
An Empirical Study of JUnit Test-Suite Reduction

Lingming Zhang∗, Darko Marinov†, Lu Zhang‡, Sarfraz Khurshid∗
∗Electrical and Computer Engineering, University of Texas at Austin

Email: zhanglm@utexas.edu, khurshid@ece.utexas.edu
†Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL 61801

Email: marinov@illinois.edu
‡Institute of Software, Peking University, Beijing, 100871, P. R. China

Email: zhanglu@sei.pku.edu.cn

Abstract—As test suites grow larger during software evolution,
regression testing becomes expensive. To reduce the cost of
regression testing, test-suite reduction aims to select a minimal
subset of the original test suite that can still satisfy all the test
requirements. While traditional test-suite reduction techniques
were intensively studied on C programs with specially generated
test suites, there are limited studies for test-suite reduction on
programs with real-world test suites. In this paper, we investigate
test-suite reduction techniques on Java programs with real-world
JUnit test suites. We implemented four representative test-suite
reduction techniques for JUnit test suites. We performed an
empirical study on 19 versions of four real-world Java programs,
ranging from 1.89 KLoC to 80.44 KLoC. Our study investigates
both the benefits and the costs of test-suite reduction. The results
show that the four traditional test-suite reduction techniques can
effectively reduce these JUnit test suites without substantially
reducing their fault-detection capability. Based on the results,
we provide a guideline for achieving cost-effective JUnit test-
suite reduction.

I. INTRODUCTION

Large-scale software usually undergoes evolution to refactor

existing code, fix bugs, or add new features. To validate

software changes during software evolution, developers often

use regression test suites. However, the accumulated regression

test suites can become extremely large and time-consuming to

run. For example, an industrial collaborator of Rothermel et

al. [1] reported that running the entire test suite for one of

their software products takes nearly seven weeks. Therefore,

researchers have developed various techniques to reduce the

cost of regression testing through test-suite reduction [2]–

[4], test-case prioritization [1], [5], [6], and regression test

selection [7]. Yoo and Harman [8] presented a detailed survey

of regression testing techniques.

Test-suite reduction [2], [3], [9], [10] (also known as test-
suite minimization [4]) aims to find a representative subset

of the original test suite which can satisfy the same test
requirements as the original test suite. For example, when

testers use statement coverage as test requirements, test-suite

reduction becomes the problem of finding a subset of the

original test suite which covers the same statements as the

original test suite. Formally, given an original test suite T , and

a set of test requirements R, the problem of test-suite reduction

is defined as finding a set of test cases Treduced ⊆ T such that

∀r ∈ R(∃t ∈ T, t satisfies r ⇒ ∃t′ ∈ Treduced, t
′ satisfies r).

Finding the minimal representative subset for a given test

suite is equivalent to the problem of set covering and has been

shown to be NP-complete [11]. Therefore, many algorithms

were proposed to generate approximately minimal reduced

test suites. Traditional test-suite reduction techniques include

greedy techniques [10], heuristic-based techniques [2], [3], and

techniques based on integer linear programming (ILP) [12],

[13]. The key metrics for evaluating these techniques are

(1) the size of the reduced test suites and (2) the fault-detection

capability of the reduced test suites (because removing some

test cases from the original test suite can lower its fault-

detection capability).

Several empirical studies were conducted with the proposed

test-suite reduction techniques to compare the sizes of reduced

test suites. For example, Chen et al. [10] compared the sizes

of reduced test suites via a simulation study, and Zhong et

al. [9] studied both the sizes of reduced test suites and the

time taken by various test-suite reduction techniques on a set

of C programs. There are also empirical studies on the effect of

test-suite reduction on lowering the fault-detection capability.

However, the findings are non-conclusive: Wong et al. [14],

[15] found that test-suite reduction does not substantially lower

the fault-detection capability of test suites, whereas Rothermel

et al. [16] found that test-suite reduction can severely lower

the fault-detection capability.

In this paper we present a new study on test-suite reduction,

which greatly extends four aspects compared to the existing

studies. (1) The subject programs in our study are larger than

those used in previous studies; our programs are in Java not

in C as in most existing reearch [2], [4], [9], [15], [17], and

coding styles in Java and C can differ. (2) The nature of tests

is substantially different: we focus on tests for small units of

code from a larger system and hence some tests may have

mutually disjoint execution paths, whereas previous studies

looked at small programs where many tests execute the same

main method albeit on different inputs. (3) Test generation

is substantially different: our focus is on real test suites that

are accumulated during a system’s evolution, whereas previous

studies mainly focused on synthetic suites that were generated

in the laboratory. (4) The cost-benefit analysis in our study is

substantially more extensive: some previous studies considered

both benefits (reduction of test suite size) and costs (lowering

of fault-detection capability) of test-suite reduction [4], [14],

2011 22nd IEEE International Symposium on Software Reliability Engineering

1071-9458/11 $26.00 © 2011 IEEE

DOI 10.1109/ISSRE.2011.26

170

[15] but did not consider the influence of reduction techniques

and test granularities; similarly, there are studies considering

the influence of reduction techniques [3], [9], [10], but they

only considered benefits and not costs of test-suite reduction.

In addition, no previous study evaluated the benefits/costs of

different JUnit test granularities, where granulatiry refers to

grouping JUnit test cases based on their test methods or their

test classes.

More specifically, we evaluate both the benefits and costs of

four existing, traditional test-suite reduction techniques on 19

versions of four real-world Java programs, totaling over 700

KLoC, with accumulated JUnit test suites. We implemented

four techniques—one greedy technique [10], two heuristic-

based techniques [2], [3], and one ILP-based technique [13]—

and applied them on reducing test suites written in JUnit.

In addition to the choice of technique, our study involves

two more independent variables: test-case granularity and test-

coverage level.

The results show that these traditional test-suite reduction

techniques can effectively reduce the size of these test suites

without substantially lowering the fault-detection capability,

which partially confirms Wong et al.’s study [14], [15] but

differs from Rothermel et al.’s study [4]. The results also show

that, for the Java programs and JUnit test suites considered, the

choice of test-reduction technique does not impact much the

sizes of reduced test suites or their fault-detection capabilities,

while the choice of test-case granularity and the choice of

test-coverage level significantly impact both costs and benefits

of test-suite reduction. Based on the results, we provide a

practical guideline for cost-effective reduction of real-world

JUnit test suites.

