
Prioritization of Regression Tests using Singular Value Decomposition with
Empirical Change Records

Mark Sherriff1,2, Mike Lake1, and Laurie Williams2

1IBM, 2North Carolina State University

mark.sherriff@ncsu.edu, johnlake@us.ibm.com, williams@csc.ncsu.edu

Abstract

During development and testing, changes made to a

system to repair a detected fault can often inject a new
fault into the code base. These injected faults may not be
in the same files that were just changed, since the effects
of a change in the code base can have ramifications in
other parts of the system. We propose a methodology for
determining the effect of a change and then prioritizing
regression test cases by gathering software change
records and analyzing them through singular value
decomposition. This methodology generates clusters of
files that historically tend to change together. Combining
these clusters with test case information yields a matrix
that can be multiplied by a vector representing a new
system modification to create a prioritized list of test
cases. We performed a post hoc case study using this
technique with three minor releases of a software product
at IBM. We found that our methodology suggested
additional regression tests in 50% of test runs and that
the highest-priority suggested test found an additional
fault 60% of the time.

1. Introduction

During development and testing, changes made to a
system to repair a detected fault can often inject a new
fault into the code base. These injected faults may or
may not be in the same file(s) that were just changed,
since the effects of a change in the code base can have
ramifications in other parts of the system. New faults
introduced during testing and maintenance can be isolated
by impact analysis and regression testing techniques.
Impact analysis and regression testing techniques exist
that find changes in a system based upon a modification
[12, 16]. However, techniques that utilize call graphs or
other dynamic means can be computationally intensive,
and may not be cost-effective for use in industry [18].
Often regression test selection techniques do not include
files that are not part of the source code, such as
properties files, help files, and configuration files.
Additionally, current impact analysis and regression
techniques are based upon semantic analysis and may not

consider trends in actual usage and/or the fault-proneness
of the set of files impacted [14, 15].

Insight into the injected faults due to fault removal
techniques can be gathered from the information
generated during the development process itself. During
development, programming teams will produce a variety
of software development artifacts. A software
development artifact is an intermediate or final product
that is the result or by-product of software development
[9, 10]. Development artifacts can also provide
information about underlying structures within a system
that would normally not be apparent [2, 3, 7, 11, 24, 25].

Change record artifacts can show how files interact
with one another or how a system is evolving during
development by examining what areas of the system
change together and where new sets of changes are
emerging [2, 3]. Change records can be used to identify
association clusters in a software system. An association
cluster consists of a set of files that exhibit a specific
relationship with the other files in the cluster with regards
to particular development artifact [3]. If a number of files
repeatedly change together to fix a set of faults, then
those files would be identified as an association cluster.
Association clusters are based upon historical patterns in
the composition of revisions. We use singular value
decomposition (SVD) [5] on a matrix of change record
date to generate the association clusters.

The methodology proposed in this research is called
SVD-Based Regression Test Prioritization (SRTP).
SRTP provides a framework for gathering change records
from testing and field failures, generating association
clusters, and leveraging those clusters to guide regression
test prioritization. Our goal is to provide a methodology
based upon change records and singular value
decomposition that can prioritize regression tests to
reduce the number of regression faults released to the
field. To examine the efficacy of our technique, we
conducted an industrial case study with a project at IBM.
Change records initiated from fault removal efforts were
gathered on three consecutive minor releases of an IBM
product. A minor release is defined as an “update and
fix” pack to a final release of a product.

The rest of this paper is organized as follows. Section
2 provides information on background and related work.
Section 3 describes the SRTP methodology in detail,

while Section 4 describes our case study at IBM. Section
5 presents a theoretical comparison with other techniques,
and Section 6 gives a summary of this work.

2. Related Work

In this section, we will discuss related research and
background literature in regression test selection, uses of
clustering change records, and the singular value
decomposition.

2.1 Regression test selection

Regression testing is the process of retesting a system
or component to verify that changes made to the system
code have not caused unintended effects and that the
system is still compliant with the specified requirements
[1]. The goal of regression test selection (RTS)
techniques is to isolate the tests most likely to uncover
injected faults after a system modification. The simplest
RTS technique is the retest-all strategy, wherein the
entire test suite is exercised. However, techniques have
been developed that can minimize the set of tests that
need to be rerun while still maintaining the overall
effectiveness of a retest-all strategy [16]. A RTS strategy
is considered safe if the subset of tests identified by that
strategy contain all the test cases from the test suite
capable of finding faults in the system based upon a
system modification [22].

One safe RTS strategy was developed by Rothermel
and Harrold, called SelectTests [16]. Their RTS
strategy analyzes changes in the control dependence
graph of the software system and changes to the test suite
to determine the best subset of test cases. Rothermel et
al. have shown that this technique is considered safe,
identifying tests that cover not only unchanged lines but
also newly added lines of code. Further studies from
Rothermel have shown that regression test selection and
test case prioritization in general can be effective at
reducing the amount of work needed to be done in testing
after a system modification, but that the cost-
effectiveness of these techniques can vary [18, 19].

