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Abstract 
 

It is important that program maintainers understand 
important properties of the programs they modify and 
ensure that the changes they make do not alter 
essential properties in unintended ways.  Manually 
documenting those properties, especially temporal ones 
that constrain the ordering of events, is difficult and 
rarely done in practice.  We propose an automatic 
approach to inferring a target system’s temporal 
properties based on analyzing its event traces.  The 
core of our technique is a set of pre-defined property 
patterns among a few events.  These patterns form a 
partial order in terms of their strictness.  Our approach 
finds the strictest properties satisfied by a set of events 
based on the traces.  We report results from 
experiments on two sets of programs: student solutions 
for a class assignment, and several recent versions of 
OpenSSL.  Comparing properties inferred from 
different implementations led us to discover important 
behavioral differences which revealed flaws in the 
programs.  Differences in automatically inferred 
temporal properties can provide useful information to 
programmers evolving complex, often unspecified, 
programs whose correctness depends on preservation 
of undocumented temporal properties. 
 
 
1. Introduction 

 
A common problem is ensuring that changes 

introduced in program maintenance do not change the 
program’s behavior in unexpected ways.  In particular, 
changes should not alter important properties of the 
previous version of the program on which clients may 
rely.  Unfortunately, most programs do not have 
specifications, so programmers modifying programs 
often do not know what those important properties are.  
We present an approach for largely automating the task 
of discovering important property differences.  We 
focus on temporal properties, since they provide good 
opportunities for automatic inference and analysis, and 

because satisfying certain temporal properties is 
essential for the correctness of many programs, yet 
they are particularly hard for programmers to document 
and test manually.  

A temporal property defines the sequence in which 
events take place [27].  Temporal properties are 
especially important in concurrent programs in which 
threads interact through shared objects and messages. 
Writes from different threads to a shared object are 
mutually excluded using mechanisms such as locks to 
ensure that events are ordered consistently.  While such 
properties are fundamental to program correctness, 
they are rarely documented or specified.  Even when 
they are, it is extremely hard to assure them by 
inspection or testing due to the huge number of ways 
threads might interleave with each other.   

Previously, we proposed automatically inferring 
interesting temporal properties from execution traces 
[30].  The key components of our approach are the 
development of a set of extensions to the response 
property pattern [11] and an algorithm that can 
automatically infer the strictest pattern a set of events 
satisfy.  The key contribution of this paper is an 
experimental analysis of our approach that illustrates 
its effectiveness as an aid to program evolution.  We 
report on experiments using our prototype tool on two 
sets of programs: student implementations from a 
software systems course assignment; and multiple 
versions of OpenSSL [25], a widely used open source 
implementation of the SSL protocol.  Our tool was able 
to infer interesting temporal properties in both families 
of programs, and confirm that all implementations 
satisfied some important properties.  By analyzing the 
differences between the temporal properties our tool 
inferred for each program, we were able to detect bugs 
in one of the student implementations, identify 
behavioral differences between different versions of 
OpenSSL, and identify security vulnerabilities in the 
OpenSSL implementation.   

Section 2 provides a brief survey of related work.  
Section 3 presents our approach, which is a slight 
refinement of the approach presented in [30].  Section 4 
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provides an overview of our implementation and 
experiments.  Sections 5 and 6 report on results from 
our two experiments, and Section 7 concludes. 

 
2. Related work 

 
The task of understanding differences between two 

versions of a program has been long recognized as an 
important software engineering problem.  The majority 
of previous work has focused on static approaches, 
ranging from simple syntactic differencing [22] to 
more complex static approaches that consider program 
semantics using dependences [4, 18, 19, 21].    Static 
approaches provide guarantees that are not possible for 
dynamic approaches, since they can reason about all 
possible executions of the two programs.  However, 
they are limited in the kinds of properties that can be 
considered since determining whether two programs 
are different for most interesting program properties is 
an undecidable problem.  Our focus is on dynamic 
approaches, so we do not include a detailed survey of 
static differencing work here. 

Our work is mainly inspired by Ernst’s work on 
dynamically inferring program invariants [12, 23]. 
While their work focuses on the value relationships 
among variables which are more relevant to dataflow, 
ours focuses on a program’s temporal properties such 
as the execution sequences of methods which are more 
relevant to control flow. 

Specification mining [1, 2] discovers temporal 
specifications a program must satisfy when interacting 
with an application programming interface (API) or 
abstract data type (ADT) using machine learning 
techniques.  It extracts scenarios from execution traces 
based on a dependency analysis and then uses a 
probabilistic finite automaton (PFSA) learner to infer 
specifications. Our approach differs from specification 
mining in several aspects.  Our techniques target 
general types of events whereas specification mining is 
limited to API and ADT events. We use a template 
matching approach so that a large number of long 
execution traces can be analyzed, whereas their PFSA 
learner is limited to fairly short traces.  Specification 
mining produces specifications that may be 
inconsistent with the execution traces, and they use a 
dynamic checker to verify the specification against 
those execution traces.  Further, specification mining 
requires substantial guidance from an expert (e.g. to 
define which attributes of interactions may define 
objects, select seed events for dependency analysis, and 
to identify which attributes may use objects).  Our goal 
is to develop techniques that are as automatic as 
possible.   

Whaley et al. developed two techniques, one static 
and the other dynamic, for inferring sequencing models 

of methods of a component [29], and built a dynamic 
model checker to check if the code conforms to the 
models discovered.  By slicing on methods accessing 
the same field of a class, they are able to discover a 
precise sub-model for such methods.  They did not 
attempt to develop techniques to find the strictest 
pattern any two methods can have.  Their dynamic 
approach adds a transition to the model upon finding 
one instance of such a transition.  Ours only considers a 
temporal property to be valid if all the traces have it.  
Further, we focus on finding the precise relationship 
between a few (i.e. two or three) events by 
systematically examining all possible candidate 
patterns. 

