
ar
X

iv
:1

20
5.

49
51

v2
 [

cs
.S

E
]

31
 M

ay
 2

01
2

Speculative Symbolic Execution

Yufeng Zhang, Zhenbang Chen, Ji Wang
National Laboratory for Parallel and Distributed Processing

Department of Computing Science, National University of Defense Technology
Changsha, China

Email: {yufengzhang, zbchen}@nudt.edu.cn, jiwang@ios.ac.cn

Abstract—Symbolic execution is an effective path oriented
and constraint based program analysis technique. Recently,
there is a significant development in the research and ap-
plication of symbolic execution. However, symbolic execution
still suffers from the scalability problem in practice, especially
when applied to large-scale or very complex programs. In this
paper, we propose a new fashion of symbolic execution, named
Speculative Symbolic Execution (SSE), to speed up symbolic
execution by reducing the invocation times of constraint solver.
In SSE, when encountering a branch statement, the search
procedure may speculatively explore the branch without regard
to the feasibility. Constraint solver is invoked only when the
speculated branches are accumulated to a specified number.
In addition, we present a key optimization technique that
enhances SSE greatly. We have implemented SSE and the
optimization technique on Symbolic Pathfinder (SPF). Exper-
imental results on six programs show that, our method can
reduce the invocation times of constraint solver by21% to
49% (with an average of30%), and save the search time from
23.6% to 43.6% (with an average of30%).

Keywords-symbolic execution; speculative symbolic execu-
tion; constraint solving; Java PathFinder;

I. I NTRODUCTION

Symbolic execution (SE) is a basic program analysis
technique that was proposed more than thirty years ago [1].
Recently, SE draws renewed interests both from academia
and industry partly due to the impressive progress in con-
straint solving, related algorithms and computation power
[2][3][4]. Instead of executing programs with concrete in-
puts, symbolic execution feeds programs with symbolic
ones, meaning that a symbolic input could initially take
any value of the specific type. Assignment statements are
interpreted as the manipulations of symbolic expressions.
When encountering a branch statement, the process forks
and both of the branches are taken. On each path, the process
maintains a set of constraints calledpath conditionwhich
must hold along that path. For each branch, the path condi-
tion is updated according to the corresponding condition and
submitted to a constraint solver to check the satisfiability. In
the context of test generation, when a path ends or a bug is
found, the path condition can be solved to get a test case.
For deterministic programs, the same execution path or the
same bug can be replayed by feeding such test case as input.
Basically, symbolic execution attempts to achieve automatic
code comprehension by walking through the path space of

a program. Providing that all the path conditions can be
solved successfully, symbolic execution could cover all the
behaviors of the program.

In the past years, symbolic execution has shown a great
promise in the application to automated test generation,
proving program properties, bug detection and so on [3].
However, in practice, the scalability problem is still one of
the main obstacles in applying symbolic execution to large-
scale programs. This issue mainly stems from two closely
related reasons: path explosion phenomenon and constraint
solving overhead. There exists an exponential relationship
between the number of conditions and the paths of the
program, making exploring the whole path space infeasible
for large-scale programs. Constraint solving is the most
dominant in the running time of SE. When exploring deep
paths, the path condition may be very complex, and even
unsolvable. In addition, constraint solving overhead is almost
always aggravated by the path explosion phenomenon.

To alleviate the constraint solving overhead of SE, many
techniques have been proposed. In many symbolic execution
systems, query optimization techniques are employed to
reduce the complexity of queries and query times. For
example,counterexample cachingstores unsatisfiable path
conditions as counterexamples to reuse previous solving
results [5].Constraint independencesplits a constraint set
into independent ones, aiming to get the related constraintset
and increase the cache hit rate [5][6][7][8].Concretization
reduces complex constraints (such as nonlinear constraints
[9]) into simpler ones, and is heavily used in concolic
execution [7][8][10].

Although these effective techniques improve the perfor-
mance of symbolic execution greatly in practice, constraint
solving is still the most dominant in symbolic execution.
According to the experiments of KLEE [5],40% ∼ 90%
of the whole running time is spent on constraint solving. In
the experiments of Cloud9 [11], constraint solving consumes
more than half of the total execution time. In some experi-
ments in S2E [12], almost all the running time is dominated
by the constraint solving.

