing pro-
gresses. Often new requirements are added and existing requirements are modified or deleted.
As a response to these changes, the program is also modified. Here we present an analysis
of how requirements volatility affects a project by examining program evolution in terms of
changes to the code base. Thisis atopic first examined by Musa et a. in [7], where they ex-
amined how continuing program evolution violates the usual assumptions made by the stan-
dard software reliability growth models, and how corrections to the procedures can be made.
Changes made to requirements must eventually be reflected in the code, and developing orga-
nizations can, over time, develop afed for how particular changes in their requirements spec-
ifications impact their code. In this paper we related how changes to the code effect the over
all defect density. In our analysis we assumethat that software has been modified as aresponse
to the changing requirements, however the modification process is imperfect. To keep analy-
sis tractable, we assume that debugging for individual defects is perfect. In actual practice, a
fraction of the bugs are incorrectly debugged. Ohbaand Chou have shown that in such acase a
reliability growth model is still applicable, although imperfect debugging cause some variation
in the parameter values [§].

Inthispaper we evaluatetheimpact of code changes on the defect density by considering four
separate cases. In the next section, we consider the the simplest case when a block of codeis
replaced by anewly developed block of the same size. We mention two significant assumptions
made and show how they can be relaxed for more accurate calculation. In section 3, we consider
those cases where a section of the softwareisadded, when anew component is added and when
a component is modified. In each case we compute the resulting additional defect density. We
also obtain amultiplicativefactor to obtain equivalent initial defect density. Finally we suggest
apreliminary model that can be used as part of a static model for estimating defect density.

2 Same Sized Code Replacement

Here we consider the relatively simple problem of estimating defect density in a software
system, when a component is replaced by a new block of the same size. We assume that the
original system had adefect density of Dg at thetimety = 0. Here theinstant ty can be regarded
as the time when the system enters a specific testing phase. At timet; acomponent is replaced
by new code. We assume that the new code enters with defect density Dy,.

The exponential reliability growth model [5] assumes that the rate of defect removal %—T is
proportional to the number of defects N(t) present at timet.

dN(t)
dt
wheret istesting time. Notethat t may or may not be closely related to calendar time depending
on how resources are allocated in a project.

= B1N(t) (1)



It can be shown that the parameter 31 can be expressed as [4]
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where Sis the total number of source instructions, Q is the number of object instructions per
source statement and r is the instruction rate of the CPU used. The parameter k is called fault
exposure ratio, which has been found to be in the range of 1 x 107 to 10 x 10”.

If Np isthe number of defects present at timetgp, then from equation 1

N(t) = Noe Pt to<t<ty (3)
or equivalently in terms of defect density D(t)
D(t) = Doe™ P! 4)
since D(t)S= N(t).
Now let us assumethat the fraction of the codereplaced isp. Thusatt;, the number of defects
remaining in the old code is
Ny = No(1— p)e Pt = DoS(1— p)e Pt (5)
and the number of defects in the new codeis
Nz = DoSp (6)
If thereis no future evolution of the software, except for removal of defects found, then then
N(t) = (N +Np)e Pty <t (7)

Notice that 31 depends on the size, however since that total size has remained the same, 31
remains unchanged. Equation 7 can be written as

N(t) = DoS|(1— p)e P+ ple Pty <t ®)
If testing isto be terminated at timet;, the final number of remaining defectsis
Ni = DoS|(1— p)e P+ ple Pt~ 9)
and thefinal defect density is
D¢ = Do[(1— p)e P1ts 4 ple Pulti—t) (10)

The influence of the change occurring at timet; is shown in Figure 1. While further testing
reduces the number of new defectsinjected at t;, the software still ends up with ahigher number
of defects at the end of testing at timets.

We can compare D with D¢j, final defect density intheideal case. Thedifference (D¢ — Dyj)
givesthe additional defect density D,qq due to requirement volatility.

Dadd (t1) = DoplePrlti—t) — gPatr] (12)
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Figure 1. The impact of change on Defect Density

For a given stopping time ts, Dyqq iSafunction of ty —t;, ie. closeness of the change time
to the stopping time. Thisisillustrated in Figure 2. The values used for the plotsin Figure 2
assume an initial defect density of 20/KLOC and it is assumed that testing for 3000 time units
will reduce the defect density to approximately one tenth.