Cook et al. developed statistical techniques to 
discover patterns of concurrent behavior from event 
traces [7].  Their techniques first extract a thread model 
out of the event traces, and then infer points of 
synchronization and mutual exclusion based on that 
model.  Our approach is distinguished from theirs in 
that the temporal properties inferred by our method are 
more general, and their approach only uses a single 
event trace, while ours is based on many event traces. 

Static analysis techniques like software model 
checking can verify temporal properties on a closed 
model of the system.  They can examine a temporal 
property on all possible execution paths with certain 
constraints (e.g. the range of variables) to find faults in 
a system that are hard to detect using traditional 
methods. Software model checkers [3, 5, 8, 14, 16] 
have been successfully applied to check many real 
world systems.  However, model checkers require 
specifications of properties to check such as assertions 
about valid states of the system and temporal 
properties. Temporal properties are represented using 
some formalism such as Linear Temporal Logic (LTL) 
[27].  The specification language is usually different 
from the language in which the system is written, and 
is often difficult to understand.  Further, the 
specification is usually defined on the model, whereas 
it is best understood in terms of the implementation. 
Thus, to define a temporal property, one must be 
familiar with the formalism and be able to translate and 
redefine properties based on the structure of the model.  
This process can be very challenging and error-prone, 
even for experienced users. Holzmann showed how 
tricky and difficult it is to define a simple temporal 
property using LTL [17]. 

Dwyer et al. developed a set of temporal property 
patterns based on a case study of hundreds of real 
property specifications [11]. They integrated those 
patterns into their Bandera toolset [8] so that users can 
express a temporal property in the Bandera 
Specification Language [9].  That property is mapped 
into the underlying formalism the chosen model 
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checker accepts.  Their patterns are too imprecise to 
describe some interesting properties. We derived a 
number of variations of their patterns by adding more 
constraints.  To ease the task of formulating a property, 
we developed techniques to automatically search the 
strictest pattern matching the event traces.  Inferred 
properties can then be subjected to validation by users 
or model checkers. 

Havelund used information obtained from runtime 
analysis to guide model checking of Java programs 
[15].  Two dynamic analysis algorithms to detect race 
conditions and deadlocks run first. If those analyses 
report any warnings, the Java PathFinder model 
checker [14] is used to check the suspected threads 
specifically. Their approach showed that runtime 
analysis information can be used to pinpoint the 
problematic point in the program such that the state 
space for large program can be significantly pruned.  
Our approach is more systematic and general in that a 
broad category of temporal properties can be automati-
cally derived and checked along a program’s control 
flow. 

 
3. Approach 

 
The main components of our approach are shown in 

Figure 1 and described briefly here.  For more details, 
see [30].   

First, we instrument the target program to monitor a 
set of key events.  This could be automated by 
instrumenting all program expressions of interest such 
as system calls or procedure calls. 

Next, we execute a test suite on the instrumented 
program and collect execution traces.  To generate 
execution traces, we need to execute the program.  If 
the target program has a set of test cases, we could just 
use them.  Otherwise, we can generate a test suite 
either by some automated test generator or manually.   

Then, we instantiate candidate temporal property 
patterns.  A property pattern [8] is an abstraction of a 
set of commonly used temporal properties.  We are 
interested in the Response pattern describing the 
cause-effect relationships between two abstract events 
P and S: P’s occurrence must be followed by the 
occurrence of S.  For example, SPPSS is an event 
sequence that satisfies this pattern, but SPPSSP does 
not since no S responds to the last P.  We use a 
Quantified Regular Expression (QRE) [24] to describe 
the Response pattern as: [-P]*(P[-S]*S[-P]*)*. If we 
assume all events other than P and S are filtered from 
the trace, this is equivalent to S*(PP*SS*)*. QREs are 
similar to regular expressions: [-] is the exclusion 
operator ([-P] specifies any event in the alphabet 
except P). The * (Kleene star) and () (grouping) 
operators have their normal meanings. 

The Response pattern is very imprecise in that it 
allows several causing events (P) to share one effect 
event (S), one causing event to have multiple effect 
events, and effect events to happen before any causing 
event.  As a result, knowing two events satisfying this 
property does not give us much useful insight into a 
program’s temporal behaviors.  

To solve this problem, we developed the variations 
on the original Response pattern shown in Table 1.  
Let L(A) represent all event traces satisfying pattern A.  
Given two patterns A and B, if L(A) < L(B) (that is, all 
event traces that satisfy B satisfy A, but at least one 
event trace that satisfies B does not satisfy A) we say A 
is stricter than B.  

The eight patterns form a partial order in terms of 
their strictness as shown in Figure 2.  To determine the 
strictest pattern satisfied by a pair of events, we first 
determine which of the CauseFirst, OneCause and 
OneEffect patterns they satisfy.  Then we can use the 
relationships among the patterns to infer the strictest 
pattern.  For example, if a pair of events satisfies 
OneCause and OneEffect, but not CauseFirst, we can 
infer that the strictest satisfied pattern is EffectFirst. 