One aspect of the technique developed by Rothermel et
al. is that it requires source code to be effective.
However, faults can be injected into non-source files in a
system that might not be detected through a technique
that solely examines source code. Consider a system that
utilizes static properties files that are read in by different
modules within the system. If a fault is injected into
these properties files, there would be no reflection of this
change in the source code, yet the fault could be as severe
as any fault in the source itself [8].

Our technique adds to the body of knowledge of RTS
strategies by addressing the problem of test selection
when non-source files are involved. For example, 35% of
all faults involved in one system examined in our study
contained a non-source file. Further, we are trying to
improve the overall cost-effectiveness of RTS strategies
by using historical trends over time as opposed to
processing dynamic call information.

2.2 Clustering files based upon change records

Research is currently being performed in gathering and
analyzing data from source control systems to identify
core components in a software system for use in impact
analysis [2, 3, 7, 11, 24, 25]. Ren et al. has created an
Eclipse plug-in to predict the impact of code changes for
developers to use in-process through white-box
techniques [14]. Their plug-in, called Chianti, works by
capturing atomic-level changes in the code base.
Dependencies are then calculated between these atomic
changes to predict what other areas of the code might be
affected by a change through the use of call graphs. Ren
performed two case studies on a 100 KLOC system and
found that Chianti was able to reduce the number of
regression tests depending on the degree of the change
implemented. The primary difference between the impact
analysis technique used in Chianti and our technique is
that Chianti is based upon semantically-based methods in
which all associations are created equal regardless of
actual usage. The association clusters created in our
technique are based upon historical data and, therefore,
might be better for prioritization.

While Ren’s works focused on guiding developer
efforts, other research uses the same sets of change
records to improve program comprehension. Further
work expanded on the idea of gathering change records to
isolate clusters of files within a software system to drive
program comprehension. Beyer and Noack’s work
analyzed clusters of files using a co-change graph to plot
files onto a two- or three-dimensional graph using an
energy-based graph layout [3]. Files that contained more
edges between them were closer together on the graph,
thus creating clusters of files. These clusters of files
could be directly identified and related to functional
requirements or third party components within the system
[3]. Other research by Gall also generated association
clusters of files within a system for program
comprehension [7]. His method used a set of
commonalities that could be detected from change logs
(i.e. files that were edited on the same day by the same
person) to create his sets of sub-modules.

2.3 Singular value decomposition

Singular value decomposition (SVD) is a linear algebra
technique that decomposes a given matrix into three
component matrices [5]: (1) the left singular vectors; (2)
a set of singular values; and (3) and right singular vectors.
The two matrices that are made up of singular vectors
provide information about the structure of the original
matrix. The singular values describe the strength of the
given components of the original matrix. The SVD
theorem [5] states that given a matrix M, then there exists
a decomposition of M such that TUSVM = .

The SVD of a matrix can also be described
geometrically. The SVD shows that the values of any
matrix M can be reconstructed by a rotation (U), followed
by increasing the matrix values (S), followed by another
rotation (V) [23]. For example, if M represented
coordinates that generated a three-dimensional shape,
then that shape could be constructed from the rotational
information in U and V, along with stretching the shape
out to its proper size with the information in S [23]. This
type of decomposition can be important and useful in that
the rotational matrices isolate the key components of the
original matrix, finding relationships between the various
data points, while the strength matrix indicates which of
the key components illuminated in the rotational matrices
are the most important [5, 23]. In our research, this core
idea of isolating key components of the original matrix is
the basis for using the SVD with SRTP. When the matrix
is comprised of change records, fault information, or
some other data from the development process, these key
components highlight underlying structures in the code
base.

Osinski et al. created a clustering algorithm based upon
SVD to improve search queries on a set of documents
[13]. They built an original matrix based upon keywords
in the document set. The SVD was performed on this
matrix to generate clusters of documents that were similar
based on their keywords. Enough clusters were gathered
to account for 90% of the variability of the original
matrix, with the remaining clusters discarded as signal
noise [13]. The documents were then assigned to clusters
based upon which cluster they had the closest association
with. Anecdotal evidence from users who were presented
with the clusters generated with this study found that 70-
80% of the clusters were useful and over 75% of
identified cluster labels were correct [13].

Using SVD to find association clusters amongst files
differs from other forms of clustering in that the
association clusters generated can overlap. Files may be
related to different parts of the system in differing degrees
of strength. Dickinson et al. investigated the use of
various clustering techniques to create better sample sets

from which to identify failures [6]. Research with several
Java and C systems showed that certain techniques could
cluster failures together and was more effective than
random sampling for failures. Our technique is similar in
purpose, in that the SVD will weigh more heavily those
files that are failure-prone in the clustering process, thus
making the detection of failures more likely.