This paper proposes a new fashion of symbolic execution,
namedSpeculative Symbolic Execution(SSE), which speeds
up symbolic execution by reducing the invocation times
of constraint solver, and hence improves the scalability

http://arxiv.org/abs/1205.4951v2

of symbolic execution. Unlike pure symbolic execution,
which invokes the constraint solver immediately when a path
condition is updated, in SSE, when a branch instruction
is encountered, the path condition is updated accordingly,
but the constraint solver is not necessarily invoked. The
search procedure may advance along the path without the
determination of feasibility until the unsolved path condi-
tions are accumulated to a specified number. If the current
visiting path is feasible, the procedure continues; otherwise,
it backtracks.

Intuitively, SSE takes branches optimistically as feasible
ones. Path conditions are submitted to constraint solver
in batches, not one by one as in pure symbolic execu-
tion. When speculation succeeds, multiple invocations of
constraint solvers are replaced by one invocation. When
speculation fails, a backtracking mechanism will find the
first bad branch that makes the speculation fail. Basically,
the more feasible branches in the path space, the better SSE
performs.

In this paper, we give out the details of SSE algorithm and
discuss its effectiveness. We also propose an optimization
technique, namedAbsurdity Based Optimization, which is
simple but very effective in practice. For programs with
a high ratio of infeasible branches in the path space, this
optimization can reduce the times of invoking constraint
solver significantly. To some extent, our optimization is
complementary to SSE, and can also be applied to pure
symbolic execution.

The contribution of this paper is three-fold.

Firstly, we propose speculative symbolic execution, a new
fashion of symbolic execution, to extend the scalability
of classical symbolic execution by reducing the invocation
times of constraint solver. We also propose absurdity based
optimization technique to improve the reduction further.

Secondly, we have implemented SSE and the optimization
on top of Symbolic Pathfinder [13] to extend the scalability
of this symbolic execution system.

Finally, to evaluate the effectiveness of our method, we
have conducted several experiments and find a new char-
acteristic of the path spaces of programs. The experimental
results show that our approach can save the search time from
23.9% to 43.6% (with an average of30%). Based on these
results, we also investigate how to make our approach work
best when applied to real world programs.

The remainder of this paper is organized as follows.
Section 2 introduces the background and shows the basic
idea of SSE by motivating examples. Section 3 elaborates
the algorithm of SSE and the absurdity based optimization
technique. Section 4 presents our implementation on SPF
and reports the experimental results. Finally, Sections 5 and
6 discuss the related work and conclude.

II. OVERVIEW

In this section, we describe how SSE works and why SSE
is better than pure SE by motivating examples.

A. Background: Symbolic Execution

Essentially, symbolic execution feeds programs with sym-
bolic values as inputs and outputs the result as functions
of symbolic values. A search procedure is employed to
systematically traverse the path space of a program by
maintaining symbolic program states. A symbolic state
includes the symbolic values of program variables, a path
condition and a program counter [1]. The path condition is
a boolean formula that contains the constraints which the
inputs should satisfy if they drive the program along the
current path. Operations of variables are interpreted as the
manipulations of symbolic expressions. When encountering
a branch instruction, both of the branches are taken. For
each branch, the corresponding condition is added into the
path condition and a constraint solver is invoked to check
the satisfiability of the new path condition. The process
advances along feasible branches until the path ending
is reached. Finally, the generated symbolic states form a
symbolic execution tree.

Take the program in Figure 1 for example. It computes
the sum of the absolute values of two integers and outputs
the result if the sum is greater than2. Initially, the inputs
are represented as two symbols:X and Y , and the path
condition is 〈true〉. Execution path forks when meeting
the branch statementif(x<0). The constraints〈X ≥ 0〉
and 〈X < 0〉 are added to the path conditions of the two
paths respectively. A constraint solver is invoked to check
the feasibility of these two paths, both of which here are
feasible. Figure 2 shows the final execution tree, in which
symbolic states are represented as nodes.

In this paper, we focus on how the constraint solver is in-
voked during symbolic execution. We choose the commonly
useddepth first search(DFS) in our illustration.