II. PRELIMINARIES

In this section, we introduce the concepts and notations used

throughout this paper. Given a test suite T and a set of test

requirements R for the program under test, we denote the

satisfiability relation between test cases and test requirements

as S : T × R = {〈t, r〉|t ∈ T, r ∈ R, t satisfies r}. Then,

for any test case t ∈ T , we use S[t] = {r|〈t, r〉 ∈ S} to

denote the set of test requirements satisfied by t. Furthermore,

for any subset of test cases T ′ ⊆ T , we denote the set of

test requirements satisfied by any test cases in T ′ as S[T ′] =⋃
t∈T ′(S[t]). Similarly, for any test requirement r ∈ R, we

use S−1[r] = {t|〈t, r〉 ∈ S} to denote the set of test cases

satisfying r. For any subset of test requirements R′ ⊆ R, we

use S−1[R′] =
⋃

r∈R′(S−1[r]) to denote the set of test cases

satisfying any test requirements in R′.
As briefly mentioned in Section I, the definition of test-

suite reduction is finding a subset of the original test suite

that can still satisfy all the test requirements satisfied by the

original suite. Using our notation, we can define test-suite

reduction simply as finding a representative subset T ′ ⊆ T
such that S[T ′] = S[T]. We can further define the minimal

representative subset as a test suite Tm ⊆ T such that

S[Tm] = S[T] ∧ (∀T ′ ⊆ T, S[T ′] = S[T] ⇒ |Tm| ≤ |T ′|),
where |T | denotes the size of test suite T . Although the

problem of finding a minimal representative subset has been

recognized as NP-complete, researchers have utilized the char-

acteristics of different test cases to develop algorithms that

find approximately minimal representative subsets. There are

mainly two kinds of test cases that have been shown to be

useful in guiding test-suite reduction:

Essential Test Cases. A test case t is called essential if and

only if t satisfies some test requirements exclusively, i.e., t
must appear in every minimal representative subset [3]. In

this paper, we use the symbol E(T) to denote the set of all

essential test cases in T . Because essential test cases must

appear in every minimal representative subset, these test cases

should be selected as early as possible. This insight was

adopted by various test-suite reduction techniques [2], [3].

1-to-1 Redundant Test Cases. A test case t is called 1-to-1
redundant if and only if there exists another test case t′ �= t
that can satisfy all the requirements satisfied by t, i.e., S[t] ⊆
S[t′] [3]. Whenever a 1-to-1 redundant test case t would have

appeared in a representative subset, we can use t′ to replace t,
i.e., any representative subset of T −{t} is also representative

subset of T . Therefore, 1-to-1 redundant test cases need not

appear in any minimal representative subsets and should be

eliminated as early as possible. This insight was also adopted

by traditional test-suite reduction techniques [3], [18].

III. STUDIED TECHNIQUES

In this section, we briefly introduce the four traditional

test-suite reduction techniques investigated in this paper. For

the original test suite T and test requirements R, we use

m and n, respectively, to denote their sizes, i.e., m = |T |
and n = |R|. In addition, we denote the maximum number

of test cases satisfying one test requirements as k, and the

maximum number of test requirements that are satisfied by

one test case as l. Formally, k = maxr∈R(|S−1[r]|) and

l = maxt∈T (|S[t]|).
A. The Greedy Technique

Given the original test suite T and test requirements R, the

greedy technique iteratively selects a test case that satisfies

the maximum number of unsatisfied test requirements until all

the test requirements satisfied by T have been satisfied. More

precisely, the greedy technique initializes the resulting suite

Treduced as ∅. During each iteration, the greedy technique first

selects a test case t such that ∀t′ ∈ (T − Treduced), |S[t′]| ≤
|S[t]|, then the technique puts t into Treduced and removes

S[t] from the requirement set satisfied by each unselected test

cases. Finally, the greedy technique terminates and returns

Treduced when S[Treduced] = S[T]. Because each iteration

selects a test case that satisfies at least one unsatisfied test

requirement, the maximum number of iterations is min(m,n).
During each iteration, the time complexity for selecting the

test case with maximum number of satisfied requirements is at

most O(m), and the time complexity for updating the satisfied

requirements of not selected test cases is at most O(ml).
Therefore, the total time complexity for the greedy technique

is O(mlmin(m,n)).

171

B. Harrold et al.’s Heuristic

This heuristic was first proposed by Harrold et al. [2], and its

basic idea is to select more essential test cases earlier. More

precisely, this heuristic first groups all the test requirements

into R1, R2, ..., Rk, where Ri represents the set of test

requirements that are satisfied by exactly i test cases, i.e.,

Ri = {r| i = |S−1[r]|}, and k is the maximum number of

test cases that can satisfy one requirement. As R1 represents

all the requirements that can only be satisfied by one test case,

all the test cases satisfying requirements in R1 are essential

test cases, i.e., E(T) = S−1[R1]. Therefore, this heuristic

first selects all the test cases satisfying R1, i.e., E(T), and

marks all requirements in R1 as satisfied. The situation for

Ri (i > 1) is more complicated: the heuristic continuously

selects the test cases that satisfy the maximum number of

not-yet-satisfied requirements in Ri; if two or more test cases

are tied, the heuristic continues to compare the number of

not-yet-satisfied requirements satisfied by them in Ri+1, and

the procedure continues until i = k. If the procedure still

fails to select a winner, the heuristic randomly selects from

the candidates. When all the requirements in Ri have been

satisfied, the heuristic will continue to Ri+1, following the

same procedure as for Ri. This heuristic terminates when all

the requirements in R have been satisfied. The time complexity

of this heuristic is O((m+ n)nk) [10].

C. The GRE Heuristic

The GRE heuristic was first proposed by Chen and Lau [3],

[10]. This heuristic utilizes both the characteristics of essential

test cases and 1-to-1 redundant test cases, and brings them

together with the greedy strategy. The selection of essential test

cases removes newly satisfied requirements from the satisfying

requirement set of unselected test cases, thus causing newly 1-

to-1 redundant test cases. On the other side, the removal of 1-

to-1 redundant test cases might in turn generate more essential

test cases. Therefore, the GRE technique alternatively applies

these two strategies when applicable. When the process cannot

continue with any of these two strategies, the GRE heuristic

simply uses the greedy technique to break the deadlock and

then resumes the process. The heuristic terminates when all

the requirements in R have been satisfied. It has been shown

that if the greedy technique is never used during the reduction,

the reduced test suite by this heuristic is exactly the minimal

representative set of the original suite [3]. The time complexity

for this heuristic is O((n+m2l)min(m,n)) [10].

D. The ILP Technique

Black et al. [13] proposed two integer linear programming

(ILP) models for test-suite reduction. The first ILP model is

for single-objective test-suite reduction, while the second ILP

model is for multiple-objective test-suite reduction. As the

second ILP model also takes the different fault detection capa-

bilities of different test cases into account, we only introduce

the first ILP model in this paper to enable fair comparison

with the other traditional test-suite reduction techniques. The

first ILP model aims to minimize the number of selected test

cases that satisfy the same test requirements with the original

test suite, and is defined as:

Objective : Minimize(
∑m

j=1 xj), xj ∈ [0, 1]

Constraint :
∧n

i=1(
∑m

j=1 sijxj ≥ 1), sij ∈ [0, 1]

where xj represents whether the jth test case in T is selected

in the reduced suite (i.e., xj = 1 denotes the jth test case

is selected), and sij represents whether the ith requirement

in R is satisfied by the jth test case in T (i.e., sij = 1
denotes the ith requirement is satisfied by the jth test case).

The model encodes finding the minimized number of test cases

in T that still satisfy all the test requirements in R, which is

exactly the definition of test-suite reduction. Although ILP is

an NP-complete problem [19], recent ILP solvers, e.g., IBM
Symphony library [20], have shown to be effective in practice.

IV. EMPIRICAL STUDY

A. Research Questions

Our empirical study addresses the following research ques-

tions:

• RQ1: How much do the traditional test-suite reduction

techniques reduce the sizes and the fault-detection capa-

bility for real-world JUnit test suites?