Program Instrumented
Program

Instrum
entation

Test Suite

Execution 
Traces

Testing

Inferred 
Properties

Candidate Property 
Patterns

Inference

Different
Properties

D
ifference A

nalyzer

Inferred 
Properties
from other

implementations

Shared
Properties

 
Figure 1.  System overview 
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We obtain a concrete property by replacing each 
abstract event with a selected monitored event.  We can 
get a set of concrete properties by replacing the abstract 
events with those monitored events of interest to us.  If 
a pattern is parameterized by m abstract events and we 
monitor n events, there are nm possible instance 
properties.  For now, we only consider patterns where 
m is 2 so it is feasible to check all possible patterns as 
long as the number of monitored events is fairly low. 

For each concrete property, we check if the 
collected event traces satisfy the property to determine 
the strongest temporal property satisfied by each pair of 
events.  Then, we compare the inferred properties for 
this version with inferred properties for other versions, 
and produce a report describing the shared and 
different properties. The difference analyzer simply 
compares the strictest property inferred for each pair of 
events, and identifies events for which different 
properties are inferred for different program versions. 

 
4. Experiments 

 
To evaluate our approach, we built a prototype 

implementation and conducted experiments using it on 
two tasks related to program evolution.  The next two 

subsections describe our prototype implementation and 
an overview of the experiments.   Sections 5 and 6 
describe each experiment and discuss our results. 

 
4.1. Prototype implementation 

 
Our current implementation automates all steps in 

the process except the instrumentation.  Hence, to use 
our technique we must either instrument programs to 
generate event traces or provide a mapping from 
program output logs to event traces.  In future work, we 
plan to build an instrumentation tool and event mapper 
that automates both processes. 

We implemented our inference algorithm in a 900-
line Perl script.  To enable efficient pattern checking, 
we encode the event sequences into binary strings 
using the Huffman coding algorithm [10] implemented 
using the CPAN Algorithm::Huffman module [20]. Next 
an inference procedure processes the encoded traces to 
find the strictest pattern satisfied by any two events.  

Finally a post-processing subroutine synthesizes the 
Alternating properties to present them in a more 
succinct and easier-to-understand form. When there are 
a large number of Alternating properties, it can be 
difficult for programmers to inspect and synthesize 
them manually. We developed an algorithm to 
automatically synthesize Alternating Chains.  For 
example, if the alternating patterns A→B and B→C are 
inferred, they will be synthesized as an event chain 
A→B→C.   

Programmers may use the results in several ways.  
They may compare the result with the informal 
specification by hand.  If properties are inferred that are 
not expected according to the program specification, 
that reveals either a fault in the implementation, an 
inadequacy of the test suite, or a misunderstanding of 
the specification. If specified properties covered by the 
candidate property patterns are not inferred, it reveals a 
fault in the implementation. The inferred properties 
may also be used as input to a model checker.  The 
model checker may validate the properties, or may find 
counterexamples to them. In cases where 
counterexamples are found, this may reveal a bug in 
the program or an important weakness in the test suite: 

MultiEffect MultiCause EffectFirst

Alternating 

OneCause OneEffectCauseFirst 

Response 

�  �  �

�  

 

Figure 2. Partial order of properties 

Table 1.  Temporal property patterns 
Name QRE Valid Examples Invalid Examples 

Response S*(PP*SS*)* SPPSS SPPSSP 
Alternating (PS)* PSPS PSS, PPS, SPS 
MultiEffect  (PSS*)* PSS PPS, SPS 
MultiCause  (PP*S)* PPS PSS, SPS 
EffectFirst S*(PS)* SPS PSS, PPS 
CauseFirst  (PP*SS*)* PPSS SPSS, SPPS 
OneCause S*(PSS*)* SPSS PPSS, SPPS 
OneEffect S*(PP*S)* SPPS PPSS, SPSS 
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a property which is always true of the test executions is 
not actually guaranteed by the program.  Both of these 
uses require substantial effort and expertise from the 
programmer, either in inspecting properties directly or 
using a model checker.   

Our experiments focus on using our temporal 
property inference technique in a more automated way 
to support program evolution.  Instead of validating or 
inspecting the inferred properties, we simply compare 
them to the properties inferred from some other 
instance.  We compare properties inferred from differ-
ent versions of a program using the same test suite.  We 
could use similar techniques to compare test suites by 
keeping the program constant and comparing properties 
inferred from different test suites. 

 
4.2. Hypotheses 

 
To evaluate our approach, we did experiments on 

two families of programs: student implementations of a 
multithreaded programming assignment in a graduate 
systems software course, and archived versions of 
OpenSSL [25].  In both cases, all programs in the 
family were designed to implement the same informal 
specification.  Hence, any differences in the temporal 
properties are likely to be important.  

The first hypothesis we want to evaluate through 
these experiments is that our approach can recover a 
useful temporal specification from an implementation 
in the sense that most of the desirable properties can be 
inferred.  If this is true, our tool can help new 
developers understand the temporal behaviors of a 
legacy system. 

Our second hypothesis is that our approach is useful 
for supporting program evolution.  Our goal is to help 
programmers ensure that desirable temporal properties 
are preserved and changes to temporal properties are 
noticed and investigated.  Our hypothesis is that the 
temporal properties inferred for a program using our 
approach can be used as a signature of the program’s 
temporal semantics to help programmers achieve those 
goals. So in each experiment, we compared the 
properties inferred for different versions of a program.  
Upon finding any discrepancy between the properties 
inferred for two programs intended to meet the same 
specification, we tried to identify its cause.  Property 
differences may be benevolent (the programs behave 
differently, but in ways that are both consistent with the 
desired behavior) or may reveal variations in the way 
tests are run (such as operating system scheduling 
decisions) or faulty implementations.  Finding any of 
these problems will then be useful for improving the 
test suite, the implementation, or the specification. 

