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Abstract 

 
During development and testing, changes made to a 

system to repair a detected fault can often inject a new 
fault into the code base.  These injected faults may not be 
in the same files that were just changed, since the effects 
of a change in the code base can have ramifications in 
other parts of the system.  We propose a methodology for 
determining the effect of a change and then prioritizing 
regression test cases by gathering software change 
records and analyzing them through singular value 
decomposition.  This methodology generates clusters of 
files that historically tend to change together.  Combining 
these clusters with test case information yields a matrix 
that can be multiplied by a vector representing a new 
system modification to create a prioritized list of test 
cases.  We performed a post hoc case study using this 
technique with three minor releases of a software product 
at IBM. We found that our methodology suggested 
additional regression tests in 50% of test runs and that 
the highest-priority suggested test found an additional 
fault 60% of the time. 

1. Introduction 
 

During development and testing, changes made to a 
system to repair a detected fault can often inject a new 
fault into the code base.  These injected faults may or 
may not be in the same file(s) that were just changed, 
since the effects of a change in the code base can have 
ramifications in other parts of the system.  New faults 
introduced during testing and maintenance can be isolated 
by impact analysis and regression testing techniques.  
Impact analysis and regression testing techniques exist 
that find changes in a system based upon a modification 
[12, 16].  However, techniques that utilize call graphs or 
other dynamic means can be computationally intensive, 
and may not be cost-effective for use in industry [18].  
Often regression test selection techniques do not include 
files that are not part of the source code, such as 
properties files, help files, and configuration files.  
Additionally, current impact analysis and regression 
techniques are based upon semantic analysis and may not 

consider trends in actual usage and/or the fault-proneness 
of the set of files impacted [14, 15].  

Insight into the injected faults due to fault removal 
techniques can be gathered from the information 
generated during the development process itself.  During 
development, programming teams will produce a variety 
of software development artifacts.  A software 
development artifact is an intermediate or final product 
that is the result or by-product of software development 
[9, 10].  Development artifacts can also provide 
information about underlying structures within a system 
that would normally not be apparent [2, 3, 7, 11, 24, 25].   

Change record artifacts can show how files interact 
with one another or how a system is evolving during 
development by examining what areas of the system 
change together and where new sets of changes are 
emerging [2, 3].  Change records can be used to identify 
association clusters in a software system.  An association 
cluster consists of a set of files that exhibit a specific 
relationship with the other files in the cluster with regards 
to particular development artifact [3].  If a number of files 
repeatedly change together to fix a set of faults, then 
those files would be identified as an association cluster.  
Association clusters are based upon historical patterns in 
the composition of revisions. We use singular value 
decomposition (SVD) [5] on a matrix of change record 
date to generate the association clusters. 

The methodology proposed in this research is called 
SVD-Based Regression Test Prioritization (SRTP).  
SRTP provides a framework for gathering change records 
from testing and field failures, generating association 
clusters, and leveraging those clusters to guide regression 
test prioritization.  Our goal is to provide a methodology 
based upon change records and singular value 
decomposition that can prioritize regression tests to 
reduce the number of regression faults released to the 
field. To examine the efficacy of our technique, we 
conducted an industrial case study with a project at IBM.  
Change records initiated from fault removal efforts were 
gathered on three consecutive minor releases of an IBM 
product.  A minor release is defined as an “update and 
fix” pack to a final release of a product. 

The rest of this paper is organized as follows.  Section 
2 provides information on background and related work.  
Section 3 describes the SRTP methodology in detail, 



while Section 4 describes our case study at IBM.  Section 
5 presents a theoretical comparison with other techniques, 
and Section 6 gives a summary of this work.   
 

2. Related Work 
 

In this section, we will discuss related research and 
background literature in regression test selection, uses of 
clustering change records, and the singular value 
decomposition.   

2.1 Regression test selection 
 

Regression testing is the process of retesting a system 
or component to verify that changes made to the system 
code have not caused unintended effects and that the 
system is still compliant with the specified requirements 
[1].  The goal of regression test selection (RTS) 
techniques is to isolate the tests most likely to uncover 
injected faults after a system modification.  The simplest 
RTS technique is the retest-all strategy, wherein the 
entire test suite is exercised.  However, techniques have 
been developed that can minimize the set of tests that 
need to be rerun while still maintaining the overall 
effectiveness of a retest-all strategy [16].  A RTS strategy 
is considered safe if the subset of tests identified by that 
strategy contain all the test cases from the test suite 
capable of finding faults in the system based upon a 
system modification [22].   

