
Automatically Inferring Temporal Properties for Program Evolution

Jinlin Yang David Evans
Department of Computer Science

University of Virginia
{jinlin, evans}@cs.virginia.edu

Abstract

It is important that program maintainers understand
important properties of the programs they modify and
ensure that the changes they make do not alter
essential properties in unintended ways. Manually
documenting those properties, especially temporal ones
that constrain the ordering of events, is difficult and
rarely done in practice. We propose an automatic
approach to inferring a target system’s temporal
properties based on analyzing its event traces. The
core of our technique is a set of pre-defined property
patterns among a few events. These patterns form a
partial order in terms of their strictness. Our approach
finds the strictest properties satisfied by a set of events
based on the traces. We report results from
experiments on two sets of programs: student solutions
for a class assignment, and several recent versions of
OpenSSL. Comparing properties inferred from
different implementations led us to discover important
behavioral differences which revealed flaws in the
programs. Differences in automatically inferred
temporal properties can provide useful information to
programmers evolving complex, often unspecified,
programs whose correctness depends on preservation
of undocumented temporal properties.

1. Introduction

A common problem is ensuring that changes

introduced in program maintenance do not change the
program’s behavior in unexpected ways. In particular,
changes should not alter important properties of the
previous version of the program on which clients may
rely. Unfortunately, most programs do not have
specifications, so programmers modifying programs
often do not know what those important properties are.
We present an approach for largely automating the task
of discovering important property differences. We
focus on temporal properties, since they provide good
opportunities for automatic inference and analysis, and

because satisfying certain temporal properties is
essential for the correctness of many programs, yet
they are particularly hard for programmers to document
and test manually.

A temporal property defines the sequence in which
events take place [27]. Temporal properties are
especially important in concurrent programs in which
threads interact through shared objects and messages.
Writes from different threads to a shared object are
mutually excluded using mechanisms such as locks to
ensure that events are ordered consistently. While such
properties are fundamental to program correctness,
they are rarely documented or specified. Even when
they are, it is extremely hard to assure them by
inspection or testing due to the huge number of ways
threads might interleave with each other.

Previously, we proposed automatically inferring
interesting temporal properties from execution traces
[30]. The key components of our approach are the
development of a set of extensions to the response
property pattern [11] and an algorithm that can
automatically infer the strictest pattern a set of events
satisfy. The key contribution of this paper is an
experimental analysis of our approach that illustrates
its effectiveness as an aid to program evolution. We
report on experiments using our prototype tool on two
sets of programs: student implementations from a
software systems course assignment; and multiple
versions of OpenSSL [25], a widely used open source
implementation of the SSL protocol. Our tool was able
to infer interesting temporal properties in both families
of programs, and confirm that all implementations
satisfied some important properties. By analyzing the
differences between the temporal properties our tool
inferred for each program, we were able to detect bugs
in one of the student implementations, identify
behavioral differences between different versions of
OpenSSL, and identify security vulnerabilities in the
OpenSSL implementation.

Section 2 provides a brief survey of related work.
Section 3 presents our approach, which is a slight
refinement of the approach presented in [30]. Section 4

In Fifteenth IEEE International Symposium on
Software Reliability Engineering (ISSRE 2004).
2-5 November 2004, Saint-Malo, France.

 2

provides an overview of our implementation and
experiments. Sections 5 and 6 report on results from
our two experiments, and Section 7 concludes.

2. Related work

The task of understanding differences between two

versions of a program has been long recognized as an
important software engineering problem. The majority
of previous work has focused on static approaches,
ranging from simple syntactic differencing [22] to
more complex static approaches that consider program
semantics using dependences [4, 18, 19, 21]. Static
approaches provide guarantees that are not possible for
dynamic approaches, since they can reason about all
possible executions of the two programs. However,
they are limited in the kinds of properties that can be
considered since determining whether two programs
are different for most interesting program properties is
an undecidable problem. Our focus is on dynamic
approaches, so we do not include a detailed survey of
static differencing work here.

Our work is mainly inspired by Ernst’s work on
dynamically inferring program invariants [12, 23].
While their work focuses on the value relationships
among variables which are more relevant to dataflow,
ours focuses on a program’s temporal properties such
as the execution sequences of methods which are more
relevant to control flow.

Specification mining [1, 2] discovers temporal
specifications a program must satisfy when interacting
with an application programming interface (API) or
abstract data type (ADT) using machine learning
techniques. It extracts scenarios from execution traces
based on a dependency analysis and then uses a
probabilistic finite automaton (PFSA) learner to infer
specifications. Our approach differs from specification
mining in several aspects. Our techniques target
general types of events whereas specification mining is
limited to API and ADT events. We use a template
matching approach so that a large number of long
execution traces can be analyzed, whereas their PFSA
learner is limited to fairly short traces. Specification
mining produces specifications that may be
inconsistent with the execution traces, and they use a
dynamic checker to verify the specification against
those execution traces. Further, specification mining
requires substantial guidance from an expert (e.g. to
define which attributes of interactions may define
objects, select seed events for dependency analysis, and
to identify which attributes may use objects). Our goal
is to develop techniques that are as automatic as
possible.

Whaley et al. developed two techniques, one static
and the other dynamic, for inferring sequencing models

of methods of a component [29], and built a dynamic
model checker to check if the code conforms to the
models discovered. By slicing on methods accessing
the same field of a class, they are able to discover a
precise sub-model for such methods. They did not
attempt to develop techniques to find the strictest
pattern any two methods can have. Their dynamic
approach adds a transition to the model upon finding
one instance of such a transition. Ours only considers a
temporal property to be valid if all the traces have it.
Further, we focus on finding the precise relationship
between a few (i.e. two or three) events by
systematically examining all possible candidate
patterns.