3. SVD-based Regression Test Prioritization

SRTP provides a methodology that derives associations
using SVD based upon a set of change records from
testing and field failures. These association clusters of
files portray an underlying structure in the system
indicating how files tend to be executed, tested, and
changed together [20]. SVD is used to leverage its ability
to illuminate underlying structures in a data set in which
the data could be associated in multiple ways. In this
section, we will describe the process of SRTP, which
includes deriving the association clusters from change
records and producing a reduced set of regression tests.
Figure 1 outlines the steps of the SRTP method that will
be further described in the remaining subsections.

1 Create matrix M where the values in the
matrix indicate the number of times two
files have changed together.
2 Create matrix T where the values in the
matrix indicate whether a file is affected
by a particular fault/test case.
3 [U, S, V] = svd(M);
4 for i:size of U
5 Gather cluster i information
6 for j:size of U
7 if |U(j, i)| > threshold
8 Place element of cluster i into R
9 end
10 end
11 end
12 Y = (R * R’) * T;
13 Represent new system modification x as a
vector in which the value indicates whether
the file has been affected in this change.
14 Y * x yields the prioritization of each
test case based upon the similarity of the
new system modification x to previous
changes in the system.

Figure 1. Algorithm for SVD-based RTP.

3.1 Identifying data sources

Source control systems are the primary source for
gathering change records. When a developer checks a file
in to a source control system, the system typically records
the time of the check-in along with information about the

developer and the nature of the change. Individual
changes are often linked together into revisions, either
through a specific mechanism in the source control
system that records that information or through the
examination of change record check-in information.
With information regarding revisions, we are able to
ascertain how files change together.

 Some more complex source control systems are also
integrated with a fault tracking system. With these more
complex systems, revisions can be associated directly
with the fault record that the changes are addressing,
providing detail about how revisions are linked together.
Information from fault tracking systems allows us to
isolate revisions to those made under specific
circumstances. For example, changes derived from faults
found during system test could be compared to changes
derived from field failures discovered by customers.

3.2 Gathering software development artifact data

After appropriate data sources have been identified, an
analysis matrix can be generated that contains the systems
files along each axis. The values within the analysis
matrix show how the files are connected through change
records. For illustrative purposes on how to build the
analysis matrix, we will use a set of sample data to
generate this analysis matrix as an example. Table 1
shows a small sample of the set of the change records that
were used to create our example analysis matrix. This
example uses a small system consisting of five files.

Table 1. Sample Change Record Information.

Test Case
ID

Fault ID Revision ID Files
Changed

T1 A1 988 1
T2 A2 989 2, 3
T3 B1 990 4, 5
T3 B2 991 4, 5
T1 B3 992 1, 2
T4 C1 993 2, 3
… … … …

We have built an example analysis matrix M, shown
below in Equation 2. The values in the matrix represent
the number of times that each file appeared in a revision
with another file. Thus, File 2 has appeared in a revision
10 times together with File 1, 21 times together with File
3, and 0 times by itself (since M(2,2) = M(2,1) + M(2,3)).
Similarly, File 3 has changed 21 times with File 2 and 3
times by itself.























=

1712000
1215000
0024210
00213110
0001025

5
4
3
2
1

54321

F
F
F
F
F

M

FFFFF

 (2)

Upon initial examination of this matrix, we note that Files
4 and 5 change together or by themselves. Based on this,
it appears that Files 4 and 5 are strongly linked in
isolation from the rest of the system. Similarly, Files 1, 2,
and 3 are also linked, with Files 2 and 3 having the
strongest bond of the three.

3.3 Perform the singular value decomposition

To determine the strength of the associations between
files and to generate the association clusters, we perform
a SVD of this matrix. The strength of the association is
determined by the frequency that the files changed
together. A SVD of M provides the following matrices,
shown in Equations 3 and 4:























−

−−

−−

−−−

−

==

68.0074.0
74.0068.0
069.43.059.
056.02.076.
031.9.029.

VU
 (3)























=

9.30000
01.4000
008.2400
0004.280
00001.51

S

 (4)

The U and V matrices provide information as to the

structure of the association clusters. The singular values
from the S matrix represent the amount of variability each
association cluster contributes to the original analysis
matrix. Note that U and V are equal, due to M being a
symmetric matrix.

A cluster’s strength, represented by the size of the
singular value coupled with it, indicates the amount of
variability that the association cluster provides to the
original analysis matrix [23]. Dividing a cluster’s
singular value by the sum of all the singular values
provides the percentage of how representative the cluster
is of the original matrix. In this example, a high singular
value indicates that that association cluster is more
prominent in the analysis matrix, due to a greater number
of changes that have occurred to that set of files. A high
singular value could be indicative of a particularly

problematic section of code or a new feature that has just
been introduced into the system and is experiencing its
first rigorous testing.