One safe RTS strategy was developed by Rothermel 
and Harrold, called SelectTests [16].  Their RTS 
strategy analyzes changes in the control dependence 
graph of the software system and changes to the test suite 
to determine the best subset of test cases.  Rothermel et 
al. have shown that this technique is considered safe, 
identifying tests that cover not only unchanged lines but 
also newly added lines of code.  Further studies from 
Rothermel have shown that regression test selection and 
test case prioritization in general can be effective at 
reducing the amount of work needed to be done in testing 
after a system modification, but that the cost-
effectiveness of these techniques can vary [18, 19]. 

One aspect of the technique developed by Rothermel et 
al. is that it requires source code to be effective.  
However, faults can be injected into non-source files in a 
system that might not be detected through a technique 
that solely examines source code.  Consider a system that 
utilizes static properties files that are read in by different 
modules within the system.  If a fault is injected into 
these properties files, there would be no reflection of this 
change in the source code, yet the fault could be as severe 
as any fault in the source itself [8]. 

Our technique adds to the body of knowledge of RTS 
strategies by addressing the problem of test selection 
when non-source files are involved.  For example, 35% of 
all faults involved in one system examined in our study 
contained a non-source file.  Further, we are trying to 
improve the overall cost-effectiveness of RTS strategies 
by using historical trends over time as opposed to 
processing dynamic call information. 

2.2 Clustering files based upon change records 
 

Research is currently being performed in gathering and 
analyzing data from source control systems to identify 
core components in a software system for use in impact 
analysis [2, 3, 7, 11, 24, 25].  Ren et al. has created an 
Eclipse plug-in to predict the impact of code changes for 
developers to use in-process through white-box 
techniques [14].  Their plug-in, called Chianti, works by 
capturing atomic-level changes in the code base.  
Dependencies are then calculated between these atomic 
changes to predict what other areas of the code might be 
affected by a change through the use of call graphs.  Ren 
performed two case studies on a 100 KLOC system and 
found that Chianti was able to reduce the number of 
regression tests depending on the degree of the change 
implemented.  The primary difference between the impact 
analysis technique used in Chianti and our technique is 
that Chianti is based upon semantically-based methods in 
which all associations are created equal regardless of 
actual usage.  The association clusters created in our 
technique are based upon historical data and, therefore, 
might be better for prioritization.   

While Ren’s works focused on guiding developer 
efforts, other research uses the same sets of change 
records to improve program comprehension.  Further 
work expanded on the idea of gathering change records to 
isolate clusters of files within a software system to drive 
program comprehension.  Beyer and Noack’s work 
analyzed clusters of files using a co-change graph to plot 
files onto a two- or three-dimensional graph using an 
energy-based graph layout [3].  Files that contained more 
edges between them were closer together on the graph, 
thus creating clusters of files.  These clusters of files 
could be directly identified and related to functional 
requirements or third party components within the system 
[3].  Other research by Gall also generated association 
clusters of files within a system for program 
comprehension [7].  His method used a set of 
commonalities that could be detected from change logs 
(i.e. files that were edited on the same day by the same 
person) to create his sets of sub-modules.  



 

2.3 Singular value decomposition 
 

Singular value decomposition (SVD) is a linear algebra 
technique that decomposes a given matrix into three 
component matrices [5]:  (1) the left singular vectors; (2) 
a set of singular values; and (3) and right singular vectors.  
The two matrices that are made up of singular vectors 
provide information about the structure of the original 
matrix.  The singular values describe the strength of the 
given components of the original matrix. The SVD 
theorem [5] states that given a matrix M, then there exists 
a decomposition of M such that TUSVM = . 

The SVD of a matrix can also be described 
geometrically.  The SVD shows that the values of any 
matrix M can be reconstructed by a rotation (U), followed 
by increasing the matrix values (S), followed by another 
rotation (V) [23].  For example, if M represented 
coordinates that generated a three-dimensional shape, 
then that shape could be constructed from the rotational 
information in U and V, along with stretching the shape 
out to its proper size with the information in S [23].  This 
type of decomposition can be important and useful in that 
the rotational matrices isolate the key components of the 
original matrix, finding relationships between the various 
data points, while the strength matrix indicates which of 
the key components illuminated in the rotational matrices 
are the most important [5, 23].  In our research, this core 
idea of isolating key components of the original matrix is 
the basis for using the SVD with SRTP.  When the matrix 
is comprised of change records, fault information, or 
some other data from the development process, these key 
components highlight underlying structures in the code 
base. 