• RQ2: How do the different experimental factors (e.g.,

the choices of test-suite reduction technique, test-case

granularity, and test-coverage level) impact the size of

the reduced JUnit test suites?

• RQ3: How do the different experimental factors influence

the fault-detection capability of the reduced JUnit test

suites?

Note that the first research question is mainly concerned

with whether there exists a cost-effective reduction for JUnit

test suites, while the second and the third questions are

concerned with how to achieve cost-effective JUnit test-suite

reduction in practice.

B. Considered Independent Variables

In the design of empirical studies, certain selected fac-

tors are usually controlled or changed by experimenters to

investigate the relationships between these factors and final

experimental results. These factors are called independent
variables (IV). Based on our research questions and the style

of JUnit test suites, we consider three independent variables for

JUnit test-suite reduction: the test-suite reduction technique,

the test-case granularity, and the test-coverage level.

IV1: Reduction Techniques. In this study, we used four tra-

ditional test-suite reduction techniques that have been widely

used in previous studies on C programs (e.g., [4], [9], [10]),

and applied them to real-world JUnit test suites:

• The Greedy Technique (denoted as G), which is presented

in detail in Section III-A.

• Harrold et al.’s Heuristic (denoted as H), which is pre-

sented in detail in Section III-B.

• The GRE Heuristic (denoted as GRE), which is presented

in detail in Section III-C.

172

• The ILP Technique (denoted as ILP), which is presented

in detail in Section III-D.

Note that all the studied techniques use random selection

to break ties when two test cases have the same priorities.

To make a fair comparison, we run each technique for 100

different random seeds and use the arithmetic mean values

as average results for reduction in test-suite size and fault

detection capability for each technique.
IV2: Test-Case Granularity. Previous studies on regression

testing for JUnit test suites (e.g., JUnit test-case prioritiza-

tion [21]) have identified test-case granularity as an important

factor in their experimental design. Therefore, we also consider

test-case granularity as an independent variable in our empir-

ical study. More precisely, following the previous studies, we

consider these two types of test-case granularity:

• Test-Class Granularity (denoted as TC), where we con-

sider each JUnit TestCase class as a test case.

• Test-Method Granularity (denoted as TM), where we

consider each JUnit test method within each TestCase

class as a test case.

Section IV-D describes in further detail the test cases at

different granularity in the studied subjects.
IV3: Test-Coverage Level. Method coverage and statement

coverage are two commonly used criteria for code coverage

in previous regression-testing studies on JUnit test suites [21],

[22]. In this study, we also use these two coverage criteria to

define test requirements for JUnit test suites:

• Method Level (denoted as Meth), which specifies cover-

ing all the Java source methods as the test requirements

for test-suite reduction.

• Statement Level (denoted as Stat), which specifies cover-

ing all the Java source statements as the test requirements

for test-suite reduction.

Note that although statement and method coverage are not

very strong criteria, they are widely used in practice and

provide larger reduction in test-suite size than stronger criteria.

C. Dependent Variables and Metrics
In empirical studies, dependent variables (DV) are used to

indicate and measure the interesting aspects of final results.

In this study, we use two dependent variables commonly used

by traditional test-suite reduction studies [4], [14], [17]:
DV1: Reduction in Test-Suite Size. This variable (abbrevi-

ated as RS) denotes the ratio of test cases reduced from the

original test suite. Following the traditional test-suite reduction

work [4], [14], we use the following metric for measuring this

variable:

RS =
|T | − |Treduced|

|T | ∗ 100
where T denotes the set of test cases in the original test suite,

while Treduced denotes the set of test cases in the reduced test

suite.
DV2: Reduction in Fault-Detection Capability. This vari-

able (abbreviated as RF) denotes the ratio of lowered fault-

detection capability. Following the traditional test-suite reduc-

tion work [4], [14], we use the following metric for measuring

this variable:

RF =
|F | − |Freduced|

|F | ∗ 100

where F denotes the set of faults revealed by the original test

suite, while Freduced denotes the set of faults revealed by the

reduced test suite.

Note that the first dependent variable is an indicator of

the benefit brought by test-suite reduction, while the second

dependent variable is an indicator of the cost of test-suite

reduction.

D. Subject Programs, Test Suites, and Faults

We used 19 versions of four real-world Java programs as

subjects for this study: 3 versions of jtopas, 3 versions of

xml-security (abbreviated as xmlsec), 5 versions of jmeter,

and 8 versions of ant. jtopas1 is code for parsing text data.

xml-security2 implements XML signature and encryption stan-

dards. jmeter3 is used for load testing and performance mea-

surement. ant4 is a Java-based build tool, similar to the Unix

tool make. We obtained the successive versions of these four

programs from the Software-artifact Infrastructure Repository

(SIR)5 [23]. We chose SIR because it is very widely used. The

sizes of the studied subjects range from 1.89 KLoC to 80.44

KLoC, and amount to total of 701.10 KLoC. Table I shows

the detailed statistics of the subjects. For each subject, the first

two columns show the mapping between the labels we used

and the actual subjects, and the next three columns show the

number of statements, the number of classes, and the number

of methods, respectively.

Each version of each program comes with a JUnit test suite

in SIR. We directly used those JUnit test suites as the original

test suites for applying test-suite reduction. Note that due to the

specific style of organizing JUnit tests, there are two natural

types of test-case granularity: the test-class granularity that

treats each TestCase class as a test case and the test-method

granularity that treats each test method within each TestCase

class as a test case. The numbers of test cases at the test-class

granularity and the test-method granularity for each subject

are shown in columns 6 and 7 of Table I.

Each version of each program also comes with a set of

manually seeded faults in SIR, and the number of seeded faults

is shown in Column 8 of Table I. We used these seeded faults

to form faulty versions to simulate software evolution. Then

we evaluate the reduction of test-suite sizes (i.e., RS) and the

lowering of fault-detection capability (i.e., RF) caused by test-

suite reduction to address the research questions. In addition,

previous research has shown that it is often appropriate to use

automatically mutated faults for regression-testing experimen-

tation [22], [24], [25]. In fact, Andrews et al. [24], [25] found

that for software-testing experimentation mutated faults are

1http://jtopas.sourceforge.net/jtopas/, Accessed in August 2011.
2http://santuario.apache.org/, Accessed in August 2011.
3http://jakarta.apache.org/jmeter/, Accessed in August 2011.
4http://ant.apache.org/, Accessed in August 2011.
5http://sir.unl.edu/portal/index.html, Accessed in August 2011.