3.4 Gather the association clusters

The values in the U matrix correspond to the
composition of each association cluster. In this example,
there are five association clusters because the rank of M is
five. The first column of U, representing the structure of
the first association cluster, is coupled with the first
singular value in S, representing the strength of that
association cluster. Since it is coupled with the largest
singular value, the first association cluster represents the
greatest amount of variability in the original analysis
matrix and is the most prominent association cluster.
From the U matrix, we see that the first association
cluster is comprised of Files 1, 2, and 3, indicated by the
fact that the three files all have values with a similar sign.
Further, each of these values has a larger magnitude than
.1, the threshold we used in our research. A threshold is
used when selecting cluster members so that only files
with a strong association to the other files are included in
the cluster. When a file’s value is greater than the
threshold, we can add that value to the matrix R, which
will contain the final set of clusters. This is similar to the
threshold that Osinski used in his algorithm [13]. In the
third cluster, we see that File 1 is its own cluster that can,
at times, change without Files 2 and 3. So, in effect, we
get two associations out of the third cluster, one with File
1 by itself and one with Files 2 and 3 together. Matrix R
from this U matrix is shown in Equation 5:

€

 C1 C2 C3 C4 C5C6 C7 C8

R =

F1
F2
F3
F4
F5

.29 0 .9 0 .31 0 0 0

.76 0 0 .02 0 .56 0 0

.59 0 0 .43 .69 0 0 0
0 .68 0 0 0 0 .74 0
0 .74 0 0 0 0 0 .68























 (5)

Note that the values in each association cluster’s

column vector represents the degree to which that file is
likely to change in that cluster. In this way, each file is
weighted within that association cluster as to its degree of
participation. For example, the first association cluster is
primarily composed of File 2 and File 3 due to their
higher values. File 1 is a minor participant in this
association cluster. If we reexamine the original analysis
matrix M, we can see the strong correlation between Files
2 and 3 with a somewhat looser correlation with File 1,
since these files only tend to change together and not at
all with Files 4 and 5. The association cluster in the
second column portrays the next most significant cluster,
comprised of Files 4 and 5.

The singular values of these clusters found in the S
matrix provide some indication as to how they should be
analyzed. The first cluster represents 45% of the overall
variability in the matrix, which can be determined by
dividing the first singular value by the sum of all the
singular values. Further, the third and fourth clusters
collectively represent 22% (since these two clusters were
split apart from the values in the third left singular vector)
and the fifth and sixth represents 4%. These percentages
show that the first cluster defines the majority of the
information regarding these files. Clusters three, four,
five, and six are, in effect, sub-clusters of the first cluster
because they contain a similar set of files. At this step in
our technique, the matrix R can provide information about
the likelihood of a change in an association cluster based
upon previous change information.

This technique is similar to the cluster rank algorithm
used by Osinski et al. in their SVD-based search term
clustering algorithm [13]. Osinski multiplied their
document matrix by a modified U matrix from the SVD
to derive the impact that each search term had on a given
document. In this fashion, the values from the result
vector were used to assign a document to its closest-
matching search term cluster [13].

3.5 Generate reduced test suite

The next step is to use the current revisions in the
system to determine how each test case in the system is
related to a given association cluster. Using data from the
source control and fault management system, we can map
a revision x directly to a particular fault in a one-to-one
relationship. To accomplish this analysis, we can take the
set of all revisions in the source control system and create
a matrix T, with each row indicating a revision and each
column representing a particular file. An example matrix
T has been constructed from the information in Table 1 in
Equation 6.

€

 F1 2 3 4 5

T =

T1
T2
T3
T4
T5
T6

1 0 0 0 0
0 1 1 0 0
0 0 0 1 1
0 0 0 1 1
1 1 0 0 0
0 1 1 0 0

























 (6)

Since a revision is opened by a single distinct fault, we
can say that each row represents a specific fault found in
the system. If each test case created one fault, the matrix
T would also represent test case traceability to the files
affected by those tests. However, in all likelihood, a test
case can find more than one fault in a system. In this

instance, revisions in T that are opened by the same test
case can be combined. Thus, the matrix T represents
which files are affected by each particular test case.

Multiplying matrix T by matrix R yields another set of
associations in matrix P in Equation 7:

T * R = [Tests x Files] * [Files x Clusters] = [Tests x
Clusters] = P (7)

The P matrix that is generated from multiplying T and R
together links a particular test case with its connection to
a given association cluster in the same way that
multiplying a single change vector x multiplied by R
provided information on the impact of that revision.

We can then relate the link between test cases and
clusters back to individual files by multiplying PT by
another R, as shown in Equation 8:

R * PT = [Files x Clusters] * [Clusters x Tests] = [Files x
Tests] = Y (8)

The matrix Y that is produced now has associated test
cases in the system to particular files after transforming
their relationship through the association clusters. This is
analogous to changing the basis of the original analysis
matrix M by multiplying it by the results from the SVD.