Figure 3(a) shows the path space of the example program
with the same layout in Figure 2. The left side of a node
corresponds to thefalse side of the branch statement. The
numbern marked on a branch means that the feasibility of
the branch is determined in then-th invocation of the solver.
Totally, 14 times of constraint solving are needed.

int x, y;

1: if(x < 0)

2: x = -x;

3: if(y < 0)

4: y = -y;

5: x = x + y;

6: if(x > 2)

7: //if(x > y)

8: output(x);

Figure 1. An Example Program and Its Execution Tree

x:X,y:Y

PC: X>=0

x:X,y:Y

PC: true

x:X,y:Y

PC: X<0

x:-X,y:Y

PC: X<0

x:X,y:Y

PC: X>=0

& Y>=0

x:X,y:Y

PC: X>=0

˄ Y<0

x:-X,y:Y

PC: X<0

˄ Y>=0

x:-X,y:Y

PC: X<0

˄ Y<0

x:X,y:-Y

PC: X<=0

˄ Y<0

x:-X,y:-Y

PC: X<0

˄ Y<0

x:X+Y,y:Y

PC: X>=0

˄ Y>=0

˄ X+Y<=2

x:X+Y,y:Y

PC: X>=0

˄ Y>=0

x:X+Y,y:Y

PC: X>=0

˄ Y>=0

˄ X+Y>2

x:X-Y,y:Y

PC: X>=0

˄ Y<0

x:X-Y,y:Y

PC: X>=0

˄ Y<0

˄ X-Y<=2

x:X-Y,y:Y

PC: X>=0

˄ Y<0

˄ X-Y>2

x:-X+Y,y:Y

PC: X<0

˄ Y>=0

x:-X+Y,y:Y

PC: X<0

˄ Y>=0

˄ -X+Y<=2

x:-X+Y,y:Y

PC: X<0

˄ Y>=0

˄ -X+Y>2

x:-X-Y,y:-Y

PC: X<0

˄ Y<0

x:-X-Y,y:-Y

PC: X<0

˄ Y<0

˄ -X-Y<=2

x:-X-Y,y:-Y

PC: X<0

˄ Y<0

˄ -X-Y>2

Path3

Path5

Path7

Path1 Path2

Path4

Path6

Path8

1

2

3

5 4

5
6

6

3

1

3

6

3

5 4

6
5

6

state A

Figure 2. An Example Program and Its Execution Tree

B. Motivating Examples of SSE

When encountering a branch statement, SSE may advance
along the two branches without checking the feasibility.
The constraint solver is invoked only when the number of
unchecked branches reaches a specific number, saymax
speculation depth. If the constraint solver gives a positive
result, it means that the speculation succeeds. Otherwise,we
need backtrack to the last feasible branch. Now we present
how speculation reduces solving times in a DFS manner
with the example in Figure 1.

The initial symbolic state of the program under SSE is the
same as that under SE. Assuming that the max speculative
depth is set as3, for branch statementif(x<0), the
procedure advances along theelse side without checking
feasibility. Branches of the statementif(y<0) are han-
dled similarly. When the procedure takes theelse branch
of statementif(x>2) speculatively, the max speculation
depth is reached, therefore a constraint solver is invoked.
Since the path segment from root tostate A(in Figure 2)
is executed speculatively, we call this segment aspeculation
segment. As a result, only one time of constraint solving is
enough to know the feasibility of the three branches on path
#1. As shown in Figure 3(b), the numbern associated on a

2 9 12

3 4 6 7 10 11 13 14

5

1 8

#1Path: #2 #4 #5 #6 #7 #8#3

1 5 7

(1) (2) (3) (4) (5) (6) (7) (8)

3

1 5

#1 #2 #4 #5 #6 #7 #8#3

(a) In Pure SE (b) In SSE

Figure 3. Constraint Solving in DFS

1 (7) (10)

(1) (2) (3) (4) (5) (8) (9)(11)

3

1 (6)

X X

#1 #2 #4 #5 #6 #7 #8#3

7 3 1

(8) (7) (6) (5) (4) (3) (2) (1)

5

5 1

X X

#1 #2 #4 #5 #6 #7 #8#3

(a) from left to right (b) from right to left

A A

Figure 4. Constraint Solving in SSE by DFS With Backtracking

branch demonstrates the feasibility of the branch is known
in then-th solving. The invocations of constraint solver only
occur at the branches marked with bracket numbers. In all,
only 8 queries are needed, saving nearly half of that in pure
SE.