 

5. Tour bus simulator 
 
An early assignment in a graduate software systems 

course taught at the UVa in fall 2003 asked students to 
write a multithreaded program to simulate the 
operation of city bus.  Students were given an informal 
specification of the program, paraphrased below: 

Write a program that takes three inputs:  
• n, the number of people, 
• C, the maximum number of passengers the 

bus can hold (C must be ≤  n), and 
• T, the number of trips the bus takes, 

and simulates a tour bus transporting passengers 
around town.  The passengers repeatedly wait to 
take a tour of town in the bus, which can hold a 
maximum of C passengers.  The bus waits until 
it has a full load of passengers, and then drives 
around town.  After finishing a trip, each 
passenger gets off the bus and wanders around 
before returning to the bus for another trip. The 
bus makes up to T trips in a day and then stops.  

The assignment required specific input and output 
formats, which greatly facilitates automatic testing. 
Executing bus -n <people> -C <passengers> -T <trips> 
runs the program.  Figure 3 shows a typical execution. 

 
5.1. Properties 

 
A correct solution must satisfy several temporal 

properties including:  
1. The bus always rides with exactly C passengers.  
2. No passenger will jump off or on the bus while it 

is running.  
3. No passenger will request another trip before 

getting off the bus.  
4. All passengers get off the bus before passengers 

for the next trip begin getting on. 
We were given eight different submissions.  All of 

these submissions had been previously evaluated by a 
grader both by looking at a design document and 
examining the implementation code, and by inspecting 
output from test executions.  All of the submissions we 
used had been considered correct by the grader. 

Because the existing outputs are already events of 
Bus waiting for trip 1 
Passenger 0 gets in 
Bus drives around Charlottesville 
Passenger 0 gets off 
Bus waiting for trip 2 
Passenger 1 gets in 
Bus drives around Charlottesville 
Passenger 1 gets off 
Bus stops for the day 

Figure 3. Sample output from bus -n 2 -C 1 -T 1 
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interest to us, there is no need to instrument the 
programs.  Instead, we mapped the output logs directly 
to event sequences.  In our mapping, we considered 
these five events: 

1. wait (“Bus waiting for trip n” log entries) 
2. drives (“Bus drives around Charlottesville”) 
3. stops (“Bus stops for the day”) 
4. gets in (“Passenger n gets in”) 
5. gets off (“Passenger n gets off”) 

Note that the numbers of the trip and passenger are 
ignored in our event mapping.  This makes the number 
of different types of events to consider small, but 
means certain temporal properties cannot be inferred 
from our event sequences (such as, “Passenger 3 gets 
in” must be followed by “Passenger 3 gets off”).  We 
describe experiments using an alternate mapping that 
preserves passenger numbers at the end of this section. 

 
5.2. Results 

 
We ran each solution 100 times with randomly 

generated parameters (20 < C ≤ 40, C+1 ≤ n ≤ 2C, and 
1 ≤ T ≤ 10).  Our tool inferred exactly the same set of 
temporal properties for seven out of the eight 
submissions.  Table 2 summarizes the results.  

The Alternating pattern is inferred for wait and drives 
for seven of the programs, but not for the other 
program.  The strongest property inferred for wait and 
drives is MultiEffect which means there can be multiple 
drives events for each wait event.  Since seven out the 
eight programs satisfy the stronger property (as well as 
the sample output in Figure 3), we suspect that there is 
a bug in the other solution.  

It was not obvious to us where the problem is by 
simply inspecting the code.  So, we examined the 
analysis tool output which identified a specific trace in 
which wait and drives does not satisfy the Alternating 
pattern. This led us to find the bug in the go_for_drive 
code shown in Figure 4.  At the end of that method, the 
bus thread releases the lock. This effectively allows 

passenger threads to compete for the lock and to 
possibly get in the bus before the bus starts waiting for 
passengers and output the Bus waiting for trip message 
that corresponds to the wait event. In most cases, the 
bus can successfully obtain the lock before it has been 
filled to capacity (the condition num_riders < capacity 
is true), so it can generate the wait event. However, the 
bus can be already full when the bus obtains the lock 
(if num_riders ≥ capacity), in which case it does not 
produce the wait event. In such situations, wait and 
drives do not alternate with each other and the 
Alternating pattern does not hold.  This is a bug because 
it is possible for passengers to get in before the bus is 
waiting for trip. One way to fix it would be to use a 
conditional variable to synchronize the bus and the 
passengers and to make sure the bus generates the wait 
event before it broadcasts that condition. 

The second property difference found in Table 2 is 
for the drives and gets off events.  In seven of the 
implementations they satisfy the MultiEffect pattern, but 
in the other implementation they satisfy CauseFirst. 
The CauseFirst property means it is possible for the 
bus to drive around Charlottesville more than once 
without allowing passengers to get off between these 
trips. This is again a bug of missing synchronization 
between the bus and the passengers. As shown in 
Figure 4, the bus broadcasts that the ride is over to all 
passengers after it drives around the city. Then it 
should wait for all the passengers to get off before 
starting the next trip.  If the bus thread runs before any 
passengers depart, it will still be full and will begin the 
next trip.  The third difference, wait and gets off 
satisfying CauseFirst instead MultiEffect, was caused by 
the same bug as discussed in the second one. Since the 
faulty program does not print out the stops event at all, 
none of the patterns related to the stops event, which 
appeared in the other seven versions, was discovered. 