This file association matrix Y is then used in
conjunction with the fault information contained in the
change vectors to provide an association between files
and faults. If we multiply the matrix Y by a new change
vector x, the output is a single vector where each column
is a particular test case and the values represent how
closely the new change vector matches with each test
case. In this multiplication, each the value of how
relevant a test case is to a file (with 0 being no relevance
and 1 being a one-to-one link between the two) is added
together based upon which files are in the new revision.
An example of this multiplication is shown in Equation 9:

€

 F1 F2 F3 F4 F5

Yx'=

T1
T2
T3
T4
T5
T6

.69 .09 .23 0 0

.32 .90 .76 0 0
0 0 0 1 1
0 0 0 1 1

.78 .60 .62 0 0

.32 .90 .76 0 0

























*

0
1
1
0
0























= .32 1.7 0 0 1.2 1.7[]

 (9)

The value in the result priority vector itself represent how
close the new modification matches a given test case,
taking into account files that tend to change together. For
instance, a high-priority test case will not only contain
files that were directly changed in the new modification,
but will also contain files that tend to be affected when
the newly modified files change. This effect occurs
because of the way that the SVD takes into account how

all files tend to change together. The values themselves
are used as a relative prioritization among the test suite
for this modification and this modification alone as
opposed to using the prioritization values as an absolute
that can be compared against different modifications. For
example, if more files have changed, the priority values
can be higher since there is now an additional component
to match with available tests. However, prioritization
vectors can be additive if several system modifications
are being examined simultaneously. In this instance, we
find that T2 and T6 are equally appropriate to run in this
instance, while T3 and T4 are not related at all to the
changed files.

Faults that are associated with non-zero values in the
result vector execute areas of code that have previous
problems and are candidates for being rerun. These faults
are ones that either directly involve the files that have
been affected by the change or files that are in the same
association clusters as the affected files. Thus, files that
are closely tied to the affected files through previous
revisions, will have a greater impact on the values in the
result vector.

3.6 Limitations

The association clusters are based upon the change
records that may or may not be accurate. For example,
the case study reported in this paper uses data from an
IBM system. IBM’s documented development process
and interviews from developers and managers indicated
that files that were changed together are related and are
addressing a specific fault. The process in place in IBM
helps to minimize opportunistic changes whereby a
developer makes changes unrelated to an open fault while
fixing that fault. If opportunistic changes occur during
fault removal efforts, we cannot be certain that the set of
files that change together are related to a particular fault.
However, we have noticed in ongoing work that
developers that use continuous code integration and make
smaller changes to the code base tend to avoid having
opportunistic changes.

Another limitation is that our technique requires that
some level of traceability exists between test cases and
the faults that are discovered by the test cases. This
traceability is required so that a matrix of files affected by
test cases can be compiled. In our study, this data exists
as an additional note in the description of the fault in the
fault tracking system.

4. IBM Case Study

We selected Matlab 7.2 R2006a as our SVD tool and
began by examining available data sources. IBM’s

source control and fault management system generates
detailed logs on revisions and both pre- and post-release
failures.

The prioritization approach through our technique
identifies related files and includes them in the regression
test prioritization based upon the weighting values given
to files in clusters by the SVD in the Y matrix generated
from the U matrix. The value a file has with a given
cluster in the Y matrix dictates its impact within a
regression test prioritization as well. What this yields is a
prioritization list in which the test cases are ordered as to
not only how similar the revision is to a given test case,
but also the impact that a test could have on surrounding
files in an association cluster. A high prioritization value
on a test indicates that: (1) the files exercised by the test
closely resemble the set of changed files; and (2) the set
of changed files have a relatively high change frequency,
indicating fault-proneness.

We evaluated the efficacy of this methodology by using
a random data splitting technique with the three minor
releases of an IBM software system. We began by
randomly selecting two-thirds of the revisions for each
release as the “historical data” from which we generated
the association clusters. From the remaining one-third of
the revisions, twenty revisions were selected for use as
“future changes” that are being introduced into the system
and for which we are prioritizing regression tests. The
remaining revisions in the one-third set represented the
future set of faults that would be found in the system. For
example, if simple retest suggests we retest File 1 and our
technique further suggests we test Files 1 and 2, if there
are instances of Files 1 and 2 together in the “future set,”
we count this as a confirmed true positive result.

For each of the twenty revisions selected to represent
new changes introduced into the system, we converted
these revisions into vectors. Each of these vectors was
then multiplied by the association matrix Y generated
from the “historical data” set of revisions. Since the
association matrix Y links test cases to files, the results of
this multiplication yielded a regression test prioritization
list. We compared the prioritization lists from the twenty
selected “future change” revisions with the future set of
faults to determine if the prioritization list identifies
additional test cases that actually appears in the future set.
If the suggested tests did appear in the one-third future set
of data, then it was recorded as a positive match
recommendation for the regression test prioritization
model. However, an identified test could be a true
positive and not be found in the one-third future set if it
was not run by the team. Thus, the results we present
here are minimum possible values and are, in all
likelihood, somewhat higher in actuality. We repeated
the data splitting analysis six times. The results of our
analysis are found in Table 2.

 We found that 50% of the time our technique did not
recommend any additional tests beyond a simple retest of
changed files. If the model recommends the same tests as
a simple retest, this indicates that the areas of the system
that these revisions represent are either historically self-
contained modules or that there is not enough change data
among the files to make an accurate prediction. In the
case of the self-contained modules, a regression set that is
the same as a simple retest is a positive result, since
testing can be expensive, and we do not want to incur
additional cost with little extra benefit.