Now consider commenting line 6 and uncommenting line
7 in the example program in Figure 1. Path #5 and #7 would
be infeasible. In Figure 4, they are marked with a cross.
In this case, the number of constraint solving under pure
SE is still 14. In SSE, as shown in Figure 4(a), the result
of the 5th time of solving with path condition〈X > 0 ∧
Y ≤ 0 ∧ X ≤ Y 〉 is unsat. In the sequel, the backtracking
mechanism analyzes the current speculation segment (i.e.,
from root topoint A) in a binary search way to find the first
infeasible branch, which spends two extra times (6th and
7th) of constraint solving. Then the procedure backtracks
to point A and continues on path #6. Constraint solving on
path #7 is similar to that on path #5. Finally,11 times of
constraint solving with9 sat and 2 unsat are performed,
saving3 out of 14 in pure SE.

It is worth noting that the result of SSE is related to
the order in which the path space is explored. Consider
exploring the path space from right to left,i.e., exporing
the true side of a branch statement first. As shown in Figure

4(b), only8 times of constraint solving is enough.

III. SPECULATIVE SYMBOLIC EXECUTION

One can imagine using different search styles in SSE.
In this section, we present thespeculative DFSalgorithm
that combines speculation and DFS, and the absurdity based
optimization. Then we discuss the effectiveness of our
approach.

A. Speculative DFS Algorithm

Figure 5 shows the algorithm of speculative DFS, includ-
ing the mainsearch procedure and thebacktrack pro-
cedure. The algorithm traverses the path space of program
by DFS and performs speculation with a specially designated
backtracking mechanism. AStateStack is maintained
to store the symbolic states on the current path. Initially,
the initial symbolic state of the program is pushed into the
StateStack. The while loop expands the top element
of theStateStack until the stack is empty. The procedure
forwards by symbolically executing the next statement of the
top state in theStateStack repeatedly. For a non-branch
statement, our algorithm performs identically with pure SE.
When processing a branch statement, if the current specula-
tion depth has not reached themaxSpeculationDepth,
the branch is taken without checking feasibility and a
new state with updated path condition is pushed into the
StateStack directly as shown in line 10. Otherwise, as
shown in line 12, functioncheckFeasibility() checks
the satisfiability of the current path condition. If the result
is sat, the current state is pushed into theStateStack
and a new speculation segment starts. If the result isunsat,
the backtrack() procedure cuts the infeasible branches
away. The procedure backtracks when reaching the end of a
path. According to the feasibility of the last speculation seg-
ment on the path, thebacktrack() procedure performs
differently. Note that, when themaxSpeculationDepth
is set as1, this algorithm is equivalent to pure SE.

The backtracking procedure performs differently in dif-
ferent cases to suit for the context of speculation. For a
failed speculation withk branches, the speculation segment
before the last branch (already known as infeasible) is
analyzed to find the first infeasible branch. We adopt the
binary search strategy for its stable performance in different
cases, which needs at most⌈log2(k−1)⌉ times of constraint
solving. Line 34 deals with another case when the path ends
with a reachable state, the procedure backtracks to the last
unexplored branch.

B. Eliminating False Alarms

Although SSE generates the same execution tree as pure
SE, in practice, bugs located in dead code may cause SSE
yielding different analysis results from pure SE. Consider
the example shown in Figure 6, line 5 contains a ‘divide-by-
zero’ bug; however, it is unreachable since its path condition

 1: search(int maxSpeculationDepth) {

 2: StateStack = {initial state};

 3: while(StateStack not empty) {

 4: s=get next statement;

 5: if(s is non-branch statement)

 6: perform as pure symbolic execution;

 7: else if(s is branch statement) {

 8: choose one unexplored branch;

 9: if(not reach maxSpeculationDepth){

10: pushState();

11: } else {

12: checkFeasibility();

13: if(feasible) {//speculation succeeds

14: pushState();

15: start new speculation segment;

16: } else { // speculation fails

17: backtrack();

18: }

19: }

20: }

21: if(path ends) {// path end

22: if(in speculation segment)

23: checkFeasibility();

24: backtrack();

25: }

26: }

27: }

28: backtrack() {

29: if(speculation fails) {

30: binarySearchFirstBadBranch();

31: pop unreachable states;

32: backtrack to the last feasible branch;

33: } else {

34: backtrack to the last unexplored branch;

35: }

36: }

Figure 5. Speculative DFS Algorithm

〈a = b ∧ a 6= b〉 is unsatisfiable. In SSE, providing that the
two branch statements in line 2 and line 3 are in a same
speculation segment, line 5 would be executed without a
prior determination of its reachability. Hence a false alarm
will be reported.