Cook et al. developed statistical techniques to
discover patterns of concurrent behavior from event
traces [7]. Their techniques first extract a thread model
out of the event traces, and then infer points of
synchronization and mutual exclusion based on that
model. Our approach is distinguished from theirs in
that the temporal properties inferred by our method are
more general, and their approach only uses a single
event trace, while ours is based on many event traces.

Static analysis techniques like software model
checking can verify temporal properties on a closed
model of the system. They can examine a temporal
property on all possible execution paths with certain
constraints (e.g. the range of variables) to find faults in
a system that are hard to detect using traditional
methods. Software model checkers [3, 5, 8, 14, 16]
have been successfully applied to check many real
world systems. However, model checkers require
specifications of properties to check such as assertions
about valid states of the system and temporal
properties. Temporal properties are represented using
some formalism such as Linear Temporal Logic (LTL)
[27]. The specification language is usually different
from the language in which the system is written, and
is often difficult to understand. Further, the
specification is usually defined on the model, whereas
it is best understood in terms of the implementation.
Thus, to define a temporal property, one must be
familiar with the formalism and be able to translate and
redefine properties based on the structure of the model.
This process can be very challenging and error-prone,
even for experienced users. Holzmann showed how
tricky and difficult it is to define a simple temporal
property using LTL [17].

Dwyer et al. developed a set of temporal property
patterns based on a case study of hundreds of real
property specifications [11]. They integrated those
patterns into their Bandera toolset [8] so that users can
express a temporal property in the Bandera
Specification Language [9]. That property is mapped
into the underlying formalism the chosen model

 3

checker accepts. Their patterns are too imprecise to
describe some interesting properties. We derived a
number of variations of their patterns by adding more
constraints. To ease the task of formulating a property,
we developed techniques to automatically search the
strictest pattern matching the event traces. Inferred
properties can then be subjected to validation by users
or model checkers.

Havelund used information obtained from runtime
analysis to guide model checking of Java programs
[15]. Two dynamic analysis algorithms to detect race
conditions and deadlocks run first. If those analyses
report any warnings, the Java PathFinder model
checker [14] is used to check the suspected threads
specifically. Their approach showed that runtime
analysis information can be used to pinpoint the
problematic point in the program such that the state
space for large program can be significantly pruned.
Our approach is more systematic and general in that a
broad category of temporal properties can be automati-
cally derived and checked along a program’s control
flow.

3. Approach

The main components of our approach are shown in

Figure 1 and described briefly here. For more details,
see [30].

First, we instrument the target program to monitor a
set of key events. This could be automated by
instrumenting all program expressions of interest such
as system calls or procedure calls.

Next, we execute a test suite on the instrumented
program and collect execution traces. To generate
execution traces, we need to execute the program. If
the target program has a set of test cases, we could just
use them. Otherwise, we can generate a test suite
either by some automated test generator or manually.

Then, we instantiate candidate temporal property
patterns. A property pattern [8] is an abstraction of a
set of commonly used temporal properties. We are
interested in the Response pattern describing the
cause-effect relationships between two abstract events
P and S: P’s occurrence must be followed by the
occurrence of S. For example, SPPSS is an event
sequence that satisfies this pattern, but SPPSSP does
not since no S responds to the last P. We use a
Quantified Regular Expression (QRE) [24] to describe
the Response pattern as: [-P]*(P[-S]*S[-P]*)*. If we
assume all events other than P and S are filtered from
the trace, this is equivalent to S*(PP*SS*)*. QREs are
similar to regular expressions: [-] is the exclusion
operator ([-P] specifies any event in the alphabet
except P). The * (Kleene star) and () (grouping)
operators have their normal meanings.

The Response pattern is very imprecise in that it
allows several causing events (P) to share one effect
event (S), one causing event to have multiple effect
events, and effect events to happen before any causing
event. As a result, knowing two events satisfying this
property does not give us much useful insight into a
program’s temporal behaviors.

To solve this problem, we developed the variations
on the original Response pattern shown in Table 1.
Let L(A) represent all event traces satisfying pattern A.
Given two patterns A and B, if L(A) < L(B) (that is, all
event traces that satisfy B satisfy A, but at least one
event trace that satisfies B does not satisfy A) we say A
is stricter than B.

The eight patterns form a partial order in terms of
their strictness as shown in Figure 2. To determine the
strictest pattern satisfied by a pair of events, we first
determine which of the CauseFirst, OneCause and
OneEffect patterns they satisfy. Then we can use the
relationships among the patterns to infer the strictest
pattern. For example, if a pair of events satisfies
OneCause and OneEffect, but not CauseFirst, we can
infer that the strictest satisfied pattern is EffectFirst.

Program Instrumented
Program

Instrum
entation

Test Suite

Execution
Traces

Testing

Inferred
Properties

Candidate Property
Patterns

Inference

Different
Properties

D
ifference A

nalyzer

Inferred
Properties
from other

implementations

Shared
Properties

Figure 1. System overview

 4

We obtain a concrete property by replacing each
abstract event with a selected monitored event. We can
get a set of concrete properties by replacing the abstract
events with those monitored events of interest to us. If
a pattern is parameterized by m abstract events and we
monitor n events, there are nm possible instance
properties. For now, we only consider patterns where
m is 2 so it is feasible to check all possible patterns as
long as the number of monitored events is fairly low.

For each concrete property, we check if the
collected event traces satisfy the property to determine
the strongest temporal property satisfied by each pair of
events. Then, we compare the inferred properties for
this version with inferred properties for other versions,
and produce a report describing the shared and
different properties. The difference analyzer simply
compares the strictest property inferred for each pair of
events, and identifies events for which different
properties are inferred for different program versions.

4. Experiments

To evaluate our approach, we built a prototype

implementation and conducted experiments using it on
two tasks related to program evolution. The next two

subsections describe our prototype implementation and
an overview of the experiments. Sections 5 and 6
describe each experiment and discuss our results.