173

TABLE I
STATISTICS FOR SUBJECTS

Label Subject Number of Number of Number of Number of Number of Number of Number of
Statements Classes Methods Test Classes Test Methods Seeded Faults Mutated Faults

S1 jtopas-v1 1897 19 285 10 126 10 100
S2 jtopas-v2 2031 21 304 11 128 12 100
S3 jtopas-v3 5361 50 748 18 209 16 100
S4 xmlsec-v1 18323 179 1627 15 92 20 100
S5 xmlsec-v2 18985 180 1629 15 94 19 100
S6 xmlsec-v3 16878 145 1398 13 84 13 100
S7 jmeter-v1 33670 334 2919 26 78 19 35
S8 jmeter-v2 33097 319 2838 29 80 20 100
S9 jmeter-v3 37271 373 3445 33 78 19 100
S10 jmeter-v4 38357 380 3536 33 78 13 100
S11 jmeter-v5 41052 389 3613 37 97 12 100
S12 ant-v1 25846 228 2511 34 137 11 100
S13 ant-v2 39733 342 3836 51 219 21 100
S14 ant-v3 38810 342 3845 51 219 7 100
S15 ant-v4 61877 532 5684 102 521 26 100
S16 ant-v5 63510 536 5802 105 557 15 100
S17 ant-v6 63578 536 5808 105 559 1 100
S18 ant-v7 80381 649 7520 149 877 29 100
S19 ant-v8 80444 650 7524 149 878 4 100

even more similar to real faults than seeded faults, as seeded

faults seem to be harder to detect than real faults. Therefore,

we also used mutated faults produced by mutation testing to

form faulty versions for evaluating RF values. More precisely,

we used all 15 traditional mutation operators of MuJava6 [26]

to produce faulty versions (i.e., mutants) to form a mutant

pool for each subject. For each subject, shown in Column 9

of Table I, we randomly select 100 mutants that can be killed

by the original test suite as mutated faults from its mutant pool

to evaluate RF values. The only exception is on subject jmeter-
v1: we only use 35 mutants as mutated faults to evaluate RF

values, because only 35 mutants can be killed by the original

test suite of jmeter-v1.

E. Implementation and Supporting Tools

We implemented the basic coverage-collection component

for JUnit test-suite reduction based on the Eclipse JDT toolkit7

and the ASM byte-code manipulation framework8. Based on

the Eclipse JDT toolkit, the component automatically distin-

guishes source classes and JUnit TestCase classes for programs

under test to enable different instrumentation. Based on the

ASM framework, the component instruments each JUnit test

method to record the test method identifier and the identifier

of its corresponding test class, and instruments each source

method and statement to record all the statements or methods

executed by each JUnit test method. With the instrumentation,

whenever corresponding JUnit test methods are executed, their

identifiers and statements or methods executed by them will be

automatically traced. With the traced coverage information for

each test-method granularity test case, the component simply

composes the coverage information of test methods from a

common test class to form the coverage information for each

test-class granularity test case.

6http://www.cs.gmu.edu/ offutt/mujava/, Accessed in August 2011.
7http://www.eclipse.org/jdt/, Accessed in August 2011.
8http://asm.ow2.org/, Accessed in August 2011.

Based on the basic coverage-collection component, all the

studied test-suite reduction techniques are implemented by

the first author strictly according to their original algorithmic

details. The G, H, and GRE techniques are simply imple-

mented without external libraries, while the ILP technique is

implemented based on the IBM Symphony library9 [20], which

provides an API for solving mixed integer linear programming

problems and has been widely used in other studies [5], [9].

F. Data and Analysis

As discussed in Section IV-C, our empirical study considers

both the reduction in test-suite size (RS) and the lowering

in fault-detection capability (RF) of reduced suites. The RS

values achieved by each combination of independent variables

(IV) for each subject are shown in Table II. In this table, rows

1 to 3 present all the possible choices for the three IVs, where

“Meth” and “Stat” are the abbreviations for the method-level

and statement-level coverage, respectively. These three rows

together indicate each column as a combination of the IVs.

In this section, we use a tuple 〈IV1, IV2, IV3〉 to denote

each combination of the three IVs. For example, 〈G, TM,

Meth〉 of Column 2 denotes applying the greedy technique on

the test-method granularity of test cases using the method-level

coverage. Similarly, Table III shows the RF values achieved

by each combination of IVs for each subject on the mutated
faults, while Table IV shows the RF values achieved by each

combination of IVs for each subject on the seeded faults.

Recall that each RF or RS value is the average result over

100 random seeds for the corresponding combination on the

corresponding subject.

RQ1: Reduction effectiveness. As shown in Table II, on

average, all the 16 combinations of the three IVs offer benefit

in reducing the size of test suites, ranging from 12.46% to

65.52%. More precisely, tuples of the form 〈*, TM, Meth〉 (i.e.,

9http://www.coin-or.org/SYMPHONY/, Accessed in August 2011.

174

TABLE II
RS VALUES ACHIEVED BY COMBINING DIFFERENT INDEPENDENT VARIABLES

The Greedy Technique Harrold et al.’s Heuristic The GRE Heuristic The ILP Technique
Sub. Test Method Test Class Test Method Test Class Test Method Test Class Test Method Test Class

Meth Stat Meth Stat Meth Stat Meth Stat Meth Stat Meth Stat Meth Stat Meth Stat

S1 57.69 30.76 12.50 12.50 57.69 30.76 12.50 12.50 57.69 30.76 12.50 12.50 57.69 30.76 12.50 12.50
S2 57.14 28.57 22.22 11.11 57.14 28.57 22.22 11.11 57.14 28.57 22.22 11.11 57.14 28.57 22.22 11.11
S3 56.36 21.81 50.00 16.66 56.36 23.63 50.00 16.66 56.36 23.63 50.00 16.66 56.36 23.63 50.00 16.66
S4 73.91 64.13 33.33 33.33 73.91 64.13 33.33 33.33 73.91 64.13 33.33 33.33 73.91 64.13 33.33 33.33
S5 74.75 65.95 33.33 33.33 75.53 65.95 33.33 33.33 75.53 65.95 33.33 33.33 75.53 65.95 33.33 33.33
S6 78.96 69.04 38.46 38.46 79.76 69.04 38.46 38.46 79.76 69.04 38.46 38.46 79.76 69.04 38.46 38.46
S7 62.02 44.30 20.83 8.33 62.02 45.56 20.83 8.33 62.02 45.56 20.83 8.33 62.02 45.56 20.83 8.33
S8 58.74 41.25 11.99 4.00 58.74 41.25 11.99 4.00 58.74 41.25 11.99 4.00 58.74 41.25 11.99 4.00
S9 48.71 42.30 14.28 10.71 48.71 42.30 14.28 10.71 48.71 42.30 14.28 10.71 48.71 42.30 14.28 10.71
S10 48.71 42.30 14.28 10.71 48.71 42.30 14.28 10.71 48.71 42.30 14.28 10.71 48.71 42.30 14.28 10.71
S11 56.70 49.48 18.75 15.62 56.70 49.48 18.75 15.62 56.70 49.48 18.75 15.62 56.70 49.48 18.75 15.62
S12 67.48 34.81 17.64 2.94 68.61 35.03 17.64 2.94 68.61 35.03 17.64 2.94 68.61 35.03 17.64 2.94
S13 68.65 38.02 15.68 0.00 69.48 39.43 15.68 0.00 69.48 39.43 15.68 0.00 69.48 39.43 15.68 0.00
S14 68.60 37.84 15.68 0.00 69.48 39.43 15.68 0.00 69.48 39.43 15.68 0.00 69.48 39.43 15.68 0.00
S15 69.80 44.53 16.66 6.86 69.90 45.24 17.64 6.86 70.09 45.24 17.64 6.86 70.09 45.24 17.64 6.86
S16 71.57 46.78 16.19 5.71 72.10 47.28 17.14 5.71 72.28 47.46 17.14 5.71 72.28 47.46 17.14 5.71
S17 71.49 46.39 16.19 5.71 72.33 47.19 17.14 5.71 72.51 47.37 17.14 5.71 72.51 47.37 17.14 5.71
S18 72.84 50.87 20.13 10.73 73.17 51.56 20.80 10.73 73.17 51.56 20.80 10.73 73.17 51.68 20.80 10.73
S19 73.47 51.87 20.80 10.06 74.01 52.55 21.47 10.06 74.01 52.66 21.47 10.06 74.01 52.78 21.47 10.06