Our original event mapping lost all information 
about which passenger each gets in and gets off event 
concerned.  We also ran our prototype with a different 
event mapping in which each “Passenger n gets in” log 
entry corresponds to a different event for each value of 

void go_for_drive() { 
   pthread_mutex_lock (&mutex[mutex_lock]); 
   if (num_riders < capacity) { 
     printf ("Bus waiting for trip %d\n", num_trips); 
     pthread_cond_wait (&cond[cond_shuttle_full],  
                                     &mutex[mutex_lock]); 
   } 
   printf ("Bus drives around Charlottesville\n"); 
   sleep (3); 
   pthread_cond_broadcast (&cond[cond_ride_over]); 
   num_riders = 0; 
   num_trips--; 
   pthread_mutex_unlock (&mutex[mutex_lock]); 
} 

Figure 4. Faulty code excerpt 

Table 2.  Properties inferred 
Pattern Correct Versions Faulty Version 

Alternating wait→drives  

MultiEffect 
drives→gets off 
wait→gets off 
wait→gets in 

wait→drives 
 
wait→gets in 

MultiCause 

drives→stops 
gets in→drives 
gets in→stops 
wait→stops 
gets off→stops 

gets in→drives 
 
 

CauseFirst 
gets in→gets off 
 
 

gets in→gets off 
drives→gets off 
wait→gets off 
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n, and similarly for “Passenger n gets off”.  This 
enables us to detect the Alternating pattern between 
Passenger i gets in and Passenger i gets off (for all 
values of i corresponding to passengers) if this is true. 
We reran the analyzer and found that all solutions 
satisfy this property.  That is, our tool correctly inferred 
the property that no passenger will request another trip 
before getting off the bus. 

 
5.3. Discussion 

 
Our prototype tool was able to automatically 

discover interesting differences in the temporal 
properties of the eight programs, revealing flaws in one 
of the programs.  In addition, it was able to correctly 
infer patterns corresponding to three of the four 
desirable properties implied by the problem 
specification.  It was not able to infer the property that 
the bus always rides with C passengers.  To do this, we 
would need to analyze not just the ordering but also the 
count of events.  Our current property patterns are not 
sufficiently expressive to detect this, since they only 
deal with pairs of events.  We plan to include some 
event count analysis in our future work.  We intend to 
develop a library of event count patterns can be 
developed similar to the event ordering patterns we use 
now. 

 

6. OpenSSL 
 
Our second experiment considered recent versions 

of OpenSSL.  The Secure Socket Layer (SSL) protocol 
provides secure communication over TCP/UDP using 
public key cryptography [13]. We focus on the 
handshake protocol that performs authentication and 
establishes important cryptic parameters on both client 
and server sides before data are transmitted between 
them. OpenSSL, written in C, is a widely used open 
source implementation of SSL [25].  In our 
experiments, we used our tool to automatically infer 
the temporal properties of implementation of the 
handshake protocol in multiple versions of OpenSSL. 

Chaki et. al used MAGIC, a C model checker that 
can automatically extract a model from a C program, to 
check OpenSSL’s implementation of the handshake 
protocol [6]. They manually constructed the properties 
to check from the specification and they only checked 
version 0.9.6c of OpenSSL. 

 
6.1. SSL handshake protocol 

 
Figure 5 shows the client (left) and server (right) 

events in the SSL handshake protocol, which was 
derived from the SSL specification [13].  The three 
boxes with dashed outlines contain internal states 
created in the OpenSSL implementation but not 

ClientHello (SR_CLNT_HELLO) 

ServerHello (SW_SRVR_HELLO) 
Certificate (SW_CERT) 

ServerKeyExchange (SW_KEY_EXCH) 
CertificateRequest (SW_CERT_REQ) 
ServerHelloDone (SW_SRVR_DONE) 

Certificate (SR_CERT) 
ClientKeyExchange (SR_KEY_EXCH) 

CertificateVerify (SR_CERT_VRFY) 
Change cipher spec 

Finished (SR_FINISHED) 

Change cipher spec (SW_CHANGE) 
Finished (SW_FINISHED) 

BEFORE+ACCEPT 

SW_FLUSH
OK 

SW_FLUSH 

Client Server 

 
Figure 5. SSL handshake protocol states 
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required in the SSL specification. The remaining boxes 
contain sequences of states corresponding to messages 
required by the SSL handshake protocol. The server 
state in the OpenSSL implementation corresponding to 
the beginning of either receiving the corresponding 
message from the client or sending the message to the 
client for each message is shown in the parentheses.  
For example, if the server is in the BEFORE+ACCEPT 
state and receives a ClientHello message from a client, 
the server enters the SR_CLNT_HELLO state.  
Receiving the change cipher spec message is not part 
of the handshake process, so that message has no 
corresponding state change.  It does have a 
corresponding state for sending (SW_CHANGE) in the 
implementation that is monitored in our experiment.  

The handshake begins when the server receives a 
ClientHello message from a client. Then the server 
sends out five messages consecutively (corresponding 
to the states SW_SRVR_HELLO, SW_CERT, 
SW_KEY_EXCH, SW_CERT_REQ and SW_SRVR_-
DONE). Next the server enters the SR_CERT state in 
which it tries to read certificate from the client 
(whether the client sends its certificate or not depends 
on if the server requires one in its certificate request 
message).  Then the server reads consecutively four 
messages from the client (certificate, key exchange, 
certificate verify, and finished). If no error occurs, the 
server sends out its ChangeCipherSpec message and 
wraps up the handshake by sending its Finished 
message.  