4.1. Prototype implementation

Our current implementation automates all steps in

the process except the instrumentation. Hence, to use
our technique we must either instrument programs to
generate event traces or provide a mapping from
program output logs to event traces. In future work, we
plan to build an instrumentation tool and event mapper
that automates both processes.

We implemented our inference algorithm in a 900-
line Perl script. To enable efficient pattern checking,
we encode the event sequences into binary strings
using the Huffman coding algorithm [10] implemented
using the CPAN Algorithm::Huffman module [20]. Next
an inference procedure processes the encoded traces to
find the strictest pattern satisfied by any two events.

Finally a post-processing subroutine synthesizes the
Alternating properties to present them in a more
succinct and easier-to-understand form. When there are
a large number of Alternating properties, it can be
difficult for programmers to inspect and synthesize
them manually. We developed an algorithm to
automatically synthesize Alternating Chains. For
example, if the alternating patterns A→B and B→C are
inferred, they will be synthesized as an event chain
A→B→C.

Programmers may use the results in several ways.
They may compare the result with the informal
specification by hand. If properties are inferred that are
not expected according to the program specification,
that reveals either a fault in the implementation, an
inadequacy of the test suite, or a misunderstanding of
the specification. If specified properties covered by the
candidate property patterns are not inferred, it reveals a
fault in the implementation. The inferred properties
may also be used as input to a model checker. The
model checker may validate the properties, or may find
counterexamples to them. In cases where
counterexamples are found, this may reveal a bug in
the program or an important weakness in the test suite:

MultiEffect MultiCause EffectFirst

Alternating

OneCause OneEffectCauseFirst

Response

� � �

�

Figure 2. Partial order of properties

Table 1. Temporal property patterns
Name QRE Valid Examples Invalid Examples

Response S*(PP*SS*)* SPPSS SPPSSP
Alternating (PS)* PSPS PSS, PPS, SPS
MultiEffect (PSS*)* PSS PPS, SPS
MultiCause (PP*S)* PPS PSS, SPS
EffectFirst S*(PS)* SPS PSS, PPS
CauseFirst (PP*SS*)* PPSS SPSS, SPPS
OneCause S*(PSS*)* SPSS PPSS, SPPS
OneEffect S*(PP*S)* SPPS PPSS, SPSS

 5

a property which is always true of the test executions is
not actually guaranteed by the program. Both of these
uses require substantial effort and expertise from the
programmer, either in inspecting properties directly or
using a model checker.

Our experiments focus on using our temporal
property inference technique in a more automated way
to support program evolution. Instead of validating or
inspecting the inferred properties, we simply compare
them to the properties inferred from some other
instance. We compare properties inferred from differ-
ent versions of a program using the same test suite. We
could use similar techniques to compare test suites by
keeping the program constant and comparing properties
inferred from different test suites.

4.2. Hypotheses

To evaluate our approach, we did experiments on

two families of programs: student implementations of a
multithreaded programming assignment in a graduate
systems software course, and archived versions of
OpenSSL [25]. In both cases, all programs in the
family were designed to implement the same informal
specification. Hence, any differences in the temporal
properties are likely to be important.

The first hypothesis we want to evaluate through
these experiments is that our approach can recover a
useful temporal specification from an implementation
in the sense that most of the desirable properties can be
inferred. If this is true, our tool can help new
developers understand the temporal behaviors of a
legacy system.

Our second hypothesis is that our approach is useful
for supporting program evolution. Our goal is to help
programmers ensure that desirable temporal properties
are preserved and changes to temporal properties are
noticed and investigated. Our hypothesis is that the
temporal properties inferred for a program using our
approach can be used as a signature of the program’s
temporal semantics to help programmers achieve those
goals. So in each experiment, we compared the
properties inferred for different versions of a program.
Upon finding any discrepancy between the properties
inferred for two programs intended to meet the same
specification, we tried to identify its cause. Property
differences may be benevolent (the programs behave
differently, but in ways that are both consistent with the
desired behavior) or may reveal variations in the way
tests are run (such as operating system scheduling
decisions) or faulty implementations. Finding any of
these problems will then be useful for improving the
test suite, the implementation, or the specification.

5. Tour bus simulator

An early assignment in a graduate software systems

course taught at the UVa in fall 2003 asked students to
write a multithreaded program to simulate the
operation of city bus. Students were given an informal
specification of the program, paraphrased below:

Write a program that takes three inputs:
• n, the number of people,
• C, the maximum number of passengers the

bus can hold (C must be ≤ n), and
• T, the number of trips the bus takes,

and simulates a tour bus transporting passengers
around town. The passengers repeatedly wait to
take a tour of town in the bus, which can hold a
maximum of C passengers. The bus waits until
it has a full load of passengers, and then drives
around town. After finishing a trip, each
passenger gets off the bus and wanders around
before returning to the bus for another trip. The
bus makes up to T trips in a day and then stops.

The assignment required specific input and output
formats, which greatly facilitates automatic testing.
Executing bus -n <people> -C <passengers> -T <trips>
runs the program. Figure 3 shows a typical execution.

5.1. Properties

A correct solution must satisfy several temporal

properties including:
1. The bus always rides with exactly C passengers.
2. No passenger will jump off or on the bus while it

is running.
3. No passenger will request another trip before

getting off the bus.
4. All passengers get off the bus before passengers

for the next trip begin getting on.
We were given eight different submissions. All of

these submissions had been previously evaluated by a
grader both by looking at a design document and
examining the implementation code, and by inspecting
output from test executions. All of the submissions we
used had been considered correct by the grader.