Avg. 65.13 44.78 21.52 12.46 65.49 45.29 21.74 12.46 65.52 45.32 21.74 12.46 65.52 45.33 21.74 12.46

TABLE III
RF VALUES ON MUTATED FAULTS BY COMBINING DIFFERENT INDEPENDENT VARIABLES

The Greedy Technique Harrold et al.’s Heuristic The GRE Heuristic The ILP Technique
Sub. Test Method Test Class Test Method Test Class Test Method Test Class Test Method Test Class

Meth Stat Meth Stat Meth Stat Meth Stat Meth Stat Meth Stat Meth Stat Meth Stat

S1 24.67 17.00 16.61 15.00 24.93 17.00 16.56 15.00 28.99 17.00 17.99 15.00 25.59 17.00 16.17 15.00
S2 23.99 13.00 15.00 10.99 23.99 13.00 15.00 10.99 23.99 13.00 15.00 10.99 23.99 13.00 15.00 10.99
S3 2.00 0.53 2.00 0.00 2.00 0.48 2.00 0.00 2.00 0.00 2.00 0.00 2.00 0.44 2.00 0.00
S4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
S5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
S6 4.99 0.00 0.00 0.00 4.99 0.00 0.00 0.00 4.99 0.00 0.00 0.00 4.99 0.00 0.00 0.00
S7 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
S8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
S9 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
S10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
S11 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
S12 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
S13 12.71 0.00 6.00 0.00 12.69 0.00 6.00 0.00 11.99 0.00 6.00 0.00 11.03 0.00 6.00 0.00
S14 7.75 1.00 3.00 0.00 7.56 1.00 3.00 0.00 7.00 1.00 3.00 0.00 7.46 1.00 3.00 0.00
S15 6.74 0.00 3.00 0.00 6.59 0.00 3.00 0.00 7.00 0.00 3.00 0.00 6.45 0.00 3.00 0.00
S16 5.87 1.00 1.00 0.00 5.52 1.00 1.00 0.00 4.99 1.00 1.00 0.00 5.51 1.00 1.00 0.00
S17 3.63 2.00 0.00 0.00 3.69 2.00 0.00 0.00 4.00 2.00 0.00 0.00 3.00 2.00 0.00 0.00
S18 3.77 3.79 1.00 1.00 3.74 3.82 1.00 1.00 4.00 4.00 1.00 1.00 3.81 3.73 1.00 1.00
S19 2.41 0.00 0.00 0.00 2.41 0.00 0.00 0.00 1.49 0.00 0.00 0.00 2.40 0.00 0.00 0.00

Avg. 5.23 2.06 2.55 1.47 5.21 2.06 2.55 1.47 5.33 2.05 2.63 1.47 5.11 2.06 2.53 1.47

techniques applied on the test-method granularity test cases

using the method-level coverage) have the highest RS values,

while tuples of the form 〈*, TC, Stat〉 (i.e., techniques applied

on the test-class granularity test cases using the statement-level

coverage) have the lowest RS values. This observation shows

that all combinations of IVs can effectively reduce the sizes

of JUnit test suites.

We further analyze the cost of test-suite reduction, i.e., the

lowering of fault-detection capability (represented by the RF

values) on mutated faults. As shown in Table III, on average,

all the 16 combinations of the 3 IVs have positive RF values,

ranging from 1.47% to 5.33%, which are smaller than the RS

values achieved. For example, tuple 〈ILP, TM, Meth〉 reduces

the test-suite sizes by 65.52% while lowering fault-detection

capability 5.11%, and tuple 〈H, TM, Stat〉 reduces the test-

suite sizes by 45.29% while lowering fault-detection capability

only 2.06%. Moreover, all combinations have zero RF values,

i.e., no lowering of fault-detection capability, for 7 of the 19

subjects. These results show that various combinations can

provide cost-effective JUnit test-suite reduction.

The results on seeded faults in Table IV further confirm

this conclusion. On average, the RV values for all the 16

combinations of three IVs range from 0.00% to 12.96%, which

are also smaller than the RS values achieved. In addition,

the same relative comparisons among combinations of the

same technique on mutated faults often hold for the seeded

faults. For example, for the ILP technique, 〈ILP, TM, Meth〉>
〈ILP, TC, Meth〉>〈ILP, TM, Stat〉>〈ILP, TC, Stat〉 on RF

175

TABLE IV
RF VALUES ON SEEDED FAULTS BY COMBINING DIFFERENT INDEPENDENT VARIABLES

The Greedy Technique Harrold et al.’s Heuristic The GRE Heuristic The ILP Technique
Sub. Test Method Test Class Test Method Test Class Test Method Test Class Test Method Test Class

Meth Stat Meth Stat Meth Stat Meth Stat Meth Stat Meth Stat Meth Stat Meth Stat

S1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
S2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
S3 14.28 0.00 14.28 0.00 14.28 14.28 14.28 0.00 14.28 14.28 14.28 0.00 14.28 14.28 14.28 0.00
S4 28.57 0.00 0.00 0.00 28.57 0.00 0.00 0.00 28.57 0.00 0.00 0.00 28.57 0.00 0.00 0.00
S5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
S6 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
S7 25.00 25.00 0.00 0.00 39.50 0.00 0.00 0.00 25.00 11.00 0.00 0.00 38.00 13.00 0.00 0.00
S8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
S9 0.00 0.00 0.00 0.00 4.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3.12 0.00 0.00 0.00
S10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
S11 33.33 33.33 0.00 0.00 33.33 33.33 0.00 0.00 33.33 33.33 0.00 0.00 33.33 33.33 0.00 0.00
S12 25.99 23.66 33.33 0.00 25.66 22.66 33.33 0.00 33.33 33.33 33.33 0.00 26.99 20.66 33.33 0.00
S13 33.33 0.00 33.33 0.00 33.33 0.00 33.33 0.00 33.33 0.00 33.33 0.00 33.33 0.00 33.33 0.00
S14 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
S15 19.99 0.00 19.99 0.00 19.99 0.00 19.99 0.00 19.99 0.00 19.99 0.00 19.99 0.00 19.99 0.00
S16 20.63 3.09 9.09 0.00 23.72 2.81 9.09 0.00 18.18 0.00 9.09 0.00 22.45 3.27 9.09 0.00
S17 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
S18 23.58 8.33 8.33 0.00 23.50 8.33 8.33 0.00 25.00 8.33 8.33 0.00 23.66 8.33 8.33 0.00
S19 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Avg. 11.82 4.91 6.22 0.00 12.96 4.28 6.22 0.00 12.15 5.27 6.22 0.00 12.82 4.88 6.22 0.00

values of both seeded and mutated faults, where > denotes

that one technique achieves higher RF value than the other.