Osinski et al. created a clustering algorithm based upon 
SVD to improve search queries on a set of documents 
[13].  They built an original matrix based upon keywords 
in the document set.  The SVD was performed on this 
matrix to generate clusters of documents that were similar 
based on their keywords.  Enough clusters were gathered 
to account for 90% of the variability of the original 
matrix, with the remaining clusters discarded as signal 
noise [13].  The documents were then assigned to clusters 
based upon which cluster they had the closest association 
with.  Anecdotal evidence from users who were presented 
with the clusters generated with this study found that 70-
80% of the clusters were useful and over 75% of 
identified cluster labels were correct [13]. 

Using SVD to find association clusters amongst files 
differs from other forms of clustering in that the 
association clusters generated can overlap.  Files may be 
related to different parts of the system in differing degrees 
of strength.  Dickinson et al. investigated the use of 
various clustering techniques to create better sample sets 

from which to identify failures [6].  Research with several 
Java and C systems showed that certain techniques could 
cluster failures together and was more effective than 
random sampling for failures.  Our technique is similar in 
purpose, in that the SVD will weigh more heavily those 
files that are failure-prone in the clustering process, thus 
making the detection of failures more likely. 

3. SVD-based Regression Test Prioritization 
 

SRTP provides a methodology that derives associations 
using SVD based upon a set of change records from 
testing and field failures.  These association clusters of 
files portray an underlying structure in the system 
indicating how files tend to be executed, tested, and 
changed together [20].  SVD is used to leverage its ability 
to illuminate underlying structures in a data set in which 
the data could be associated in multiple ways.  In this 
section, we will describe the process of SRTP, which 
includes deriving the association clusters from change 
records and producing a reduced set of regression tests.  
Figure 1 outlines the steps of the SRTP method that will 
be further described in the remaining subsections.  
 

 
1  Create matrix M where the values in the 
matrix indicate the number of times two 
files have changed together. 
2  Create matrix T where the values in the 
matrix indicate whether a file is affected 
by a particular fault/test case. 
3  [U, S, V] = svd(M); 
4  for i:size of U 
5    Gather cluster i information 
6    for j:size of U 
7       if |U(j, i)| > threshold 
8         Place element of cluster i into R 
9       end 
10    end 
11 end 
12 Y = (R * R’) * T; 
13 Represent new system modification x as a 
vector in which the value indicates whether 
the file has been affected in this change. 
14 Y * x yields the prioritization of each 
test case based upon the similarity of the 
new system modification x to previous 
changes in the system. 

Figure 1.  Algorithm for SVD-based RTP. 
 

3.1 Identifying data sources  
 

Source control systems are the primary source for 
gathering change records.  When a developer checks a file 
in to a source control system, the system typically records 
the time of the check-in along with information about the 



developer and the nature of the change.  Individual 
changes are often linked together into revisions, either 
through a specific mechanism in the source control 
system that records that information or through the 
examination of change record check-in information.  
With information regarding revisions, we are able to 
ascertain how files change together.   

 Some more complex source control systems are also 
integrated with a fault tracking system.  With these more 
complex systems, revisions can be associated directly 
with the fault record that the changes are addressing, 
providing detail about how revisions are linked together.  
Information from fault tracking systems allows us to 
isolate revisions to those made under specific 
circumstances.  For example, changes derived from faults 
found during system test could be compared to changes 
derived from field failures discovered by customers.   

3.2 Gathering software development artifact data 
 

After appropriate data sources have been identified, an 
analysis matrix can be generated that contains the systems 
files along each axis.  The values within the analysis 
matrix show how the files are connected through change 
records.  For illustrative purposes on how to build the 
analysis matrix, we will use a set of sample data to 
generate this analysis matrix as an example.  Table 1 
shows a small sample of the set of the change records that 
were used to create our example analysis matrix.  This 
example uses a small system consisting of five files.   

 
Table 1.  Sample Change Record Information. 

Test Case 
ID 

Fault ID Revision ID Files 
Changed 

T1 A1 988 1 
T2 A2 989 2, 3 
T3 B1 990 4, 5 
T3 B2 991 4, 5 
T1 B3 992 1, 2 
T4 C1 993 2, 3 
… … … … 
 
We have built an example analysis matrix M, shown 
below in Equation 2.  The values in the matrix represent 
the number of times that each file appeared in a revision 
with another file.  Thus, File 2 has appeared in a revision 
10 times together with File 1, 21 times together with File 
3, and 0 times by itself (since M(2,2) = M(2,1) + M(2,3)).  
Similarly, File 3 has changed 21 times with File 2 and 3 
times by itself.   
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M
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                               (2) 

 
Upon initial examination of this matrix, we note that Files 
4 and 5 change together or by themselves.  Based on this, 
it appears that Files 4 and 5 are strongly linked in 
isolation from the rest of the system.  Similarly, Files 1, 2, 
and 3 are also linked, with Files 2 and 3 having the 
strongest bond of the three.   