Conversely, if there is sparse change data in a section
of the code, where numerous files have only changed
once or twice together, a cohesive association cluster
structure might not have formed yet. In these “loose”
cluster areas of the system, our model recommends more
tests with an overall lower confirmed true positive rate
because of the number of recommended tests. However,
we consistently found that the tests at the top of the
prioritization list were confirmed true positives.
Approximately 60% of the first test cases identified a
future fault in the files included in a new set of changes.

The percentage of the time that a prioritized test finds a
fault is found in Figure 2. The tests that appear at the top
of the prioritization list also did not appear in the simple
retest about one-third of the time, due to the initial test
being a test that exercised code that was directly related to
the affected code, but not actually a part of the affected
code.

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

1 2 3 4 5 6 7 8 9 10 11 12

Priority of Recommended Regression Test

Pe
rc

en
t t

ha
t r

ec
om

m
en

da
tio

n
fin

ds

a
ne

w
 d

ef
ec

t

Figure 2. Percentage matches in future data by

regression test priority.

5. Comparison to Other Techniques

In this section, we perform a theoretical comparison of
our technique with other RTS techniques. Rothermel and
Harrold created a framework for evaluating and
comparing RTS techniques and have used their
framework on a representative set of techniques [15]. We
use their framework to show how our technique adds to
the body of knowledge in regression testing. Rothermel

and Harrold use four characteristics to describe and
evaluate a RTS technique:

inclusiveness: whether a RTS technique is considered
safe or not, thus finding all true positives in a regression
test selection*;

precision: while inclusiveness measures how effective
a technique is at finding all the correct tests for a
regression test run, precision measures how many extra,
unneeded tests are recommended by the technique that do
not add any benefit;

efficiency: the computational and overhead costs
associated with running the RTS technique; and

generality: the context for which the RTS technique
can be used, including language, and program constructs.

5.1 Inclusiveness

The inclusiveness of our technique is based upon the
inclusiveness of our impact analysis technique. Our
regression test prioritization is not considered safe
because of our use of historical data in our impact
analysis aspect in the technique. If a new system
modification is introduced in which sets of files change
together that never have changed together before, such as
a feature being introduced in files that were previously
not in the system, then our technique might omit some
tests. The limitation of not being safe is one that cannot
be avoided for historically-based RTS techniques, due to
the nature of the data that is being used for the technique
[15].

According to Rothermel and Harrold, there are only
four truly safe RTS techniques available: their technique
based on path analysis; Laski and Szermer’s method
based on encapsulating code areas by call analysis; Leung
and White’s firewall-based technique; and Fischer’s
linear equation technique [15, 17]. These four safe
techniques are all similar in that they select all tests that
traverse any part of the call path of an affected area of
code. All of these techniques use a method building call
and flow graphs to determine every execution path that
could possibly be affected by a change, and then select
the tests that intersect those paths.

However, changes can take place outside of the code
base that can have an effect on the system as a whole.
When the an image file is changed and submitted as a
revision to the source control system, our impact analysis
technique would be able to determine that there has been
a change to this media file. While this change certainly
affects the file in which the code would appear, it would
also indicate other places in the system that possibly use
that file. Rothermel and Harrold’s safe technique based
upon PathImpact is considered safe with respect to the

* Rothermel and Harrold do note that a RTS technique can only be as
effective as the test suite in revealing modifications and faults.

source code and will identify any test case that exercises
affected code. However, any change that falls outside of
source code and has a manual test case could not be
detected by Rothermel’s technique.

5.2 Precision

The precision of our technique improves as the number

of changes in the system increases. Rothermel and
Harrold recognize that no RTS technique can be
guaranteed as 100% precise [15]. Due to the use of
historical change information, our technique’s precision is
only governed by how well future modifications match
historical patterns. If new features are not being added to
a system and new modifications follow historical
patterns, then the precision of our technique could be
high.

The four safe regression techniques mentioned above in
particular can have the problem of being imprecise.
When selecting every test that intersects a given call path,
numerous extra tests can be selected in the pursuit of
ensuring that the result set is safe. Laski and Szermer’s
RTS technique identifies a control scope of each decision
statement and finds every call path in which that
statement exists. They refer to these closures of call paths
as clusters, and a given cluster can have numerous tests
associated with it. However, if only a small portion of a
cluster is changed, all the tests for that cluster are still
selected. Rothermel and Harrold’s technique based on
PathImpact works in a similar fashion. These
techniques have shown result sets where the number of
false positives approaches 40% of the set [18].