However, there are also differences on RF values for these

two types of faults. The RF values achieved on mutated faults

are on average smaller than the RF values achieved on seeded

faults, indicating less lowering of fault-detection capability

on mutated faults than on seeded faults. This supports the

conclusions from previous studies that mutated faults and real

faults are on average easier to reveal than seeded faults [24],

[25]. The only exceptions are the combinations of the form 〈*,

TC, Stat〉. We think the reason for the exceptions is the small

number of seeded faults which allows test suites reduced by

those combinations to occasionally reveal all seeded faults by

chance.

For this research question, our results on JUnit test suites

are more consistent with the Wong et al.’s study on C pro-

grams [14], [15] while greatly differing with the Rothermel

et al.’s study on C programs [4]. Rothermel et al.’s study

shows that test-suite reduction can compromise the fault-

detection capability substantially in many cases, e.g., having

RF values of over 50% and even up to 100%. A precise

analysis of the causes for this difference would be outside

the scope of this paper, but we suggest several potential

causes. First, the subject programs used for these two studies

differ substantially: the subjects used by Rothermel et al. are

small C programs, ranging from 138 to 516 lines of code,

while the subjects used in our study are large-scale Java

programs, ranging from 1.89 KLoC to 80.44 KLoC. Second,

the test suites used are generated differently: the test suites

used by Rothermel et al. are automatically generated by a

black-box technique and then complemented with manually

created tests to achieve certain coverage criteria, resulting in

hundreds or thousands of test cases for the small programs. In

contrast, the test suites used in our study are mainly JUnit test

TABLE V
STATISTICAL ANALYSIS FOR INDEPENDENT VARIABLES’ INFLUENCE ON

RS

Descriptive Statistics
IV Choice Size Mean SD SE of Mean
IV1 G 76 35.978 23.20 2.66

H 76 36.250 23.31 2.67
GRE 76 36.263 23.33 2.68
ILP 76 36.266 23.33 2.68

IV2 TC 152 17.076 11.30 0.92
TM 152 55.302 14.65 1.19

IV3 Meth 152 43.554 23.88 1.94
Stat 152 28.824 19.96 1.62

ANOVA Analysis (at the significance level 0.05)
Source DF SS MS F Value Prob> F

IV1 3 4.54 1.51 0.003 0.9998
IV2 1 111057.39 111057.39 649.04 0.0000
IV3 1 16488.47 16488.47 34.05 < 0.0001
Total 303 162732.60

suites accumulated during real software evolution. Third, the

different seeded faults used in these two studies could also be

a potential cause.

RQ2: Effects of IVs on RS values. RS values denote the ra-

tios of test cases reduced by test-suite reduction. Investigating

effects of different IVs on the RS values can help to achieve

better reduction on sizes of test suites in practice. For each

IV, we divide all the RS values by all combinations of IVs

on all subjects into groups according to the different choices

of this IV. For example, for IV1 we divide all the RS values

into four groups, while for IV2 and IV3 we divide all the RS

values into two groups. Then, we apply statistical analysis to

find the differences between different groups divided by each

IV. The statistical results are shown in Table V, where the top

part shows the descriptive statistics for each group divided by

each IV while the bottom part shows the ANOVA analysis for

comparing different groups divided by the same IV. In the top

176

part, Column 1 presents different IVs, Column 2 shows the

choices for each IV, Column 3 shows the sample size for each

group divided by the corresponding IV choices, and columns

4 to 6 show the Mean, Standard Deviation, and Standard

Error of Mean for each group. In the bottom part, Column 1

shows the IV based on which we divide groups, and columns

2 to 6 show Degree of Freedom, Sum of Squares, Mean

Square, F Value, and p value for each group division. From

the descriptive statistics, we find that different choices on IV1

achieve similar mean values, while different choices on IV2

and IV3 achieve clearly different mean values. The ANOVA

analysis further shows that at the 0.05 significance level, there

are no significant differences among groups divided based on

different choices of IV1, while there are significant differences

between groups divided based on different choices of IV2

and IV3. This result shows that the choice of four studied

techniques has no significant influence on the ratios of sizes

reduced. In contrast, test-class granularity for JUnit test cases

is significantly less effective than test-method granularity, and

statement-level coverage is significantly less effective than

method-level coverage in reducing the size of original JUnit

test suites.

For the four compared test-reduction techniques, although

there are no statistically significant differences, there are still

slight differences. On all test-case levels and requirement

levels, ILP always achieves the largest RS values for all

subjects, GRE and H can achieve competitive RS values

compared to ILP, while G is slightly inferior to the other

techniques. Therefore, we can formulate the performance com-

parison among them as ILP∼=GRE∼=H>G, where ∼= denotes

performing approximately the same. This comparison results

between different techniques obtained on JUnit test suites

are mainly consistent with Zhong et al. [9]’s study on C

programs. They also find that ILP always achieves the minimal

representative subset, and there are no significant differences

between ILP, GRE, and H.

RQ3: Effects of IVs on RF values. Similarly with the analysis

for RQ2, we perform statistical analysis on RF values achieved

on groups divided by different IVs. The top part of Table VI

shows the descriptive statistics for the different groups divided

by different IVs on seeded faults and mutated faults, and the

bottom part of the table shows the ANOVA analysis among

groups divided by different choices of the same IV on seeded

faults and mutated faults. Similar as with the results on RS

values, the ANOVA analysis also shows that there are no

significant differences among groups divided by IV1 at the

0.05 significance level, and there are significant differences

among groups divided by IV2 and among groups divided by

IV3. Every group achieving significantly higher RS values

also achieves higher RF values, indicating the fact that higher

reduction rate in sizes consistently incurs higher lowering in

fault-detection capability of reduced test suites.

Although the ANOVA analysis of RF values is mainly the

same with as of RS values in RQ2, there are different trends

for the effects of different IVs on the RF values from their

effects on the RS values. For the groups divided by IV1, the

RF values of different groups have different distributions for

seeded and mutated faults. For seeded faults, techniques G

and H have smaller average RF values than techniques GRE

and ILP, while for mutated faults techniques ILP and H have

smaller average RF values than techniques GRE and G. Also

technique H can achieve approximately the best reduction in

suite size, so we suggest this technique as a reasonable choice

for achieving cost-effective JUnit test-suite reduction.
For IV3, on average, changing from Stat to Meth increases

the mean RS value from 28.825 to 43.547, while increasing

the mean RF value for seeded faults from 2.421 to 9.337

and increasing the mean RF value for mutated faults from

1.768 to 3.899. The rates of increase in RF values on both

mutated and seeded faults are consistently larger than that in

RS values, indicating that changing IV3 from Stat to Meth

might not be so cost-effective. For IV2, changing from TC

to TM increases the mean RS value from 17.076 to 55.302

while increasing the mean RF value for seeded faults from

3.114 to 8.643 and increasing the mean RF value for mutated

faults from 2.022 to 3.645. Although reducing at the test-case

granularity of TM is able to effectively reduce test-suite sizes,

the fault-detection capability also drops to approximately the

same extent. Therefore, we believe the testers should decide

between test-case granularity based on their specific situations:

if they care more about the efficiency, they can choose TM;

otherwise they can choose TC.
Guideline for JUnit test-suite reduction. Our empirical

study shows there exists various combinations of IVs that can

effectively reduce JUnit test suites without severely lowering

the fault-detection capability. The observations in the above

sections also provide the following suggestions for JUnit test-

suite reduction in practice:

• All the four techniques studied are not significantly

different in RS and RF values, and each of them could be

used for reducing JUnit test suites. However, technique H

always achieves nearly the largest reduction in test-suite

sizes while achieving nearly the least reduction in fault-

detection capability on both seeded and mutated faults.