3.3 Perform the singular value decomposition 
 

To determine the strength of the associations between 
files and to generate the association clusters, we perform 
a SVD of this matrix.  The strength of the association is 
determined by the frequency that the files changed 
together.  A SVD of M provides the following matrices, 
shown in Equations 3 and 4: 
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                          (4) 

 
The U and V matrices provide information as to the 

structure of the association clusters.  The singular values 
from the S matrix represent the amount of variability each 
association cluster contributes to the original analysis 
matrix.  Note that U and V are equal, due to M being a 
symmetric matrix.  

A cluster’s strength, represented by the size of the 
singular value coupled with it, indicates the amount of 
variability that the association cluster provides to the 
original analysis matrix [23].  Dividing a cluster’s 
singular value by the sum of all the singular values 
provides the percentage of how representative the cluster 
is of the original matrix.  In this example, a high singular 
value indicates that that association cluster is more 
prominent in the analysis matrix, due to a greater number 
of changes that have occurred to that set of files.  A high 
singular value could be indicative of a particularly 



problematic section of code or a new feature that has just 
been introduced into the system and is experiencing its 
first rigorous testing. 

3.4 Gather the association clusters 
 

The values in the U matrix correspond to the 
composition of each association cluster.  In this example, 
there are five association clusters because the rank of M is 
five.  The first column of U, representing the structure of 
the first association cluster, is coupled with the first 
singular value in S, representing the strength of that 
association cluster.  Since it is coupled with the largest 
singular value, the first association cluster represents the 
greatest amount of variability in the original analysis 
matrix and is the most prominent association cluster.  
From the U matrix, we see that the first association 
cluster is comprised of Files 1, 2, and 3, indicated by the 
fact that the three files all have values with a similar sign.   
Further, each of these values has a larger magnitude than 
.1, the threshold we used in our research.  A threshold is 
used when selecting cluster members so that only files 
with a strong association to the other files are included in 
the cluster.  When a file’s value is greater than the 
threshold, we can add that value to the matrix R, which 
will contain the final set of clusters.  This is similar to the 
threshold that Osinski used in his algorithm [13].  In the 
third cluster, we see that File 1 is its own cluster that can, 
at times, change without Files 2 and 3.  So, in effect, we 
get two associations out of the third cluster, one with File 
1 by itself and one with Files 2 and 3 together.  Matrix R 
from this U matrix is shown in Equation 5: 
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               C1 C2 C3 C4 C5C6 C7 C8

R =

F1
F2
F3
F4
F5

.29 0 .9 0 .31 0 0 0

.76 0 0 .02 0 .56 0 0
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 
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        (5) 

 
Note that the values in each association cluster’s 

column vector represents the degree to which that file is 
likely to change in that cluster.  In this way, each file is 
weighted within that association cluster as to its degree of 
participation.  For example, the first association cluster is 
primarily composed of File 2 and File 3 due to their 
higher values.  File 1 is a minor participant in this 
association cluster.  If we reexamine the original analysis 
matrix M, we can see the strong correlation between Files 
2 and 3 with a somewhat looser correlation with File 1, 
since these files only tend to change together and not at 
all with Files 4 and 5.  The association cluster in the 
second column portrays the next most significant cluster, 
comprised of Files 4 and 5. 

The singular values of these clusters found in the S 
matrix provide some indication as to how they should be 
analyzed.  The first cluster represents 45% of the overall 
variability in the matrix, which can be determined by 
dividing the first singular value by the sum of all the 
singular values. Further, the third and fourth clusters 
collectively represent 22% (since these two clusters were 
split apart from the values in the third left singular vector) 
and the fifth and sixth represents 4%.  These percentages 
show that the first cluster defines the majority of the 
information regarding these files.  Clusters three, four, 
five, and six are, in effect, sub-clusters of the first cluster 
because they contain a similar set of files.  At this step in 
our technique, the matrix R can provide information about 
the likelihood of a change in an association cluster based 
upon previous change information.  

This technique is similar to the cluster rank algorithm 
used by Osinski et al. in their SVD-based search term 
clustering algorithm [13].  Osinski multiplied their 
document matrix by a modified U matrix from the SVD 
to derive the impact that each search term had on a given 
document.  In this fashion, the values from the result 
vector were used to assign a document to its closest-
matching search term cluster [13]. 