There is a tradeoff between inclusiveness and precision,
as the fully inclusive (safe) techniques also tend to have
higher numbers of false positives, while those techniques
that try to eliminate as many false positives as possible
also exclude some true positives at the same time [15].
We recognize that our RTP technique can never be safe
due to the use of historical data, but through the use of the
historical data, we can improve the precision of our
technique. The prioritization vector produced by our
technique orders the test cases from those that are most
likely to be true positives based on historical evidence.
Thus, the precision of our technique is governed by how
far down the prioritization list a developer or tester goes,
with a degree of diminishing returns as the list progresses.
Further, since our technique is based on historical
evidence and not actual semantic data, the prioritization
may be better categorized as a “recommendation list,” as
opposed to a definitive list of required regression tests.
As shown above in Figure 5.2, the likelihood of a
recommendation being a true positive is higher at the top
of the list than further down. We found that in the top
seven recommendations to have nearly 95% precision. If

developers are looking for the most relevant tests quickly,
then our technique would be a viable possibility.

5.3 Efficiency

Our technique begins with the gathering of change

records from a source repository. The time it takes to
gather these records is proportional to the amount of
activity the repository has had over time, or O(R*A),
where R is the number of revisions and A is the average
number of files in a revision. Once the records are
gathered and placed in the matrix M as described in
earlier sections of this paper, a sparse SVD is performed
on the matrix. A sparse SVD is performed because most
files in the system will not change with every other file in
the system, thus making M a sparse matrix. The
complexity of a sparse SVD is O(F log F), where F is the
number of files in the system. After the SVD has been
completed, the impact of the new revision is done by
comparing the changed files to the cluster set, which is
O(F*C), where C is the number of files in that revision.

The key difference between our technique and most
other RTS techniques is that our technique does not
incorporate any semantic or dynamic execution
information. Our technique requires the gathering of
development artifacts from a data source, performing a
SVD, and then interpreting the results. The most
inefficient part of our technique is the computation of the
SVD, assuming that there are automated procedures in
place to gather change records to populate the M matrix.
However, the SVD does not need to be calculated with
each new system modification, and that process could be
easily automated to run during off-hours. We believe that
it would be sufficient to compute a new SVD at the end
of the day automatically after no more modifications
would be made. In this way, the efficiency of our
technique can be much higher than any dynamic RTS
technique, since this would reduce our technique to a
simple matrix times a linear vector for each RTS
recommendation. In an organization where dynamic
means are infeasible, such as instances where call graphs
cannot be created and maintained effectively, our
technique might be more appropriate.

Our technique suffers from a more software
development process-intensive requirement than other
RTS techniques. Traceability of tests to the files they
execute is required to generate the prioritization list from
impact analysis results. In our industrial case study,
traceability information was recorded as a by-product of
the testing process and was thus readily available with no
additional overhead. Other organizations, however, may
have to adjust their process to gather this information, or
run a code coverage tool to gather the data.

We must note that certain development traceabilities
must be maintained for the overall efficiency of our

technique to be better than theirs. In most RTS
techniques, the pre-processing required for the technique,
whether that be executing instrumented code, gathering a
call trace, or performing static code slicing, is the most
time intensive. The algorithms themselves to then
determine the regression tests are relatively comparable
operating in linear time.

5.4 Generality

The novel aspect of our RTS technique is its generality

in that its context is all-inclusive. Any file that is
managed through a change management system, whether
that file is source code, media files, documentation, or
anything else, our technique can recommend tests
appropriate for those files based upon which other files
they have changed with. Faults that are found in non-
source files can be as severe as those within source files
and thus we believe that our technique for prioritizing
tests with regard to all files in the system can provide
some added insight into prioritizing regression test cases.

Our interpretation of generality is somewhat broader
than Rothermel and Harrold. They portray generality for
RTS techniques being the applicable to different
programming languages, environments, and testing
methods. RTS techniques based on non-semantic or
dynamic information effectively change this definition by
changing the overall context in which the RTS technique
is applied. By changing the context of the RTS
methodology to non-source means, there are no
restrictions on programming language, environment, or
testing methods. However, it does add a separate level of
constructs required for execution, namely various types of
traceabilities between the code and the development
artifacts of change records for our technique or
requirements for PORT.

6. Summary

In this paper, we explored an empirically-based
regression test prioritization method based upon
structures discovered through change records and singular
value decomposition. To show the efficacy of our
technique, a case study was performed with three releases
of a product from IBM. The association clusters
specifically illuminated areas of the code base where
cross-file dependencies existed and areas of the system
that included files that would not normally be examined
in an analysis that used execution-based files, such as
help files and configuration files. We performed a post
hoc case study using this technique with three minor
releases of a software product. We found that our
methodology suggested additional regression tests in 50%
of test runs and that the highest-priority suggested test
found an additional fault 60% of the time.

Our technique adds to the body of knowledge in RTS
by providing a method that extends the generality of RTS
outside of the realm of programming languages and
environments by using development artifacts. Our
technique, while not safe like many other RTS
techniques, improves its precision by prioritizing
regression tests based upon historical evidence regarding
previous fault-proneness. Overall, our technique can be
much more efficient than other RTS techniques given that
traceability information is readily available through the
development process. If traceability information is not
readily available, it can be generated through code
coverage tools, which can add extra overhead to our
technique.