Because the existing outputs are already events of
Bus waiting for trip 1
Passenger 0 gets in
Bus drives around Charlottesville
Passenger 0 gets off
Bus waiting for trip 2
Passenger 1 gets in
Bus drives around Charlottesville
Passenger 1 gets off
Bus stops for the day

Figure 3. Sample output from bus -n 2 -C 1 -T 1

 6

interest to us, there is no need to instrument the
programs. Instead, we mapped the output logs directly
to event sequences. In our mapping, we considered
these five events:

1. wait (“Bus waiting for trip n” log entries)
2. drives (“Bus drives around Charlottesville”)
3. stops (“Bus stops for the day”)
4. gets in (“Passenger n gets in”)
5. gets off (“Passenger n gets off”)

Note that the numbers of the trip and passenger are
ignored in our event mapping. This makes the number
of different types of events to consider small, but
means certain temporal properties cannot be inferred
from our event sequences (such as, “Passenger 3 gets
in” must be followed by “Passenger 3 gets off”). We
describe experiments using an alternate mapping that
preserves passenger numbers at the end of this section.

5.2. Results

We ran each solution 100 times with randomly

generated parameters (20 < C ≤ 40, C+1 ≤ n ≤ 2C, and
1 ≤ T ≤ 10). Our tool inferred exactly the same set of
temporal properties for seven out of the eight
submissions. Table 2 summarizes the results.

The Alternating pattern is inferred for wait and drives
for seven of the programs, but not for the other
program. The strongest property inferred for wait and
drives is MultiEffect which means there can be multiple
drives events for each wait event. Since seven out the
eight programs satisfy the stronger property (as well as
the sample output in Figure 3), we suspect that there is
a bug in the other solution.

It was not obvious to us where the problem is by
simply inspecting the code. So, we examined the
analysis tool output which identified a specific trace in
which wait and drives does not satisfy the Alternating
pattern. This led us to find the bug in the go_for_drive
code shown in Figure 4. At the end of that method, the
bus thread releases the lock. This effectively allows

passenger threads to compete for the lock and to
possibly get in the bus before the bus starts waiting for
passengers and output the Bus waiting for trip message
that corresponds to the wait event. In most cases, the
bus can successfully obtain the lock before it has been
filled to capacity (the condition num_riders < capacity
is true), so it can generate the wait event. However, the
bus can be already full when the bus obtains the lock
(if num_riders ≥ capacity), in which case it does not
produce the wait event. In such situations, wait and
drives do not alternate with each other and the
Alternating pattern does not hold. This is a bug because
it is possible for passengers to get in before the bus is
waiting for trip. One way to fix it would be to use a
conditional variable to synchronize the bus and the
passengers and to make sure the bus generates the wait
event before it broadcasts that condition.

The second property difference found in Table 2 is
for the drives and gets off events. In seven of the
implementations they satisfy the MultiEffect pattern, but
in the other implementation they satisfy CauseFirst.
The CauseFirst property means it is possible for the
bus to drive around Charlottesville more than once
without allowing passengers to get off between these
trips. This is again a bug of missing synchronization
between the bus and the passengers. As shown in
Figure 4, the bus broadcasts that the ride is over to all
passengers after it drives around the city. Then it
should wait for all the passengers to get off before
starting the next trip. If the bus thread runs before any
passengers depart, it will still be full and will begin the
next trip. The third difference, wait and gets off
satisfying CauseFirst instead MultiEffect, was caused by
the same bug as discussed in the second one. Since the
faulty program does not print out the stops event at all,
none of the patterns related to the stops event, which
appeared in the other seven versions, was discovered.

Our original event mapping lost all information
about which passenger each gets in and gets off event
concerned. We also ran our prototype with a different
event mapping in which each “Passenger n gets in” log
entry corresponds to a different event for each value of

void go_for_drive() {
 pthread_mutex_lock (&mutex[mutex_lock]);
 if (num_riders < capacity) {
 printf ("Bus waiting for trip %d\n", num_trips);
 pthread_cond_wait (&cond[cond_shuttle_full],
 &mutex[mutex_lock]);
 }
 printf ("Bus drives around Charlottesville\n");
 sleep (3);
 pthread_cond_broadcast (&cond[cond_ride_over]);
 num_riders = 0;
 num_trips--;
 pthread_mutex_unlock (&mutex[mutex_lock]);
}

Figure 4. Faulty code excerpt

Table 2. Properties inferred
Pattern Correct Versions Faulty Version

Alternating wait→drives

MultiEffect
drives→gets off
wait→gets off
wait→gets in

wait→drives

wait→gets in

MultiCause

drives→stops
gets in→drives
gets in→stops
wait→stops
gets off→stops

gets in→drives

CauseFirst
gets in→gets off

gets in→gets off
drives→gets off
wait→gets off

 7

n, and similarly for “Passenger n gets off”. This
enables us to detect the Alternating pattern between
Passenger i gets in and Passenger i gets off (for all
values of i corresponding to passengers) if this is true.
We reran the analyzer and found that all solutions
satisfy this property. That is, our tool correctly inferred
the property that no passenger will request another trip
before getting off the bus.

5.3. Discussion

Our prototype tool was able to automatically

discover interesting differences in the temporal
properties of the eight programs, revealing flaws in one
of the programs. In addition, it was able to correctly
infer patterns corresponding to three of the four
desirable properties implied by the problem
specification. It was not able to infer the property that
the bus always rides with C passengers. To do this, we
would need to analyze not just the ordering but also the
count of events. Our current property patterns are not
sufficiently expressive to detect this, since they only
deal with pairs of events. We plan to include some
event count analysis in our future work. We intend to
develop a library of event count patterns can be
developed similar to the event ordering patterns we use
now.

6. OpenSSL

Our second experiment considered recent versions

of OpenSSL. The Secure Socket Layer (SSL) protocol
provides secure communication over TCP/UDP using
public key cryptography [13]. We focus on the
handshake protocol that performs authentication and
establishes important cryptic parameters on both client
and server sides before data are transmitted between
them. OpenSSL, written in C, is a widely used open
source implementation of SSL [25]. In our
experiments, we used our tool to automatically infer
the temporal properties of implementation of the
handshake protocol in multiple versions of OpenSSL.