3.5 Generate reduced test suite 
 

The next step is to use the current revisions in the 
system to determine how each test case in the system is 
related to a given association cluster.  Using data from the 
source control and fault management system, we can map 
a revision x directly to a particular fault in a one-to-one 
relationship.  To accomplish this analysis, we can take the 
set of all revisions in the source control system and create 
a matrix T, with each row indicating a revision and each 
column representing a particular file.  An example matrix 
T has been constructed from the information in Table 1 in 
Equation 6. 
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           F1 2 3 4 5

T =

T1
T2
T3
T4
T5
T6

1 0 0 0 0
0 1 1 0 0
0 0 0 1 1
0 0 0 1 1
1 1 0 0 0
0 1 1 0 0
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                                            (6) 

 
Since a revision is opened by a single distinct fault, we 
can say that each row represents a specific fault found in 
the system.  If each test case created one fault, the matrix 
T would also represent test case traceability to the files 
affected by those tests.  However, in all likelihood, a test 
case can find more than one fault in a system.  In this 



instance, revisions in T that are opened by the same test 
case can be combined.  Thus, the matrix T represents 
which files are affected by each particular test case. 

Multiplying matrix T by matrix R yields another set of 
associations in matrix P in Equation 7: 

 
T * R = [Tests x Files] * [Files x Clusters] = [Tests x 
Clusters] = P                                                           (7) 
 
The P matrix that is generated from multiplying T and R 
together links a particular test case with its connection to 
a given association cluster in the same way that 
multiplying a single change vector x multiplied by R 
provided information on the impact of that revision.   

We can then relate the link between test cases and 
clusters back to individual files by multiplying PT by 
another R, as shown in Equation 8: 

 
R * PT = [Files x Clusters] * [Clusters x Tests] = [Files x 
Tests] = Y                                                                (8) 
 
The matrix Y that is produced now has associated test 
cases in the system to particular files after transforming 
their relationship through the association clusters.  This is 
analogous to changing the basis of the original analysis 
matrix M by multiplying it by the results from the SVD.  

This file association matrix Y is then used in 
conjunction with the fault information contained in the 
change vectors to provide an association between files 
and faults.  If we multiply the matrix Y by a new change 
vector x, the output is a single vector where each column 
is a particular test case and the values represent how 
closely the new change vector matches with each test 
case.  In this multiplication, each the value of how 
relevant a test case is to a file (with 0 being no relevance 
and 1 being a one-to-one link between the two) is added 
together based upon which files are in the new revision.  
An example of this multiplication is shown in Equation 9: 
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 (9) 

 
The value in the result priority vector itself represent how 
close the new modification matches a given test case, 
taking into account files that tend to change together.  For 
instance, a high-priority test case will not only contain 
files that were directly changed in the new modification, 
but will also contain files that tend to be affected when 
the newly modified files change.  This effect occurs 
because of the way that the SVD takes into account how 

all files tend to change together.  The values themselves 
are used as a relative prioritization among the test suite 
for this modification and this modification alone as 
opposed to using the prioritization values as an absolute 
that can be compared against different modifications.  For 
example, if more files have changed, the priority values 
can be higher since there is now an additional component 
to match with available tests. However, prioritization 
vectors can be additive if several system modifications 
are being examined simultaneously. In this instance, we 
find that T2 and T6 are equally appropriate to run in this 
instance, while T3 and T4 are not related at all to the 
changed files. 

Faults that are associated with non-zero values in the 
result vector execute areas of code that have previous 
problems and are candidates for being rerun.  These faults 
are ones that either directly involve the files that have 
been affected by the change or files that are in the same 
association clusters as the affected files.  Thus, files that 
are closely tied to the affected files through previous 
revisions, will have a greater impact on the values in the 
result vector.   

3.6 Limitations 
 

The association clusters are based upon the change 
records that may or may not be accurate.   For example, 
the case study reported in this paper uses data from an 
IBM system.  IBM’s documented development process 
and interviews from developers and managers indicated 
that files that were changed together are related and are 
addressing a specific fault.  The process in place in IBM 
helps to minimize opportunistic changes whereby a 
developer makes changes unrelated to an open fault while 
fixing that fault. If opportunistic changes occur during 
fault removal efforts, we cannot be certain that the set of 
files that change together are related to a particular fault.  
However, we have noticed in ongoing work that 
developers that use continuous code integration and make 
smaller changes to the code base tend to avoid having 
opportunistic changes. 