Therefore, choosing technique H could be the most cost-

effective choice in practice.

• Different test-case granularity levels have significant im-

pacts on RS and RF values. However, the one achieving

larger RS values also increases RF values to approxi-

mately the same degree, indicating more reduction in

fault-detection capability of reduced test suites. There-

fore, choosing test-case granularity should be decided

based on other constraints. If the testers care more about

the efficiency, TM should be used; otherwise, TC should

be used.

• Different test-coverage levels also have significant im-

pacts on RS and RF values. As for IV2, the one achieving

larger RS values also has larger RF values. However, the

rate of increase in RF values when changing from Stat

to Meth is faster than the rate of increase in RS values.

Therefore, the testers could prefer Stat to Meth for test

coverage for JUnit test suite reduction.

177

TABLE VI
STATISTICAL ANALYSIS FOR INDEPENDENT VARIABLES’ INFLUENCE ON RF

Descriptive Statistics
Seeded Faults Mutated Faults

IV Choice Size Mean SD SE of Mean Choice Size Mean SD SE of Mean
IV1 G 76 5.743 10.81 1.24 G 76 2.835 5.57 0.64

H 76 5.870 11.11 1.27 H 76 2.828 5.58 0.64
GRE 76 5.916 11.12 1.28 GRE 76 2.874 5.84 0.67
ILP 76 5.986 11.03 1.27 ILP 76 2.797 5.56 0.64

IV2 TC 152 3.114 8.31 0.67 TC 152 2.022 4.49 0.36
TM 152 8.643 12.52 1.02 TM 152 3.645 6.45 0.52

IV3 Meth 152 9.337 12.81 1.04 Meth 152 3.899 6.49 0.53
Stat 152 2.421 7.28 0.59 Stat 152 1.768 4.33 0.35

ANOVA Analysis (at the significance level 0.05)
Seeded Faults Mutated Faults

Source DF SS MS F Value Prob> F DF SS MS F Value Prob> F
IV1 3 2.39 0.80 0.007 0.9993 3 0.23 0.08 0.0024 0.9998
IV2 1 2323.10 2323.10 20.57 < 0.0001 1 200.38 200.38 6.48 0.0114
IV3 1 3635.28 3635.28 33.48 < 0.0001 1 345.08 345.08 11.34 < 0.0010
Total 303 36429.23 303 9535.85

In summary, to achieve cost-effective reduction in practice,

we suggest using heuristic H (i.e., Harrold et al.’s heuristic [2])

as the reduction technique and Stat (i.e., the statement level)

as the test-coverage level. For the test-case granularity, we

suggest the testers decide based on real situations between TM

(i.e., the test-method granularity) and TC (i.e., the test-class

granularity).

G. Threats to Validity

In this section, we describe the internal, external, and

construct threats to the validity of our experimentation.

Internal Validity. Threats to internal validity are mainly

concerned with the uncontrolled internal factors that might

have influence on the experimental results. There are two key

threats to internal validity for this empirical study. The first

threat involves the potential faults in the implementation of

various techniques. To reduce this threat, we implemented all

the compared techniques strictly following their original algo-

rithmic details, and we used well-known, third-party libraries.

We also carefully analyzed and tested these implementations.

The second threat is concerned with the faults used in the

studied subjects. To control this threat, we use all the seeded

faults that come with the subjects in SIR. In addition, as it

has been shown that mutated faults are suitable for use in

regression-testing experimentation [22], [24], [25], we also use

large number of mutated faults for each subject in the study.

External Validity. Threats to external validity are about

whether the observed experimental results and conclusion are

generalizable to other subjects. To alleviate these threats for

this study, we use as our experimental subjects 19 versions of

four real-world Java programs with sizes ranging from 1.89

KLoC to 80.44 KLoC. We obtained both the subject programs

and their JUnit test suites from the SIR repository.

Construct Validity. Threats to construct validity are about

whether the measurements used in the experimental study

reflect the real-world situation. To reduce these threats, we

use the metrics RS [9], [10] and RF [4], [14], which were

widely used in traditional test-suite reduction works to evaluate

the benefits and costs of test-suite reduction. We apply these

metrics on JUnit test suites.

V. RELATED WORK

Researchers have investigated many topics on effective

and efficient regression testing as summarized in a recent

survey [8]. While there is a large amount of work related to our

study, we mainly discuss the most related work on test-suite

reduction.

Many test-suite reduction techniques have been proposed

for reducing test suites, mostly for C programs. There are a

number of heuristics for finding minimal representative subsets

for original test suites [2], [3], [27], [28]. Harrold et al. [2] are

inspired by the fact that essential test cases should be selected

as early as possible, and propose a heuristic for iteratively

selecting more essential test cases. Chen et al. [3] further

combine the features of both essential test cases and 1-to-

1 redundant test cases, and propose to reduce test cases by

iteratively applying these two strategies. When the procedure

cannot continue with these two strategies, Chen et al.’s heuris-

tic just breaks the deadlock with the greedy strategy. There

are also works using evolutionary algorithms [29] and integer

linear programming (ILP) [12], [13] for test-suite reduction.

Mansour et al. [29] aim to find minimal representative sets

of regression test suites based on simulated annealing and

genetic algorithms. Black et al. [13] consider ILP models

for reducing regression test suites. There is additional work

aiming to improve the fault-detection capability of reduced

test suites. For example, Jeffrey et al. [17], [30] modified the

heuristic algorithm proposed by Harrold et al. [2] by selecting

redundant test cases to maintain the fault-detection capability.

A number of empirical studies have been available for

traditional test-suite reduction. Some empirical studies do not

consider the lowering of fault-detection capability caused by

test-suite reduction. Chen et al. [10] conduct a simulation

study to investigate the ratios of test-suite sizes reduced

by different techniques, and show the effectiveness of each

technique in various simulated situations. Zhong et al. [9]

178

study both the size reduction and time taken for reduction

by different techniques on C programs, and show that the ILP

technique [13] always achieves the minimum representative

subset sizes among all compared techniques, while the GRE

technique [3] and Harrold et al.’s heuristic [2] perform about

the same.

Some empirical studies do take into account the lowering of

fault-detection capability caused by test-suite reduction. Wong

et al. [14], [15] found that test-suite reduction does not severely

influence the fault-detection capability. However, Rothermel et

al. [4], [16] found that test-suite reduction can severely reduce

the fault detection capability.

Despite the previous works, there are limited studies on test-

suite reduction for larger programs and real-world test suites in

different test paradigms. In addition, there are limited studies

extensively investigating the influence of different factors on

both the benefits and costs of test-suite reduction. Our study

aims to extensively study the benefits and costs of traditional

test-suite reduction techniques on real-world JUnit test suites

for larger Java programs.