Chaki et. al used MAGIC, a C model checker that
can automatically extract a model from a C program, to
check OpenSSL’s implementation of the handshake
protocol [6]. They manually constructed the properties
to check from the specification and they only checked
version 0.9.6c of OpenSSL.

6.1. SSL handshake protocol

Figure 5 shows the client (left) and server (right)

events in the SSL handshake protocol, which was
derived from the SSL specification [13]. The three
boxes with dashed outlines contain internal states
created in the OpenSSL implementation but not

ClientHello (SR_CLNT_HELLO)

ServerHello (SW_SRVR_HELLO)
Certificate (SW_CERT)

ServerKeyExchange (SW_KEY_EXCH)
CertificateRequest (SW_CERT_REQ)
ServerHelloDone (SW_SRVR_DONE)

Certificate (SR_CERT)
ClientKeyExchange (SR_KEY_EXCH)

CertificateVerify (SR_CERT_VRFY)
Change cipher spec

Finished (SR_FINISHED)

Change cipher spec (SW_CHANGE)
Finished (SW_FINISHED)

BEFORE+ACCEPT

SW_FLUSH
OK

SW_FLUSH

Client Server

Figure 5. SSL handshake protocol states

 8

required in the SSL specification. The remaining boxes
contain sequences of states corresponding to messages
required by the SSL handshake protocol. The server
state in the OpenSSL implementation corresponding to
the beginning of either receiving the corresponding
message from the client or sending the message to the
client for each message is shown in the parentheses.
For example, if the server is in the BEFORE+ACCEPT
state and receives a ClientHello message from a client,
the server enters the SR_CLNT_HELLO state.
Receiving the change cipher spec message is not part
of the handshake process, so that message has no
corresponding state change. It does have a
corresponding state for sending (SW_CHANGE) in the
implementation that is monitored in our experiment.

The handshake begins when the server receives a
ClientHello message from a client. Then the server
sends out five messages consecutively (corresponding
to the states SW_SRVR_HELLO, SW_CERT,
SW_KEY_EXCH, SW_CERT_REQ and SW_SRVR_-
DONE). Next the server enters the SR_CERT state in
which it tries to read certificate from the client
(whether the client sends its certificate or not depends
on if the server requires one in its certificate request
message). Then the server reads consecutively four
messages from the client (certificate, key exchange,
certificate verify, and finished). If no error occurs, the
server sends out its ChangeCipherSpec message and
wraps up the handshake by sending its Finished
message.

As shown in the dash lined box, the server
implemented several additional internal states which
we also monitored. First, the server always initializes
its state to BEFORE+ACCEPT at the beginning of the
handshake. After sending each batch of messages, the
server flushes the socket by entering the SW_FLUSH
state. In the end, OK is another internal state indicating
that the server cleans things up in its side and is ready
for transmitting data with client. A typical event trace
is shown in Figure 6.

In the OpenSSL server implementation, the
handshake process is encapsulated in a method. A
server starts the handshake process by calling the
ssl3_accept method which implements the protocol
state machine as an infinite loop that checks the current

protocol state, sends or receives messages, and
advances the state accordingly. We manually
instrumented this method to monitor 15 states shown in
Figure 5.

6.2. Testing process

Our experiment considered only properties of the

server implementation, but in order to generate test
data we needed to execute it with sample clients. We
are particularly interested in analyzing the server’s
behavior when the client does not follow the protocol
correctly, since this is often a source of errors. The
OpenSSL client implementation starts the handshake
process by calling the ssl3_connect method, which
implements the protocol state machine in a similar
fashion as ssl3_accept. We modified ssl3_connect so
that after every state it may either behave correctly or
enter some randomly selected state. For example,
suppose the current state is A, after finishing task X, the
state should be changed to B. In our modified version,
the state would correctly transition to B with 95%
probability, but with 5% probability would transition
into a randomly selected different state instead. Our
purpose is to create a client that sometimes behaves
abnormally. Note that in most SSL server deploy-
ments, it is important how the server behaves even
when clients misbehave (usually this means reporting
an error and terminating the handshake).

We used as test harness a simple OpenSSL-based
implementation of HTTPS protocol: wclient and
wserver (version 20020110) developed by Eric
Rescoria [28]. We added one more command-line
option for wclient so that users can seed the random
number generator with a specific integer to enable
reproducibility of the experiments. We also modified
wserver so that it only accepts one connection and exits
after that. We also added handler functions for
SIGSEGV and SIGPIPE signals which we observed in
both client and server in our initial tryout. Our handlers
simply printed out the name of corresponding signals
and exited.

We obtained traces for six versions of OpenSSL:
0.9.6, 0.9.7, 0.9.7a, 0.9.7b, 0.9.7c, and 0.9.7d (released
17 March 2004, the latest version available as of 25
April 2004). For each version of OpenSSL, we ran
both wclient and wserver in tandem 1000 times on two
Redhat Linux machines and obtained 1000 traces for
the server. For each execution, the client random
generator was seeded with an integer from 1 to 1000 to
obtain different abnormal client behaviors. We used the
default keys and certificates supplied in the example
program’s package and the default choice of cryptic
algorithm. We wrote shell scripts to automate the
testing process. In the early stages of our experiment,

BEFORE+ACCEPT→SR_CLNT_HELLO→
SW_SRVR_HELLO→SW_CERT→
SW_KEY_EXCH→SW_CERT_REQ→
SW_SRVR_DONE→SR_CERT→
SR_KEY_EXCH→SR_CERT_VRFY→
SR_FINISHED_SW_CHANGE→
SW_FINISHED→OK

Figure 6. A server event trace of normal
handshake process

 9

we observed that the server and client may deadlock
each other (i.e. both waiting for message from the
other). Upon encountering such situations, our client
shell script would just kill the client process.