Another limitation is that our technique requires that 
some level of traceability exists between test cases and 
the faults that are discovered by the test cases.  This 
traceability is required so that a matrix of files affected by 
test cases can be compiled.  In our study, this data exists 
as an additional note in the description of the fault in the 
fault tracking system. 

 

4.  IBM Case Study 
 

We selected Matlab 7.2 R2006a as our SVD tool and 
began by examining available data sources.  IBM’s 



source control and fault management system generates 
detailed logs on revisions and both pre- and post-release 
failures.   

The prioritization approach through our technique 
identifies related files and includes them in the regression 
test prioritization based upon the weighting values given 
to files in clusters by the SVD in the Y matrix generated 
from the U matrix.  The value a file has with a given 
cluster in the Y matrix dictates its impact within a 
regression test prioritization as well.  What this yields is a 
prioritization list in which the test cases are ordered as to 
not only how similar the revision is to a given test case, 
but also the impact that a test could have on surrounding 
files in an association cluster.  A high prioritization value 
on a test indicates that:  (1) the files exercised by the test 
closely resemble the set of changed files; and (2) the set 
of changed files have a relatively high change frequency, 
indicating fault-proneness.   

We evaluated the efficacy of this methodology by using 
a random data splitting technique with the three minor 
releases of an IBM software system.  We began by 
randomly selecting two-thirds of the revisions for each 
release as the “historical data” from which we generated 
the association clusters.  From the remaining one-third of 
the revisions, twenty revisions were selected for use as 
“future changes” that are being introduced into the system 
and for which we are prioritizing regression tests.  The 
remaining revisions in the one-third set represented the 
future set of faults that would be found in the system.  For 
example, if simple retest suggests we retest File 1 and our 
technique further suggests we test Files 1 and 2, if there 
are instances of Files 1 and 2 together in the “future set,” 
we count this as a confirmed true positive result.     

For each of the twenty revisions selected to represent 
new changes introduced into the system, we converted 
these revisions into vectors.  Each of these vectors was 
then multiplied by the association matrix Y generated 
from the “historical data” set of revisions.  Since the 
association matrix Y links test cases to files, the results of 
this multiplication yielded a regression test prioritization 
list.  We compared the prioritization lists from the twenty 
selected “future change” revisions with the future set of 
faults to determine if the prioritization list identifies 
additional test cases that actually appears in the future set.  
If the suggested tests did appear in the one-third future set 
of data, then it was recorded as a positive match 
recommendation for the regression test prioritization 
model.  However, an identified test could be a true 
positive and not be found in the one-third future set if it 
was not run by the team.  Thus, the results we present 
here are minimum possible values and are, in all 
likelihood, somewhat higher in actuality.  We repeated 
the data splitting analysis six times.  The results of our 
analysis are found in Table 2. 

 We found that 50% of the time our technique did not 
recommend any additional tests beyond a simple retest of 
changed files.  If the model recommends the same tests as 
a simple retest, this indicates that the areas of the system 
that these revisions represent are either historically self-
contained modules or that there is not enough change data 
among the files to make an accurate prediction. In the 
case of the self-contained modules, a regression set that is 
the same as a simple retest is a positive result, since 
testing can be expensive, and we do not want to incur 
additional cost with little extra benefit.   

Conversely, if there is sparse change data in a section 
of the code, where numerous files have only changed 
once or twice together, a cohesive association cluster 
structure might not have formed yet.  In these “loose” 
cluster areas of the system, our model recommends more 
tests with an overall lower confirmed true positive rate 
because of the number of recommended tests. However, 
we consistently found that the tests at the top of the 
prioritization list were confirmed true positives.  
Approximately 60% of the first test cases identified a 
future fault in the files included in a new set of changes.   

The percentage of the time that a prioritized test finds a 
fault is found in Figure 2.  The tests that appear at the top 
of the prioritization list also did not appear in the simple 
retest about one-third of the time, due to the initial test 
being a test that exercised code that was directly related to 
the affected code, but not actually a part of the affected 
code. 
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Figure 2. Percentage matches in future data by 

regression test priority. 
 

5.  Comparison to Other Techniques 
 

In this section, we perform a theoretical comparison of 
our technique with other RTS techniques.  Rothermel and 
Harrold created a framework for evaluating and 
comparing RTS techniques and have used their 
framework on a representative set of techniques [15].  We 
use their framework to show how our technique adds to 
the body of knowledge in regression testing.  Rothermel 



and Harrold use four characteristics to describe and 
evaluate a RTS technique:  

inclusiveness:  whether a RTS technique is considered 
safe or not, thus finding all true positives in a regression 
test selection*;  

precision:  while inclusiveness measures how effective 
a technique is at finding all the correct tests for a 
regression test run, precision measures how many extra, 
unneeded tests are recommended by the technique that do 
not add any benefit; 

efficiency: the computational and overhead costs 
associated with running the RTS technique; and  

generality:  the context for which the RTS technique 
can be used, including language, and program constructs. 