1: int a, b;

2: if(a == b) {

3: if(a != b) {

4: // unreachable bug

5: a = a/0;

6: }

7: }

Figure 6. Another Example Program

Technically, this issue can be simply addressed via check-
ing the reachability of the potential bug point just before
generating the bug report. It is necessary to point out that
the exceptions caused by constraint solving (such as caused
by the constraints beyond the ability of constraint solver)
should be handled carefully, because a repeated reachability
checking would trigger the same exception again. In this sit-
uation, the speculation segment should be checked carefully
to find the first solvable and feasible branch, if any.

C. Correctness

We define the correctness of SSE as

“Speculative symbolic execution generates the same exe-
cution tree as pure symbolic execution in the end”.

Here we only give an informal description of the correct-
ness of the speculative DFS algorithm.

With respect to the states of the generated execution tree,
speculative DFS only differs from DFS under pure SE on
that it may touch states that are unreachable in pure SE.
Therefore, to show the correctness of speculative DFS, it
suffices to prove the following two points: all the states with
unsatisfiable path condition touched by speculative DFS will
be finally cut away from the execution tree and all the cut
states have unsatisfiable path condition.

On one hand, suppose that states is an unreachable state
in pure SE but touched in speculative DFS. There exists
a time that states is the current visited state (i.e., at the
top of StateStack). Let s1, ..., sk(k ≥ 1 ∧ sk = s) be
the corresponding speculation segment ending with states.
There are the following four cases need to consider in the
while loop.

• Case 1: State s is the end of a path. Line 23 in Figure
5 checks the feasibility of the current state and gets a
negative result. Then in the backtracking procedure, line
30 analyzes the speculation segment and line 31 and 32
backtracks to the last feasible branch. All the states in
s1, ..., sk with unsatisfiable path condition would be cut
off from the execution tree.

• Case 2: The next statement of state s is not a branch
statement and,

• Case 3: The next statement of state s is a branch
statement and the max speculation depth has not
been reached. Speculation segments1, ..., sk will be
expanded by thewhile loop in Figure 5 without
determining the feasibility until a path end or the max
speculation depth is reached. Suppose the expanded
speculation segment iss1, ..., sk, ..., sm. If sm is a path
end, the argument is similar as case 1. Otherwise,sm
reaches the max speculation depth. Line 12 checks the
path condition ofsm. Since sk is unreachable,sm
must be also unreachable. Then line 17 invokes the
backtracking procedure and sequentially line 30 finds
the unreachable states ins1, ..., sk, ..., sm, which are in
turn cut off in line 31.

Thereby, we claim that all the states with unsatisfiable
path condition touched by speculative DFS will be finally
cut away from the execution tree.

On the other hand, the only place in our algorithm where
states are cut off from the execution tree is line 31. Before
that, line 30 has distinguished the reachable states from the
unreachable ones, so we claim that all the cut states have
unsatisfiable path condition.

D. Feasibility

The only possible thing that brings risk to the feasibility
of SSE is that SSE executes dead code which are never

executed in pure SE. Our backtracking mechanism guaran-
tees that all the infeasible states will be cut away from the
execution tree. However, in practice, there may exist some
speculatively executed dead codes that bring influence to the
unbacktrackable components of the system (such as updating
a database). In such case, when the program behaviors are
impacted by these components, SSE may get a different
result from pure SE. In fact, for such kind of programs,
pure SE may not work either.

This issue can be addressed by blocking the influence of
speculatively executed instructions. One typical technique is
providing appropriate support for symbolic execution (such
as environment modeling [5]) to make the system more
backtrackable.

E. Absurdity Based Optimization

SSE treats an unexplored branches as feasible one at
its first glance and backtracks when a speculation fails.
This feature implies that the more feasible branches in the
execution tree, the better SSE performs. Meanwhile, this
feature also implies that SSE is not good at handling the
programs with a high ratio of infeasible branches since too
many backtrackings might negate the benefits brought by
successful speculation. To address this problem, we propose
a simple but effective optimization,absurdity based opti-
mization, which is complementary to SSE for its effective-
ness on the programs with a high ratio of infeasible branches.
This optimization is based on the following proposition.