7. Acknowledgments

We would sincerely like to thank J.B. Baker at IBM for
his input into this work. Partial funding was provided for
NCSU authors by the National Science Foundation.

8. References

[1] ANSI/IEEE, "IEEE Standard Glossary of of Software
Engineering Terminology, Standard 729," 1983.
[2] Ball, T., Kim, J., Potter, A., and Siy, H., "If your
version control system could talk," in Workshop on Process
Modeling and Empirical Studies of Software Engineering, 1997.
[3] Beyer, D. and Noack, A., "Clustering Software
Artifacts Based on Frequent Common Changes," in 13th IEEE
International Workshop on Program Comprehension, St. Louis,
MO, 2005, pp. 259-268.
[4] Canfora, G. and Cerulo, L., "Impact Analysis by
Mining Software and Change Request Repositories," in
International Symposium on Software Metrics, Coma, Italy,
2005, pp. 9-18.
[5] Demmel, J., Applied Numerical Linear Algebra.
Philadelphia: Society for Industrial and Applied Mathematics,
1997.
[6] Dickinson, W., Leon, D., and Podgurski, A., "Finding
Failures by Cluster Analysis of Execution Profiles," in
International Conference on Software Engineering, Toronto,
Canada, 2001, pp. 339-348.
[7] Gall, H., Jazayeri, M., and Krajewski, J., "CVS
Release History Data for Detecting Logical Couplings," in Sixth
International Workshop on Principles of Software Evolution,
2003.
[8] Jalote, P., Software Project Management in Practice.
New York: Addison Wesley Professional, 2002.
[9] Kroll, P. and Kruchten, P., The Rational Unified
Process Made Easy: A Practitioner's Guide to the RUP.
Boston: Addison Wesley, 2003.
[10] Kruchten, P., The Rational Unified Process: An
Introduction, Third ed. Boston: Addison Wesley, 2004.
[11] Livshits, B. and Zimmermann, T., "DynaMine:
Finding Common Error Patterns by Mining Software Revision
Histories," in European Software Engineering Conference and

Symposion on the Foundations on Software Engineering,
Lisbon, Portugal, 2005.
[12] Orso, A., Apiwattanapong, T., and Harrold, M. J.,
"Leveraging field data for impact analysis and regression
testing," in Symposium on the Foundations of Software
Engineering, Helsinki, Finland, 2003, pp. 128-137.
[13] Osinski, S., Stefanowski, J., and Weiss, D., "Lingo:
Search Results Clustering Algorithm Based on Singular Value
Decomposition," in Advances in Soft Computing, Intelligent
Information Processing and Web Mining, Zakopane, Poland,
2004, pp. 359-368.
[14] Ren, X., Shah, F., Tip, F., Ryder, B., and Chesley, O.,
"Chianti: a tool for change impact analysis of Java programs," in
Conference on Object-Oriented Programming, Systems,
Languages, and Applications, Vancouver, Canada, 2004, pp.
432-448.
[15] Rothermel, G. and Harrold, M., "Analyzing
Regression Test Selection Techniques," IEEE Transactions on
Software Engineering, vol. 22, pp. 529-551, August 1996.
[16] Rothermel, G. and Harrold, M. J., "A Safe, Efficient
Algorithm for Regression Test Selection," in International
Conference on Software Maintenence, Montreal, Canada, 1993,
pp. 358-367.
[17] Rothermel, G. and Harrold, M. J., "A Framework for
Evaluating Regression Test Selection Techniques," in
International Conference on Software Engineering, Sorrento,
Italy, 1994, pp. 201-210.
[18] Rothermel, G. and Harrold, M. J., "Empirical Studies
of a Safe Regression Test Selection Technique," IEEE
Transactions on Software Engineering, vol. 24, pp. 401-418,
June 1998.
[19] Rothermel, G., Untch, R. H., and Harrold, M. J.,
"Prioritizing Test Cases For Regression Testing," IEEE
Transactions on Software Engineering, vol. 27, pp. 929-948,
October 2001.
[20] Sherriff, M., Lake, M., and Williams, L., "Empirical
Impact Analysis using Singular Value Decomposition," North
Carolina State University, Raleigh, NC CSC-TR-2007-13, April
29 2007.
[21] Srikanth, H., "Requirements-Based Test Case
Prioritization," in Doctoral Symposium in International
Conference of Software Engineering, St. Louis, MO, 2005.
[22] Tip, F., "A survey of program slicing tecniques,"
Journal of Programming Languages, vol. 3, pp. 121-189, 1995.
[23] Will, T., "Introduction to the Singular Value
Decomposition." vol. 2006: UW-La Crosse, 1999.
[24] Ying, A., Murphy, G., Ng, R., and Chu-Carroll, M.,
"Prediction Source Code Changes by Mining Change History,"
IEEE Transactions on Software Engineering, vol. 30, pp. 574-
586, September 2004.
[25] Zimmermann, T., Diehl, S., and Zeller, A., "Mining
Version Histories to Guide Software Changes," IEEE
Transactions on Software Engineering, vol. 31, June 2005.