 
5.1 Inclusiveness 
 

The inclusiveness of our technique is based upon the 
inclusiveness of our impact analysis technique.  Our 
regression test prioritization is not considered safe 
because of our use of historical data in our impact 
analysis aspect in the technique.  If a new system 
modification is introduced in which sets of files change 
together that never have changed together before, such as 
a feature being introduced in files that were previously 
not in the system, then our technique might omit some 
tests.  The limitation of not being safe is one that cannot 
be avoided for historically-based RTS techniques, due to 
the nature of the data that is being used for the technique 
[15]. 

According to Rothermel and Harrold, there are only 
four truly safe RTS techniques available: their technique 
based on path analysis; Laski and Szermer’s method 
based on encapsulating code areas by call analysis; Leung 
and White’s firewall-based technique; and Fischer’s 
linear equation technique [15, 17].  These four safe 
techniques are all similar in that they select all tests that 
traverse any part of the call path of an affected area of 
code.  All of these techniques use a method building call 
and flow graphs to determine every execution path that 
could possibly be affected by a change, and then select 
the tests that intersect those paths.   

However, changes can take place outside of the code 
base that can have an effect on the system as a whole.   
When the an image file is changed and submitted as a 
revision to the source control system, our impact analysis 
technique would be able to determine that there has been 
a change to this media file.  While this change certainly 
affects the file in which the code would appear, it would 
also indicate other places in the system that possibly use 
that file.  Rothermel and Harrold’s safe technique based 
upon PathImpact is considered safe with respect to the 

                                                
* Rothermel and Harrold do note that a RTS technique can only be as 
effective as the test suite in revealing modifications and faults. 

source code and will identify any test case that exercises 
affected code.  However, any change that falls outside of 
source code and has a manual test case could not be 
detected by Rothermel’s technique. 

 
5.2 Precision 

 
The precision of our technique improves as the number 

of changes in the system increases. Rothermel and 
Harrold recognize that no RTS technique can be 
guaranteed as 100% precise [15].  Due to the use of 
historical change information, our technique’s precision is 
only governed by how well future modifications match 
historical patterns.  If new features are not being added to 
a system and new modifications follow historical 
patterns, then the precision of our technique could be 
high. 

The four safe regression techniques mentioned above in 
particular can have the problem of being imprecise.  
When selecting every test that intersects a given call path, 
numerous extra tests can be selected in the pursuit of 
ensuring that the result set is safe.  Laski and Szermer’s 
RTS technique identifies a control scope of each decision 
statement and finds every call path in which that 
statement exists.  They refer to these closures of call paths 
as clusters, and a given cluster can have numerous tests 
associated with it.  However, if only a small portion of a 
cluster is changed, all the tests for that cluster are still 
selected.  Rothermel and Harrold’s technique based on 
PathImpact works in a similar fashion.  These 
techniques have shown result sets where the number of 
false positives approaches 40% of the set [18]. 

There is a tradeoff between inclusiveness and precision, 
as the fully inclusive (safe) techniques also tend to have 
higher numbers of false positives, while those techniques 
that try to eliminate as many false positives as possible 
also exclude some true positives at the same time [15].  
We recognize that our RTP technique can never be safe 
due to the use of historical data, but through the use of the 
historical data, we can improve the precision of our 
technique.  The prioritization vector produced by our 
technique orders the test cases from those that are most 
likely to be true positives based on historical evidence.  
Thus, the precision of our technique is governed by how 
far down the prioritization list a developer or tester goes, 
with a degree of diminishing returns as the list progresses.  
Further, since our technique is based on historical 
evidence and not actual semantic data, the prioritization 
may be better categorized as a “recommendation list,” as 
opposed to a definitive list of required regression tests.  
As shown above in Figure 5.2, the likelihood of a 
recommendation being a true positive is higher at the top 
of the list than further down.  We found that in the top 
seven recommendations to have nearly 95% precision.  If 



developers are looking for the most relevant tests quickly, 
then our technique would be a viable possibility. 