Equation 10 showsthat the change at t; resultsin higher defect density D¢. Herelet usdefine
equivalent initial defect density D, which would have yielded the same D ¢ without the change
at t;. We can rewrite equation 10 as

D = Do[(1— p)e Pt 4 plePrirePrts (12)

Hence
Dy = Do[(1— p)e Pt + plefit (13)

Thusthe changeiseffectively equivalent to multiplying the defect density by the defect equiv-
alence factor (DEF) ey
e(t) = (1 p) + pett (14)

Figure 3 gives aplot of e4 againt t1, the point in time when the change takes place. Figure
4 gives atable of ey for different values of t; and p, the fraction of the code involved. The
table showsthat replacing 10% of the code at time 500 causes only a4.2% change in the defect
density whereas the same change at time 2500 causes a 47.5% change. The influence of pis
linear, a p=5% change at t;=1500 results in a 9.3% increase, a p=15% change causes 27.9%
increase.

In the above discussion we have made two simplifying assumptions. Here we will seethat it
IS possible to obtain more accurate expressions.

Assumption 1: We assumed that the testing time duration, from O to t¢ isfixed. In actua
practice, the exact effort needed for devel oping the new code (and for separately testing it to get
itsdefect density to D) may subtract from theavailabletime. We can assumethat thisadditional
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Figure 2. Additional defect density due to change at {1

effort isproportional to the size of the codereplaced. Thenthedurationt; iseffectively replaced
by t; such that
ti=tf—axpxs (15)

wherethe parameters a would depend on the specific software devel opment and testing process.

Assumption 2: We assume that the number of defects associated with the new code is pro-
portional to its size. This means that we are assuming that the number of defects related to the
coupling of the old code to the new code is negligible. The degree of coupling is perhaps mea-
sured by the number of variables passed. If amodulewith awell defined interface with the rest
of the codeis replaced with new code, then the number of new interface defects introduced will
be small. However, if the new code interacts with old code using alarge number of variables,
then the number of interface defects will be significant.

L et us assume that the number of variables passed from the old code to the new code and vice
versaism. Then the number of interface defects N;; can be given by

Nint = bym (16)
where by isaconstant of proportionality. Then we can rewrite equation 8 as
N(t) = DS (1— p)e PretPlePult=t) 4 hm (17)

The correction term will be significant if the number of variablesis very large, or if the rest
of the software has avery low defect density.

3 Code addition, removal and modification

In the previous case, the overall software size had remained unchanged. Here we consider
the cases when the software size changes as a response to the requirement volatility. We the
parameter [3; of the exponential model, depends on the size. In case of code modification, the
number of interface defects can become quite significant.
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Figure 3. DEF (Defect equivalency Factor) due to code replacement

Replacement timet;

Fraction p O 500 1000 1500 2000 2500 3000
0.05| 1000 1.021 1.051 1.093 1.153 1.238 1.358
0.10 | 1.000 1.042 1.101 1.186 1.306 1475 1.717
0.15|1.000 1.063 1.152 1.279 1458 1.713 2.075

Figure 4. DEF €4 due to code replacement

3.1 Addition of New Code

Let us now consider the case when at time t; new code is added, perhaps to implement ad-
ditional functionality. Let us assume that the size of the added code is p times the size of the
original code, and when the addition occurs the defect density of the added codeisDg. Then at
timet,, the total number of defectsin the systemis

N(ty) = SDoe P + SpDg (18)

Here we should note that the parameter 31 depends on program size, as given by equation 2.
The corresponding parameter 315 for the altered system is given by

kr 1
— = 19
Then we can write
N(t) = DoSe Pt 4 plePalt-t) ¢, ¢ (20)

Inanidea casethe added functionality should have been present from the beginning, and the
number of defects N, (t) would have been

Ni (t) = DoS(1+ p)e P! (21)
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Thus the added defect density due to the requirement volatility is