6.3. Results

First, we applied our tool to all 1000 traces. Version

0.9.7 generates 38 different types of events. It took 197
seconds to analyze the 1000 traces for this version on a
laptop with 1.3 GHz Pentium-M CPU. The number of
different types of events in the rest versions varies
slightly from 36 to 38. Then we partitioned the traces
into four groups: 1) correct client (i.e. the client did not
change to any unintended state); 2) faulty client (i.e.
the client changed its state to some unintended one at
least once) but no errors generated in traces; 3)
segmentation fault; 4) faulty client generating errors
other than segmentation faults. We applied our tool
separately to each group of traces.
All traces

Table 3 highlights three key differences among the
Alternating patterns detected for all versions. First, the
Alternating pattern between SR_KEY_EXCH and
SR_CERT_VRFY (receiving key exchange message,
and certificate verify message) appeared in all versions
up to 0.9.7b, but did not appear in 0.9.7c and 0.9.7d.
This is a result of a change added since version 0.9.7c
to make the implementation conform to the SSL 3.0
specification (documented in the change log of version
0.9.7c [25]). Starting from version 0.9.7c, a server does
not process any certificate message it receives from a
client if it has not requested authentication of client.
The condition of whether the server requests client
authentication is recorded in a variable, which can be
set using command line option. The server checks this
variable to decide what its next state is after entering
the receiving certificate state (SR_CERT). If the server
does not require client authentication as in our
experiment, it directly advances to receiving key
exchange state (SR_KEY_EXCH). Otherwise, it first
reads and examines the client’s certificate before
changing to that state. Our faulty client may send its
certificate even if the server has not requested one,
OpenSSL server before 0.9.7c noticed this and stopped
handshake immediately: the SR_KEY_EXCH state was
not entered at all. Server versions 0.9.7c and 0.9.7d
ignored the client’s certificate, continued to change its

state to SR_KEY_EXCH, and then stopped the
handshake because of the wrong type of message the
client sends (it expected a key exchange message but
got a certificate message). So, in versions 0.9.7c and
0.9.7d, such traces ended up with a SR_KEY_EXCH
event without a following SR_CERT_VRFY event. In
contrast, such pattern was preserved in earlier versions.
Hence, our tool successfully exposed an important
change made to the implementation of handshake
protocol in version 0.9.7c.

In the second row, we found that SW_CERT and
SW_KEY_EXCH satisfy the Alternating property for all
versions except 0.9.6. Investigating the traces showed
sometimes, the server crashed after entering SW_CERT
state with a SIGPIPE signal. This is apparently a
critical bug in earlier version of OpenSSL which has
been fixed in later ones.

In the third row, we found that only version 0.9.7
has the Alternating property between the
SW_SRVR_DONE and SR_CERT events. Finding the
problem turned out to be more tricky than we expected
since the result appeared to be non-deterministic when
we ran the server on a single test. Sometimes the
SR_CERT event was generated, but sometimes it was
not. This happened in all versions of server. Using the
program’s log messages we were able to find the cause,
which happened to be a race condition. When the
client changes to a false state and receives an
‘unexpected’ message from the server, it tries to send
an alert message to the server to stop the handshake
process. After that, the client disconnects the socket
with server. If the client disconnects the socket while
the server is sending messages, the server will get a
sending error message. The server has not and will not
get the alert message from the client now because the
socket has been disconnected. The server will only be
able to get the alert message if it has already finished
sending messages to client and entered a receiving
state. In our experiment, this receiving state is
SR_CERT. If the server is able to enter this state before
the client alert message is sent, this event and an alert
message will both be printed out at the server. So, there
is no guarantee in these implementations that an alert
message will be received after sending. This important
design decision was not documented in the
specification and our approach successfully discovered
it. In addition, this experience reveals the importance
in testing under a variety of conditions. The scheduling

Table 3. Alternating properties satisfied by six versions of OpenSSL
 0.9.6 0.9.7 0.9.7a 0.9.7b 0.9.7c 0.9.7d

SR_KEY_EXCH→SR_CERT_VRFY
SW_CERT→SW_KEY_EXCH

SW_SRVR_DONE→SR_CERT

 10

decisions made by the operating system influence the
temporal properties of multithreaded programs.
Ideally, the test suite would be run using a scheduler
that could be configured to produce a variety of
schedules.
Correct clients

We detected the event chain shown in Figure 6 by
analyzing the traces of server in which the client
behaved correctly (that is, the 5% probability of
switching to a random state was never selected).
Although the number of such traces varies slightly
among different versions, all versions agreed on the
same pattern. This result is desirable because the
pattern in Figure 6 conforms exactly to the SSL
specification as discussed earlier. This demonstrates
that the server implementations of the handshake
protocol conform to the specification at the state-level
along the path of OpenSSL’s evolution. The only
discrepancies between behaviors from different
versions of the server occur when the client does not
follow the protocol correctly.
Faulty clients without errors generated

Next we consider the set of traces corresponding to
faulty clients that (surprisingly) did not generate any
error event on either the server or client. These traces
recorded behavior from clients that jumped to a random
state at some point during their execution, but did not
lead to either the client or server reporting an error or
failing to complete the handshake process.

Again all six versions agreed on the two event
chains shown in Figure 7, though the number of such
traces varies a little bit. These two chains closely
follow the SSL specification about the normal
handshake behavior of a server implementation.
However, there are a few key distinctions between the
patterns in Figure 6 and Figure 7.