 
5.3 Efficiency 

 
Our technique begins with the gathering of change 

records from a source repository.  The time it takes to 
gather these records is proportional to the amount of 
activity the repository has had over time, or O(R*A), 
where R is the number of revisions and A is the average 
number of files in a revision.  Once the records are 
gathered and placed in the matrix M as described in 
earlier sections of this paper, a sparse SVD is performed 
on the matrix.  A sparse SVD is performed because most 
files in the system will not change with every other file in 
the system, thus making M a sparse matrix.  The 
complexity of a sparse SVD is O(F log F), where F is the 
number of files in the system.  After the SVD has been 
completed, the impact of the new revision is done by 
comparing the changed files to the cluster set, which is 
O(F*C), where C is the number of files in that revision.   

The key difference between our technique and most 
other RTS techniques is that our technique does not 
incorporate any semantic or dynamic execution 
information.  Our technique requires the gathering of 
development artifacts from a data source, performing a 
SVD, and then interpreting the results.  The most 
inefficient part of our technique is the computation of the 
SVD, assuming that there are automated procedures in 
place to gather change records to populate the M matrix.  
However, the SVD does not need to be calculated with 
each new system modification, and that process could be 
easily automated to run during off-hours.  We believe that 
it would be sufficient to compute a new SVD at the end 
of the day automatically after no more modifications 
would be made.  In this way, the efficiency of our 
technique can be much higher than any dynamic RTS 
technique, since this would reduce our technique to a 
simple matrix times a linear vector for each RTS 
recommendation.  In an organization where dynamic 
means are infeasible, such as instances where call graphs 
cannot be created and maintained effectively, our 
technique might be more appropriate. 

Our technique suffers from a more software 
development process-intensive requirement than other 
RTS techniques.  Traceability of tests to the files they 
execute is required to generate the prioritization list from 
impact analysis results.  In our industrial case study, 
traceability information was recorded as a by-product of 
the testing process and was thus readily available with no 
additional overhead.  Other organizations, however, may 
have to adjust their process to gather this information, or 
run a code coverage tool to gather the data.  

We must note that certain development traceabilities 
must be maintained for the overall efficiency of our 

technique to be better than theirs.  In most RTS 
techniques, the pre-processing required for the technique, 
whether that be executing instrumented code, gathering a 
call trace, or performing static code slicing, is the most 
time intensive.  The algorithms themselves to then 
determine the regression tests are relatively comparable 
operating in linear time.  

 
5.4 Generality 

 
The novel aspect of our RTS technique is its generality 

in that its context is all-inclusive.  Any file that is 
managed through a change management system, whether 
that file is source code, media files, documentation, or 
anything else, our technique can recommend tests 
appropriate for those files based upon which other files 
they have changed with.  Faults that are found in non-
source files can be as severe as those within source files 
and thus we believe that our technique for prioritizing 
tests with regard to all files in the system can provide 
some added insight into prioritizing regression test cases.   

Our interpretation of generality is somewhat broader 
than Rothermel and Harrold.  They portray generality for 
RTS techniques being the applicable to different 
programming languages, environments, and testing 
methods.  RTS techniques based on non-semantic or 
dynamic information effectively change this definition by 
changing the overall context in which the RTS technique 
is applied. By changing the context of the RTS 
methodology to non-source means, there are no 
restrictions on programming language, environment, or 
testing methods.  However, it does add a separate level of 
constructs required for execution, namely various types of 
traceabilities between the code and the development 
artifacts of change records for our technique or 
requirements for PORT.   

6.  Summary 
 

In this paper, we explored an empirically-based 
regression test prioritization method based upon 
structures discovered through change records and singular 
value decomposition. To show the efficacy of our 
technique, a case study was performed with three releases 
of a product from IBM. The association clusters 
specifically illuminated areas of the code base where 
cross-file dependencies existed and areas of the system 
that included files that would not normally be examined 
in an analysis that used execution-based files, such as 
help files and configuration files.  We performed a post 
hoc case study using this technique with three minor 
releases of a software product.  We found that our 
methodology suggested additional regression tests in 50% 
of test runs and that the highest-priority suggested test 
found an additional fault 60% of the time.   



Our technique adds to the body of knowledge in RTS 
by providing a method that extends the generality of RTS 
outside of the realm of programming languages and 
environments by using development artifacts.  Our 
technique, while not safe like many other RTS 
techniques, improves its precision by prioritizing 
regression tests based upon historical evidence regarding 
previous fault-proneness.  Overall, our technique can be 
much more efficient than other RTS techniques given that 
traceability information is readily available through the 
development process.  If traceability information is not 
readily available, it can be generated through code 
coverage tools, which can add extra overhead to our 
technique. 
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