As shown in the dash lined box, the server 
implemented several additional internal states which 
we also monitored.  First, the server always initializes 
its state to BEFORE+ACCEPT at the beginning of the 
handshake.  After sending each batch of messages, the 
server flushes the socket by entering the SW_FLUSH 
state. In the end, OK is another internal state indicating 
that the server cleans things up in its side and is ready 
for transmitting data with client. A typical event trace 
is shown in Figure 6. 

In the OpenSSL server implementation, the 
handshake process is encapsulated in a method.  A 
server starts the handshake process by calling the 
ssl3_accept method which implements the protocol 
state machine as an infinite loop that checks the current 

protocol state, sends or receives messages, and 
advances the state accordingly.  We manually 
instrumented this method to monitor 15 states shown in 
Figure 5. 

 
6.2. Testing process 

 
Our experiment considered only properties of the 

server implementation, but in order to generate test 
data we needed to execute it with sample clients.  We 
are particularly interested in analyzing the server’s 
behavior when the client does not follow the protocol 
correctly, since this is often a source of errors.  The 
OpenSSL client implementation starts the handshake 
process by calling the ssl3_connect method, which 
implements the protocol state machine in a similar 
fashion as ssl3_accept.  We modified ssl3_connect so 
that after every state it may either behave correctly or 
enter some randomly selected state.  For example, 
suppose the current state is A, after finishing task X, the 
state should be changed to B. In our modified version, 
the state would correctly transition to B with 95% 
probability, but with 5% probability would transition 
into a randomly selected different state instead.  Our 
purpose is to create a client that sometimes behaves 
abnormally.  Note that in most SSL server deploy-
ments, it is important how the server behaves even 
when clients misbehave (usually this means reporting 
an error and terminating the handshake).  

We used as test harness a simple OpenSSL-based 
implementation of HTTPS protocol: wclient and 
wserver (version 20020110) developed by Eric 
Rescoria [28]. We added one more command-line 
option for wclient so that users can seed the random 
number generator with a specific integer to enable 
reproducibility of the experiments. We also modified 
wserver so that it only accepts one connection and exits 
after that. We also added handler functions for 
SIGSEGV and SIGPIPE signals which we observed in 
both client and server in our initial tryout. Our handlers 
simply printed out the name of corresponding signals 
and exited.  

We obtained traces for six versions of OpenSSL: 
0.9.6, 0.9.7, 0.9.7a, 0.9.7b, 0.9.7c, and 0.9.7d (released 
17 March 2004, the latest version available as of 25 
April 2004).  For each version of OpenSSL, we ran 
both wclient and wserver in tandem 1000 times on two 
Redhat Linux machines and obtained 1000 traces for 
the server.  For each execution, the client random 
generator was seeded with an integer from 1 to 1000 to 
obtain different abnormal client behaviors. We used the 
default keys and certificates supplied in the example 
program’s package and the default choice of cryptic 
algorithm. We wrote shell scripts to automate the 
testing process. In the early stages of our experiment, 

BEFORE+ACCEPT→SR_CLNT_HELLO→ 
SW_SRVR_HELLO→SW_CERT→ 
SW_KEY_EXCH→SW_CERT_REQ→ 
SW_SRVR_DONE→SR_CERT→ 
SR_KEY_EXCH→SR_CERT_VRFY→ 
SR_FINISHED_SW_CHANGE→ 
SW_FINISHED→OK 

Figure 6. A server event trace of normal 
handshake process 
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we observed that the server and client may deadlock 
each other (i.e. both waiting for message from the 
other). Upon encountering such situations, our client 
shell script would just kill the client process. 

 
6.3. Results 

 
First, we applied our tool to all 1000 traces. Version 

0.9.7 generates 38 different types of events. It took 197 
seconds to analyze the 1000 traces for this version on a 
laptop with 1.3 GHz Pentium-M CPU. The number of 
different types of events in the rest versions varies 
slightly from 36 to 38. Then we partitioned the traces 
into four groups: 1) correct client (i.e. the client did not 
change to any unintended state); 2) faulty client (i.e. 
the client changed its state to some unintended one at 
least once) but no errors generated in traces; 3) 
segmentation fault; 4) faulty client generating errors 
other than segmentation faults. We applied our tool 
separately to each group of traces.  
All traces 

Table 3 highlights three key differences among the 
Alternating patterns detected for all versions. First, the 
Alternating pattern between SR_KEY_EXCH and 
SR_CERT_VRFY (receiving key exchange message, 
and certificate verify message) appeared in all versions 
up to 0.9.7b, but did not appear in 0.9.7c and 0.9.7d. 
This is a result of a change added since version 0.9.7c 
to make the implementation conform to the SSL 3.0 
specification (documented in the change log of version 
0.9.7c [25]). Starting from version 0.9.7c, a server does 
not process any certificate message it receives from a 
client if it has not requested authentication of client. 
The condition of whether the server requests client 
authentication is recorded in a variable, which can be 
set using command line option. The server checks this 
variable to decide what its next state is after entering 
the receiving certificate state (SR_CERT). If the server 
does not require client authentication as in our 
experiment, it directly advances to receiving key 
exchange state (SR_KEY_EXCH). Otherwise, it first 
reads and examines the client’s certificate before 
changing to that state. Our faulty client may send its 
certificate even if the server has not requested one, 
OpenSSL server before 0.9.7c noticed this and stopped 
handshake immediately: the SR_KEY_EXCH state was 
not entered at all.  Server versions 0.9.7c and 0.9.7d 
ignored the client’s certificate, continued to change its 

state to SR_KEY_EXCH, and then stopped the 
handshake because of the wrong type of message the 
client sends (it expected a key exchange message but 
got a certificate message).  So, in versions 0.9.7c and 
0.9.7d, such traces ended up with a SR_KEY_EXCH 
event without a following SR_CERT_VRFY event. In 
contrast, such pattern was preserved in earlier versions.  
Hence, our tool successfully exposed an important 
change made to the implementation of handshake 
protocol in version 0.9.7c. 