Dasalty) = gy oM —Na(t)] @
— & —(B1—B1a)t1 1al _ —B1att
= 1+p[e + peP (1+p)e (23)

Figure 5 shows the additional defect density due to adding code later at time t1 instead of
includingit fromthebeginning. Thissuggeststhat if codeisadded immediately after timet = to,
theinfluence on resulting defect density isrelatively small. The defect equivalency factor isthis
caseis Bt Pt

(e* 4 p) 1al1
= 24
& irp (24)
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Figure 5. DEF due to adding code at t;

Here no correction would be required to t+ because we are assuming that the additional code
isrequired and it is added at timet; rather than at t = O; and thus no additional development
timeis needed. We have assumed here that the number of interface defects is small compared
to internal defects of the software being added. Thismay not be valid in cases where the added
modules may have significantly low defect density. This may happen when the new code being
added is drawn from library modules or represents reused code. In that case, interface defects
will be significant and may even dominate the additional internal defects. We can then rewrite
20as

N(t) = [DoSeP1t + DiSp+ NigJe Pralt=t) ¢, < ¢ (25)
and the expression for eg would be

e = (DoSe™ P11t + DG Sp + Nipy) €1 (26)
B DoS(1+ p)
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where Dy, is the defect density of the added code. N;x may be estimated using the approach
given in the next section.

3.2 CodeRemoval

The third case we consider is when part of the code is removed, perhaps due to deletion of
some requirements. In the ideal case, this code would not have been added in the first place.
Removing a section of the code will eliminate al defectsin it. However, all linkage between
existing code and deleted code must be removed or redirected. Mistakesin this part of the re-
moval process will generate N; additional defects. We can expect that

Nie = bom 27)

where mis the number of linkage variables affected and b, is a parameter. For a preliminary
computation, we can assume that mis proportional to the size of code removed (pS) and the
parameter b is proportional to Dg. We can thus assume that

Nint = ¢,PSDg (28)

where the parameter ¢, depends to relative occurrence rate of interface defects as opposed to
internal defects. We can expect ¢, to be significantly less than one.

If at timetq, fraction p of the entire code is removed, then the number of remaining defects
will be

N(ty) = DoS(1— p)e P+ Nig (29)
Since the code size is now only (1 — p), the applicable parameter 14 is given by
kr B1
= = 30
B1d S1-p0_ 1-p (30)

and the defect density will be given by

N
D(t)= |D (:_FBltl_I_%r1t e*Bld(t*tl) 31
(t) 0 S1-p) (32)
t>1 (32)

In an ideal case, the deleted code would not have been present from the beginning, and the
defect density would have been

D1 (t) = Dge Pt (33)
Then, the additional defect density is
N.
_ —PBiti+Biats _ 1\aPuats 4 N —Pag(ti—ty)
Dadd(t1) = Do(€ 1)e M + Si-p)° (34)
The density equivalency factor can be obtained as
Ni 1
— |e Btz it~ | ity
— |e + 35
& S({1-p) Do (59
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Figure 6. DEF due to code removal vs. {1

Figure 6 shows an exponential relationship between the time and the defect equivalency fac-
tor. In Figure 7 three plots show the effect of variation of p witht, equal to 1000, 2000 and 3000
time units respectively. The plots show that at the beginning p does not have much influence.
However when removal is done closer tot¢, the fraction has a significant impact on defect den-
sity. Figure 8 shows variation in DEF due to change in parameter ¢,. For changes made very
early, DEF remains relatively unaffected by changesin cq, however closer to t¢, thereislinear
dependence.

Here these equations do not take into account the fact that not implemented the unneed code
would have saved the effort which would allow alarger testing timets.

3.3 Modified Code Block

Herewe consider therelatively complex casewhen apart of the codeismodified asaresponse
to requirement changes. The modification will in genera include removing some instructions,
adding some instructions, and modifying some instructions. Let us assume that the removed
and added instructions represent fractions p; and p, of the origina code size Srespectively.
Let us assume that modifying instructions amounts to replacing them with new instructions.
The errors introduced at timet; are contributed due to new instructions added as well as due
to improper handling of linkage. Let us assume that the number of linkage instances affected
iIsm. Because avariable can be redefined and used many times, m can significantly exceed the
number of variablesinvolved.