We found that two Alternating properties that are
present in Figure 6 do not appear in Figure 7. Instead,
those event pairs had weaker patterns. First, SR_CERT
and SR_KEY_EXCH satisfied the MultiCause pattern.
Second, BEFORE+ACCEPT and SR_CLNT_HELLO
satisfied the MultiEffect pattern. Figure 8 shows a trace
that violated our expected Alternating properties. The
key distinction between this trace and the traces
produced using correctly behaving clients is that the

eight-event sequence appears twice. Figure 9 shows the
corresponding client events. The faulty client falsely
changed its state to renegotiate (an internal state in the
implementation of the client, not shown in Figure 4
since it is not part of the normal handshake process)
instead of sending certificate (i.e. CW_CERT) after
reading the five messages from server (ServerHello,
Certificate, ServerKeyExchange, CertificateRequest,
and ServerHelloDone). Then, the client started the
handshake again by sending the client hello message
which caused the server to repeat the hello stage of the
handshake again. Although the handshake returned to
normal and ended successfully after both parties
repeated the hello stage twice, we found that the
handshake can still be successful no matter how many
times the hello stage is repeated. If a client always
changes its state to renegotiate after receiving the
server done message, the server and the client will
enter an infinite loop.

Suspecting this could be exploited in a denial of
service attack against an OpenSSL server, we reported
it to the OpenSSL developers. They argued that it did
not indicate a serious DOS vulnerability because the
server loops infinitely only when an ill-behaved client
keeps sending renegotiation requests. This is similar to
letting too many clients attempt to connect to a server,
which is a scenario that cannot really be prevented at
the server.

Although the property is not a real vulnerability in
OpenSSL server, it does reveal an interesting aspect of
the implementation’s behavior which is not
documented in the SSL specification and certainly not
obvious from the inspecting the code.
Segmentation fault

BEFORE+CONNECT, OK+CONNECT,
CW_CLNT_HELLO, CR_SRVR_HELLO,CR_CERT,
CR_KEY_EXCH, CR_CERT_REQ,CR_SRVR_DONE,
RENEGOTIATE,
BEFORE, CONNECT, BEFORE+CONNECT,
OK+CONNECT, CW_CLNT_HELLO,
CR_SRVR_HELLO, CR_CERT, CR_KEY_EXCH,
CR_CERT_REQ, CR_SRVR_DONE,
CW_KEY_EXCH, CW_CHANGE, CW_FINISHED,
CW_FLUSH, CR_FINISHED, OK

Figure 9. Client trace corresponding to the
server trace shown in Figure 7

BEFORE+ACCEPT, OK+ACCEPT,
(SR_CLNT_HELLO, SW_SRVR_HELLO, SW_CERT,
SW_KEY_EXCH, SW_CERT_REQ, SW_SRVR_DONE,
SW_FLUSH,SR_CERT,)2
SR_KEY_EXCH, SR_CERT_VRFY, SR_FINISHED,
SW_CHANGE, SW_FINISHED, SW_FLUSH, OK

Figure 8. Trace generated with a faulty client

SR_CLNT_HELLO→SW_SRVR_HELLO→
SW_CERT→SW_KEY_EXCH→
SW_CERT_REQ→SW_SRVR_DONE→SR_CERT

BEFORE+ACCEPT→SR_KEY_EXCH→
SR_CERT_VRFY→SR_FINISHED→
SW_CHANGE→SW_FINISHED→OK

Figure 7. Inferred alternating chains for non-
error faulty clients

 11

There are three traces that have segmentation fault
in all servers prior to 0.9.7d. They resulted from the
same faulty client, which sent out a change_cip-
her_spec instead of the normal client hello message at
the very beginning of the handshake process. We
examined the change log for 0.9.7d and found that this
is due to a critical update [26], where a potential null-
pointer assignment in the do_change_cipher_spec()
function can cause the earlier versions of server to
crash. Although this finding is not a result of
comparing the temporal properties detected, it does
show that using randomly behaving client to test server
is powerful enough to uncover important problems.
Faulty client with other types of error

All servers agreed on the temporal properties
inferred for traces within this category. This did not
lead us to detect any interesting problems, but did
confirm that the server versions handled misbehaving
clients consistently.

6.4. Discussion

Our results support both hypotheses stated in

Section 4.2. Using the temporal properties inferred for
different program version we were able to recover the
interesting temporal behaviors of the handshake
protocol. Further, our approach successfully identified
temporal property differences across OpenSSL
versions that would be useful for understanding the
behavioral differences between those implementations.
In particular, we found that all implementations
preserved the inferred temporal properties for well
behaved clients, but that later versions of OpenSSL
handled misbehaving clients in ways that preserved
properties that were not preserved by earlier
implementations when clients misbehaved. We believe
knowledge of these properties, and the ability to
automatically test them, will be useful to maintainers of
OpenSSL.

However, we have not yet been able to successfully
extract useful differences from the traces produced
with faulty clients that produced errors. Because there
are a large number of different types of errors, each of
which appeared relatively infrequently, the traces
appeared to be very irregular. One possible way to
handle such situations is first partitioning the traces
according to different types of error events, then
applying our tool to the corresponding subset of traces.
In this experiment, we only compared the temporal
properties of multiple versions inferred from the same
type of traces. Another possibility is to compare the
temporal properties of the same version inferred from
different types of traces. In addition, we may need to
expand our set of property patterns to include three-
event patterns to deal with error cases by allowing

disjunction patterns. We plan to explore this further in
future work.

7. Conclusion

We presented a prototype tool that automatically

infers temporal properties of programs by analyzing
test execution traces, and argued that such a tool can be
a useful asset in reliable program evolution. Our
experimental results demonstrate that our approach is
able to automatically determine important temporal
properties and identify differences that reveal
interesting properties of programs.

The results from our two experiments give us reason
to be optimistic that our approach can be a useful tool
to aid program evolution. However, further work
needs to be done before the approach can scale to large
programs with many events and long execution traces.
We plan to evaluate our approach on more systems
where temporal properties are especially important
including reactive systems, and embedded systems.
Many parts of our approach, which should be
automated, are still done manually including program
instrumentation and identification of interesting results.
For large systems, we need to selectively monitor
interesting events to make our approach scale. An open
problem is developing heuristics for automatically
identifying such events. We will investigate this
important question in our future research. Our current
patterns are not able to express certain properties that
are important for software reliability. We plan to
develop some more advanced ones including patterns
involving event counts to capture program’s temporal
semantics more precisely.