In the second row, we found that SW_CERT and 
SW_KEY_EXCH satisfy the Alternating property for all 
versions except 0.9.6. Investigating the traces showed 
sometimes, the server crashed after entering SW_CERT 
state with a SIGPIPE signal. This is apparently a 
critical bug in earlier version of OpenSSL which has 
been fixed in later ones. 

In the third row, we found that only version 0.9.7 
has the Alternating property between the 
SW_SRVR_DONE and SR_CERT events.  Finding the 
problem turned out to be more tricky than we expected 
since the result appeared to be non-deterministic when 
we ran the server on a single test.  Sometimes the 
SR_CERT event was generated, but sometimes it was 
not. This happened in all versions of server.  Using the 
program’s log messages we were able to find the cause, 
which happened to be a race condition.  When the 
client changes to a false state and receives an 
‘unexpected’ message from the server, it tries to send 
an alert message to the server to stop the handshake 
process. After that, the client disconnects the socket 
with server.  If the client disconnects the socket while 
the server is sending messages, the server will get a 
sending error message. The server has not and will not 
get the alert message from the client now because the 
socket has been disconnected. The server will only be 
able to get the alert message if it has already finished 
sending messages to client and entered a receiving 
state. In our experiment, this receiving state is 
SR_CERT. If the server is able to enter this state before 
the client alert message is sent, this event and an alert 
message will both be printed out at the server. So, there 
is no guarantee in these implementations that an alert 
message will be received after sending.  This important 
design decision was not documented in the 
specification and our approach successfully discovered 
it.  In addition, this experience reveals the importance 
in testing under a variety of conditions.  The scheduling 

Table 3. Alternating properties satisfied by six versions of OpenSSL 
 0.9.6 0.9.7 0.9.7a 0.9.7b 0.9.7c 0.9.7d 

SR_KEY_EXCH→SR_CERT_VRFY       
SW_CERT→SW_KEY_EXCH       

SW_SRVR_DONE→SR_CERT       
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decisions made by the operating system influence the 
temporal properties of multithreaded programs.  
Ideally, the test suite would be run using a scheduler 
that could be configured to produce a variety of 
schedules. 
Correct clients 

We detected the event chain shown in Figure 6 by 
analyzing the traces of server in which the client 
behaved correctly (that is, the 5% probability of 
switching to a random state was never selected).  
Although the number of such traces varies slightly 
among different versions, all versions agreed on the 
same pattern. This result is desirable because the 
pattern in Figure 6 conforms exactly to the SSL 
specification as discussed earlier. This demonstrates 
that the server implementations of the handshake 
protocol conform to the specification at the state-level 
along the path of OpenSSL’s evolution.  The only 
discrepancies between behaviors from different 
versions of the server occur when the client does not 
follow the protocol correctly. 
Faulty clients without errors generated 

Next we consider the set of traces corresponding to 
faulty clients that (surprisingly) did not generate any 
error event on either the server or client.  These traces 
recorded behavior from clients that jumped to a random 
state at some point during their execution, but did not 
lead to either the client or server reporting an error or 
failing to complete the handshake process. 

Again all six versions agreed on the two event 
chains shown in Figure 7, though the number of such 
traces varies a little bit. These two chains closely 
follow the SSL specification about the normal 
handshake behavior of a server implementation.  
However, there are a few key distinctions between the 
patterns in Figure 6 and Figure 7. 

We found that two Alternating properties that are 
present in Figure 6 do not appear in Figure 7. Instead, 
those event pairs had weaker patterns. First, SR_CERT 
and SR_KEY_EXCH satisfied the MultiCause pattern. 
Second, BEFORE+ACCEPT and SR_CLNT_HELLO 
satisfied the MultiEffect pattern. Figure 8 shows a trace 
that violated our expected Alternating properties. The 
key distinction between this trace and the traces 
produced using correctly behaving clients is that the 

eight-event sequence appears twice. Figure 9 shows the 
corresponding client events.  The faulty client falsely 
changed its state to renegotiate (an internal state in the 
implementation of the client, not shown in Figure 4 
since it is not part of the normal handshake process) 
instead of sending certificate (i.e. CW_CERT) after 
reading the five messages from server (ServerHello, 
Certificate, ServerKeyExchange, CertificateRequest, 
and ServerHelloDone). Then, the client started the 
handshake again by sending the client hello message 
which caused the server to repeat the hello stage of the 
handshake again. Although the handshake returned to 
normal and ended successfully after both parties 
repeated the hello stage twice, we found that the 
handshake can still be successful no matter how many 
times the hello stage is repeated. If a client always 
changes its state to renegotiate after receiving the 
server done message, the server and the client will 
enter an infinite loop. 

Suspecting this could be exploited in a denial of 
service attack against an OpenSSL server, we reported 
it to the OpenSSL developers.  They argued that it did 
not indicate a serious DOS vulnerability because the 
server loops infinitely only when an ill-behaved client 
keeps sending renegotiation requests. This is similar to 
letting too many clients attempt to connect to a server, 
which is a scenario that cannot really be prevented at 
the server. 