VI. CONCLUSIONS

In this study, we investigated the performance of traditional

test-suite reduction techniques on larger programs with more

realistic test suites than in previous studies. We implemented

and applied four representative traditional test-suite reduction

techniques to Java programs with JUnit test suites. We de-

signed and conducted an empirical study which evaluated both

the benefits and costs of these test-suite reduction techniques

on real-world JUnit test suites. Based on the empirical results,

we discussed the similarities and differences between the

findings in this study and those in previous studies. Moreover,

we also provided a guideline for achieving cost-effective

reduction on JUnit test suites in practice.

ACKNOWLEDGEMENTS

This material is based upon work partially supported by

the National Science Foundation under Grant Nos. CNS-

0958231, CNS-0958199, CCF-0845628, CCF-0746856, IIS-

0438967, and AFOSR grant FA9550-09-1-0351.

REFERENCES

[1] G. Rothermel, R. Untch, C. Chu, and M. Harrold, “Test case prioritiza-
tion: An empirical study,” in Proceedings of International Conference
on Software Maintenance. IEEE, 1999, pp. 179–188.

[2] M. Harrold, R. Gupta, and M. Soffa, “A methodology for controlling
the size of a test suite,” ACM Transactions on Software Engineering and
Methodology, vol. 2, no. 3, pp. 270–285, 1993.

[3] T. Chen and M. Lau, “A new heuristic for test suite reduction,”
Information and Software Technology, vol. 40, no. 5, pp. 347–354, 1998.

[4] G. Rothermel, M. Harrold, J. Ostrin, and C. Hong, “An empirical study
of the effects of minimization on the fault detection capabilities of
test suites,” in Proceedings of International Conference on Software
Maintenance. Published by the IEEE Computer Society, 1998, p. 34.

[5] L. Zhang, S. Hou, C. Guo, T. Xie, and H. Mei, “Time-aware test-
case prioritization using integer linear programming,” in Proceedings
of International Symposium on Software Testing and Analysis, 2009,
pp. 213–224.

[6] L. Zhang, J. Zhou, D. Hao, L. Zhang, and H. Mei, “Prioritizing
junit test cases in absence of coverage information,” in Proceedings of
International Conference on Software Maintenance. IEEE, pp. 19–28.

[7] M. Harrold, J. Jones, T. Li, D. Liang, A. Orso, M. Pennings, S. Sinha,
S. Spoon, and A. Gujarathi, “Regression test selection for java software,”
in ACM SIGPLAN Notices, vol. 36, no. 11, 2001, pp. 312–326.

[8] S. Yoo and M. Harman, “Regression testing minimization, selection and
prioritization: A survey,” Software Testing, Verification and Reliability,
2010.

[9] H. Zhong, L. Zhang, and H. Mei, “An experimental study of four typical
test suite reduction techniques,” Information and Software Technology,
vol. 50, no. 6, pp. 534–546, 2008.

[10] T. Chen and M. Lau, “A simulation study on some heuristics for test
suite reduction,” Information and Software Technology, vol. 40, no. 13,
pp. 777–787, 1998.

[11] A. Aho, J. Hopcroft, and J. Ullman, “The design and analysis of
computer algorithms,” Addison-Wesley Series in Computer Science and
Information Processing, Reading, MA: Addison-Wesley, vol. 1, 1974.

[12] J. Hartmann and D. Robson, “Revalidation during the software mainte-
nance phase,” in Proceedings of International Conference on Software
Maintenance. IEEE, 1989, pp. 70–80.

[13] J. Black, E. Melachrinoudis, and D. Kaeli, “Bi-criteria models for all-
uses test suite reduction,” in Proceedings of International Conference
on Software Engineering. IEEE Computer Society, 2004, pp. 106–115.

[14] W. Wong, J. Horgan, S. London, and A. Mathur, “Effect of test
set minimization on fault detection effectiveness,” in Proceedings of
International Conference on Software Engineering, 1995, pp. 41–50.

[15] W. Wong, J. Horgan, A. Mathur, and A. Pasquini, “Test set size
minimization and fault detection effectiveness: A case study in a space
application,” Journal of Systems and Software, vol. 48, no. 2, pp. 79–89,
1999.

[16] G. Rothermel, M. Harrold, J. Von Ronne, and C. Hong, “Empirical stud-
ies of test-suite reduction,” Software Testing, Verification and Reliability,
vol. 12, no. 4, pp. 219–249, 2002.

[17] D. Jeffrey and N. Gupta, “Test suite reduction with selective re-
dundancy,” in Proceedings of International Conference on Software
Maintenance. IEEE, 2005, pp. 549–558.

[18] T. Chen and M. Lau, “Heuristics towards the optimization of the size
of a test suite,” in Proceedings of International Conference on Software
Quality Management, vol. 2, pp. 415–424.

[19] H. Hsu and A. Orso, “Mints: A general framework and tool for
supporting test-suite minimization,” in Proc. of International Conference
on Software Engineering. IEEE Computer Society, 2009, pp. 419–429.

[20] T. Ralphs and M. Guzelsoy, “The symphony callable library for mixed
integer programming,” in Proceedings of the Ninth Conference of the
INFORMS Computing Society. Citeseer, 2005.

[21] H. Do, G. Rothermel, and A. Kinneer, “Prioritizing junit test cases:
An empirical assessment and cost-benefits analysis,” Empirical Software
Engineering, vol. 11, no. 1, pp. 33–70, 2006.

[22] H. Do and G. Rothermel, “On the use of mutation faults in empirical
assessments of test case prioritization techniques,” IEEE Transactions
on Software Engineering, pp. 733–752, 2006.

[23] H. Do, S. Elbaum, and G. Rothermel, “Supporting controlled experi-
mentation with testing techniques: An infrastructure and its potential
impact,” Empirical Software Engineering, vol. 10, no. 4, pp. 405–435,
2005.

[24] J. Andrews, L. Briand, and Y. Labiche, “Is mutation an appropriate tool
for testing experiments?” in Proceedings of International Conference on
Software Engineering, 2005, pp. 402–411.

[25] J. Andrews, L. Briand, Y. Labiche, and A. Namin, “Using mutation
analysis for assessing and comparing testing coverage criteria,” IEEE
Transactions on Software Engineering, pp. 608–624, 2006.

[26] Y. Ma, J. Offutt, and Y. Kwon, “Mujava: An automated class mutation
system,” Software Testing, Verification and Reliability, vol. 15, no. 2,
pp. 97–133, 2005.

[27] A. Offutt, J. Pan, and J. Voas, “Procedures for reducing the size of
coverage-based test sets,” in Proceedings of International Conference
on Testing Computer Software. Citeseer, 1995.

[28] J. Horgan and S. London, “Atac: A data flow coverage testing tool for c,”
in Proceedings of Symposium of Quality Software Development Tools,
1992, pp. 2–10.

[29] N. Mansour and K. El-Fakih, “Simulated annealing and genetic algo-
rithms for optimal regression testing,” Journal of Software Maintenance:
Research and Practice, vol. 11, no. 1, pp. 19–34, 1999.

[30] D. Jeffrey and N. Gupta, “Improving fault detection capability by selec-
tively retaining test cases during test suite reduction,” IEEE Transactions
on Software Engineering, pp. 108–123, 2007.

179