The effectiveness of any dynamic analysis depends
on the comprehensiveness of the executions of a target
program it examines. It is very important to understand
how the quality of the test suite could impact the result
of our analysis and what testing approaches are most
effective for our analysis. We plan to conduct research
to answer these questions.

In these experiments, we focused on program
evolution, but our tool has other applications. One
possibility is using it to produce input to a model
checker. Then, we can employ a model checker to
automatically check the temporal properties
discovered. This can not only give us more confidence
in the inference results, but also help undetected subtle
problems by leveraging the existing sophisticated
verification techniques.

Acknowledgments

This work has been funded in part by the National

Science Foundation through NSF CAREER (CCR-

 12

0092945) and NSF ITR (EIA-0205327) grants. We
thank Marty Humphrey for providing the student
programs used in the first experiment. We also thank
Chengdu Huang for help with OpenSSL.

References
[1] G. Ammons, R. Bodik, and J. R. Larus. Mining

specifications. ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, January 2002

[2] G. Ammons, D. Mandelin, R. Bodik, and J. R. Larus.
Debugging temporal specifications with concept analysis.
SIGPLAN Conference on Programming Language
Design and Implementation, June 2003.

[3] T. Ball and S. K. Rajamani. Automatically validating
temporal safety properties of interfaces. 8th International
SPIN Workshop on Model Checking of Software,
May 2001.

[4] D. Binkley, R. Capellini, L. Raszewski, C. Smith. An
implementation of and experiment with semantic
differencing. 2001 IEEE International Conference on
Software Maintenance, Nov 2001.

[5] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and
Hwang. Symbolic model checking: 1020 states and
beyond. 4th Annual Symposium on Logic in Computer
Science, June 1990.

[6] S. Chaki, E. Clarke, A. Groce, S. Jha, and H. Veith.
Modular verification of software components in C. 25th
International Conference on Software Engineering,
May 2003.

[7] J. E. Cook, Z. Du, C. Liu, and A. L. Wolf. Discovering
Models of Behavior for Concurrent Workflows.
Computers in Industry, pp. 297-319, Vol. 53, No. 3,
April 2004.

[8] J. Corbett, M. Dwyer, J. Hatcliff, S. Laubach, C.
Pasareanu, Robby, H. Zheng. Bandera: extracting finite-
state models from Java source code. 22nd International
Conference on Software Engineering, June 2000.

[9] J. Corbett, M. Dwyer, and J. Hatcliff, and Robby.
Expressing checkable properties of dynamic systems: the
Bandera specification language. KSU CIS Technical
Report 2001-04, Kansas State University, 2001.

[10] T. Cormen, C. Leiserson and R. Rivest. Introduction to
Algorithm, MIT Press, 1990.

[11] M. Dwyer, G. Avrunin, and J. Corbett. Patterns in
property specifications for finite-state verification. 21st
International Conference on Software Engineering,
May 1999.

[12] M. Ernst, J. Cockrell, W. Griswold, and D. Notkin.
Dynamically discovering likely program invariants to
support program evolution. IEEE Transactions on
Software Engineering, February 2001.

[13] A. O. Freier, P. Karlton, and P. C. Kocher. The SSL
protocol, version 3.0. http://wp.netscape.com/eng/ssl3/.

[14] K. Havelund and T. Pressburger. Model checking Java
programs using Java PathFinder. International Journal
on Software Tools for Technology Transfer,
September 1999.

[15] K. Havelund. Using runtime analysis to guide model
checking of Java programs. 7th International SPIN

Workshop on Model Checking of Software,
August/September 2000.

[16] G. J. Holzmann. The model checker Spin. IEEE
Transactions on Software Engineering, May 1997.

[17] G. J. Holzmann. The logic of bugs. 10th ACM SIGSOFT
International Symposium on Foundations of Software
Engineering, November 2002.

[18] S. Horwitz. Identifying the semantic and textual
differences between two versions of a program.
SIGPLAN Conference on Programming Language
Design and Implementation, June 1990.

[19] S. Horwitz and T. Reps. The Use of Program
Dependence Graphs in Software Engineering. 14th
International Conference on Software Engineering, 1994.

[20] Algorithm::Huffman module on CPAN.
http://search.cpan.org/~bigj/Algorithm-Huffman-0.09/
Huffman.pm

[21] D. Jackson and D. Ladd. Semantic diff: a tool for
summarizing the effects of modifications. International
Conference on Software Maintenance, October 1994.

[22] W. Miller and E. W. Myers. A File Comparison
Program. Software – Practice and Experience, Vol. 15
No. 11, 1985.

[23] J. W. Nimmer and M. D. Ernst. Invariant inference for
static checking: an empirical evaluation. ACM SIGSOFT
Symposium on the Foundations of Software Engineering,
November 2002.

[24] K. M. Olender and L. J. Osterweil. Cecil: a sequencing
constraint language for automatic static analysis
generation. IEEE Transactions on Software Engineering,
March 1990.

[25] OpenSSL. http://www.openssl.org/
[26] OpenSSL security advisory, 17 March 2004.

http://www.openssl.org/news/secadv_20040317.txt
[27] A. Pnueli. The temporal logic of programs. 18th Annual

Symposium on Foundations of Computer Science,
October/November 1977.

[28] E. Rescorla. An introduction to OpenSSL programming
(part 1). http://www.rtfm.com/ openssl-examples/, October
2001.

[29] J. Whaley, M. C. Martin, and M. S. Lam. Automatic
extraction of object-oriented component interfaces.
International Symposium on Software Testing and
Analysis, July 2002.

[30] J. Yang and D. Evans. Dynamically Inferring Temporal
Properties. ACM SIGPLAN-SIGSOFT Workshop on
Program Analysis for Software Tools and Engineering,
June 2004.