Although the property is not a real vulnerability in 
OpenSSL server, it does reveal an interesting aspect of 
the implementation’s behavior which is not 
documented in the SSL specification and certainly not 
obvious from the inspecting the code.  
Segmentation fault 

BEFORE+CONNECT, OK+CONNECT, 
CW_CLNT_HELLO, CR_SRVR_HELLO,CR_CERT, 
CR_KEY_EXCH, CR_CERT_REQ,CR_SRVR_DONE, 
RENEGOTIATE, 
BEFORE, CONNECT, BEFORE+CONNECT, 
OK+CONNECT, CW_CLNT_HELLO, 
CR_SRVR_HELLO, CR_CERT, CR_KEY_EXCH, 
CR_CERT_REQ, CR_SRVR_DONE, 
CW_KEY_EXCH, CW_CHANGE, CW_FINISHED, 
CW_FLUSH, CR_FINISHED, OK 

Figure 9. Client trace corresponding to the 
server trace shown in Figure 7 

BEFORE+ACCEPT, OK+ACCEPT,  
(SR_CLNT_HELLO, SW_SRVR_HELLO, SW_CERT, 
SW_KEY_EXCH, SW_CERT_REQ, SW_SRVR_DONE, 
SW_FLUSH,SR_CERT,)2 
SR_KEY_EXCH, SR_CERT_VRFY, SR_FINISHED, 
SW_CHANGE, SW_FINISHED, SW_FLUSH, OK 

Figure 8. Trace generated with a faulty client 

SR_CLNT_HELLO→SW_SRVR_HELLO→ 
SW_CERT→SW_KEY_EXCH→ 
SW_CERT_REQ→SW_SRVR_DONE→SR_CERT 
 
BEFORE+ACCEPT→SR_KEY_EXCH→ 
SR_CERT_VRFY→SR_FINISHED→ 
SW_CHANGE→SW_FINISHED→OK 

Figure 7. Inferred alternating chains for non-
error faulty clients 
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There are three traces that have segmentation fault 
in all servers prior to 0.9.7d.  They resulted from the 
same faulty client, which sent out a change_cip-
her_spec instead of the normal client hello message at 
the very beginning of the handshake process.  We 
examined the change log for 0.9.7d and found that this 
is due to a critical update [26], where a potential null-
pointer assignment in the do_change_cipher_spec() 
function can cause the earlier versions of server to 
crash. Although this finding is not a result of 
comparing the temporal properties detected, it does 
show that using randomly behaving client to test server 
is powerful enough to uncover important problems. 
Faulty client with other types of error 

All servers agreed on the temporal properties 
inferred for traces within this category. This did not 
lead us to detect any interesting problems, but did 
confirm that the server versions handled misbehaving 
clients consistently. 

 
6.4. Discussion 

 
Our results support both hypotheses stated in 

Section 4.2.  Using the temporal properties inferred for 
different program version we were able to recover the 
interesting temporal behaviors of the handshake 
protocol. Further, our approach successfully identified 
temporal property differences across OpenSSL 
versions that would be useful for understanding the 
behavioral differences between those implementations.  
In particular, we found that all implementations 
preserved the inferred temporal properties for well 
behaved clients, but that later versions of OpenSSL 
handled misbehaving clients in ways that preserved 
properties that were not preserved by earlier 
implementations when clients misbehaved.  We believe 
knowledge of these properties, and the ability to 
automatically test them, will be useful to maintainers of 
OpenSSL. 

However, we have not yet been able to successfully 
extract useful differences from the traces produced 
with faulty clients that produced errors.  Because there 
are a large number of different types of errors, each of 
which appeared relatively infrequently, the traces 
appeared to be very irregular. One possible way to 
handle such situations is first partitioning the traces 
according to different types of error events, then 
applying our tool to the corresponding subset of traces.  
In this experiment, we only compared the temporal 
properties of multiple versions inferred from the same 
type of traces. Another possibility is to compare the 
temporal properties of the same version inferred from 
different types of traces.  In addition, we may need to 
expand our set of property patterns to include three-
event patterns to deal with error cases by allowing 

disjunction patterns.  We plan to explore this further in 
future work. 

 
7. Conclusion 

 
We presented a prototype tool that automatically 

infers temporal properties of programs by analyzing 
test execution traces, and argued that such a tool can be 
a useful asset in reliable program evolution.  Our 
experimental results demonstrate that our approach is 
able to automatically determine important temporal 
properties and identify differences that reveal 
interesting properties of programs.    

The results from our two experiments give us reason 
to be optimistic that our approach can be a useful tool 
to aid program evolution.  However, further work 
needs to be done before the approach can scale to large 
programs with many events and long execution traces.  
We plan to evaluate our approach on more systems 
where temporal properties are especially important 
including reactive systems, and embedded systems.  
Many parts of our approach, which should be 
automated, are still done manually including program 
instrumentation and identification of interesting results.  
For large systems, we need to selectively monitor 
interesting events to make our approach scale. An open 
problem is developing heuristics for automatically 
identifying such events. We will investigate this 
important question in our future research. Our current 
patterns are not able to express certain properties that 
are important for software reliability.  We plan to 
develop some more advanced ones including patterns 
involving event counts to capture program’s temporal 
semantics more precisely.  

The effectiveness of any dynamic analysis depends 
on the comprehensiveness of the executions of a target 
program it examines. It is very important to understand 
how the quality of the test suite could impact the result 
of our analysis and what testing approaches are most 
effective for our analysis. We plan to conduct research 
to answer these questions. 

In these experiments, we focused on program 
evolution, but our tool has other applications.  One 
possibility is using it to produce input to a model 
checker.  Then, we can employ a model checker to 
automatically check the temporal properties 
discovered.  This can not only give us more confidence 
in the inference results, but also help undetected subtle 
problems by leveraging the existing sophisticated 
verification techniques. 
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