The number of defects at timet; is given by

N(ty) = S(1— p1)Doe Prt + prSDy + Nipy (36)

where N isthe number of interface defects given by
Nint = bsm (37)
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Figure 7. DEF due to code removal vs. P

Again for preliminary calculations, we can assume that mis proportional to the size of soft-
ware added plus the size of software removed (p; + p2)S and parameter bs is proportiona to
Do. We can then write

Nint = C2(p1+ P2)Do (38)

where the value of parameter ¢, is likely to be higher than c; for the previous case because
of ahigher degree of linkage.
Using Equation 36, we can write,

N(t) = [S(1— p1)Doe Pt + po DL+ Nigle Pt 1>ty (39)

where Dy, isthe defect density of the new code inserted. We assumethat it isinserted without
any prior testing and hence would have a defect density higher than Dg. Also,

Kr B1

_ — 40
Pam S1-p1+p)Q 1-p1+p2 (40)
In theideal case, all the code needed would have been there at the beginning. Thus,
Ni(tr) = S(1— pa+ pz)Doe Prrts (41)
The the additional defect density at timets can be obtained using this equation.
N(ts) — N (t¢
Dy — V0t —Ni(tr) 42)

(1—p1+p2)S
The DEF isgiven by
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Figure 8. DEF due to code removal, plotted against Cq

_ S(1-py)Dge Pt + p DG + Nir
(1—p1+p2)Po

Figure 9 showsaplot of ey against t; for three pairs of values ( p1, p»)=(0.1,0.1), (0.05,0.15),
(0.15,0.05). As expected, the lower curve corresponds to the case when more code is deleted
than added. However it can be observed that the tree curves are quite close together suggesting
that for values assumed, interface defects inserted due to both added and removed code signifi-
cantly affect the overall defect density. If alarge part of a software module needs to be revised,
in many cases it will be better to redo it from the beginning in order to avoid the interface de-
fects. Note that because of significant number of interface defects, DEF is be larger than one
even when the modification is made near the beginning.

e (43)

4 Discussion

Above we have examined possible types of individual changes made at atimet,. Generally
in aproject all these kinds of changes are made at different times. We would like to be able to
combine these results to come up with a description of the overall process using a reasonably
simple model. Some datais now available [12, 11] that give insight into typical process that
might be encountered. Further investigations are needed to obtain a model that will represent
requirement volatility asafactor in amultiplicativemodel for defect density [9, 3, 1]. It iseasy
to see from the results that the dependence on t; is exponentia although in some specia cases
aliner approximation may be justified.

Often requirement volatility and hence changes in a the software are distributed over a pe-
riod of time. It may be possible to lump the affect of such distributed events into one or more
equivalent events for the ease of computation, a technique that is used in modeling solid-state
silicon devices. The objective will be to obtain a model that is ssmple and still yields accurate
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Figure 9. €4 due to code modification, plotted against t1

estimates, perhaps after some calibration of parameters.

Here we have assumed that the development isin atest phase. Often some form of checking
precedes such testing. For example, inspectionscan reveal defectsearly during the devel opment
process. It may be possibleto regard such checking astesting, although clearly the values of the
parameterswill be different. It may be possible to reformul ate the above results for application
during the early phases when inspection and code walk-through are used.

5 Conclusions

Here we have analyzed the influence of changesin a program when testing has already been
initiated. We have examined the effect of replacing a component with another component of
the same size, as well as general cases when software is added, deleted and modified. All the
results show that changes have more influence on defect density when they occur closer to the
end of the testing effort. This tempora dependence is generally exponential. Changes made
very early can be relatively inconsequential, but those occurring later can raise defect density
quite significantly.

We have seen that in some cases, we must consider the interface defects to take into account
the interaction among software blocks.

Further work is needed to come up with ageneral model that will relate a few measures that
can be easily evaluated or estimated to the overall defect density. Thiswill require a study of
typical patterns of requirement changes over time.
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