Proposition 1: Regardless of runtime errors, given a
reachable branch statement, at least one of its branches is
feasible.

This proposition comes from the well-knownReductio AD
Absurdumin first order logic [14], which says that ifΓ;ϕ is
inconsistent, thenΓ |= ¬ϕ, whereΓ is a set of well-formed
formulae (wff) andϕ is a wff. In the context of symbolic
execution, for instance, let states be a reachable state with
a satisfiable path condition〈ϕ1 ∧ ... ∧ ϕn〉. Suppose the
next statement is a two-choice branch statement, sayif(φ),
whereφ is a boolean condition. If the search procedure has
explored thethen branch and find that it is infeasible,i.e.,
the constraints set{ϕ1, ..., ϕn} and φ is inconsistent, then
we can deduce thatϕ1, ..., ϕn |= ¬φ. Therefore, without
querying the constraint solver, we know that theelse
branch is feasible.

This simple optimization is applicable both to pure and
speculative symbolic execution. In practice, most of the
branch instructions used in programs only have two choices.
Therefore, as soon as an infeasible branch is explored before
its counterpart, one invocation time of constraint solver can
be saved. A high ratio of infeasible branches in the path
space can provide many chances to perform this optimiza-
tion. Consider the example in Figure 1 (comment line 6 and
uncomment line 7), if applied with our optimization, the
8th and 11th times of constraint solving are unnecessary.

X

1 (7) (9)

(1) (2) (3) (4) (5) * (8) *

3

1 (6)

#1Path: #2 #4 #5 #6 #7 #8#3

X

Figure 7. Speculative DFS With Absurdity Based Optimization

As shown in Figure 7, branches where constraint solving is
saved are marked with asterisk.

Absurdity based optimization is also related to the order
in which the execution tree is explored. If the path space in
Figure 7 is explored from right to left, since no infeasible
branch is explored before its counterpart, no information can
be used to perform optimization. Thereby, we always attempt
to explore the infeasible side first in practice.

F. Discussion

In this subsection, we first explain the benefits and cost of
SSE, then we discuss what factors influence the effectiveness
of SSE, and finally, we take a theoretical analysis on the
speculative DFS algorithm.

The benefit brought by SSE is the saved constraint solv-
ings when speculation succeeds. A successful speculation on
a speculation segment of lengthk only need once constraint
solving, savingk − 1 times compared with pure SE.

The cost of our approach lies in failed specula-
tions. Consider a speculation segment withk branches
b1, ..., bi, ..., bk(1 ≤ i ≤ k), where branches afterbi (includ-
ing bi) are infeasible ones, the corresponding path conditions
arep1, ..., pi, ..., pk. In SSE, the instructions betweenbi and
bk are executed speculatively, which consumes extra time
and memories. In addition to the first time of solving onpk,
binary search betweenp1 ∼ pk−1 to find backtracking point
needs at most⌈log2(k − 1)⌉ times of queries. This may be
more expensive than solving for path conditionsp1 ∼ pi in
pure SE wheni is small.

The effectiveness of our approach is influenced by the
characteristics of the program under analysis. Specially,
there are the following factors:

• The ratio of infeasible branches in the path space.
SSE is suitable for the programs with a high ratio of
feasible branches. For the programs with a high ratio
of infeasible branches, SSE can be improved by the
absurdity based optimization. Generally, this factor is
the most important one.

• The shape of the path space. SSE is also related to the
shape of the path space. For example, the continuous
branches on the same direction (i.e., all left turning or
right turning) in the execution tree could increase the
success rate of speculation.

• The exploration order over the path space. As discussed
before, both SSE and optimization depend on the

exploration order.
• The complexity of path conditions. The reduction of

constraint solving for complex constraints can make
SSE more useful.

• The proportion of the constraint solving time in the total
running time of SE. We only attack the constraint solv-
ing part of SE. Therefore, the proportion of constraint
solving time in the total running time of SE influences
our ultimate goal.

The upper bound of speculative DFS algorithm is speci-
fied by the following proposition.

Proposition 2: The times of constraint solving in specu-
lative depth first search are larger than half of that in pure
symbolic execution.

The proof of Proposition 2 is shown in the appendix.
Specially, when a path space is a full binary tree with height
n (the number of branches in the longest path), in pure
SE, the times of constraint solving is2n+1 − 2 (equal to
the number of branches in the tree). While in speculative
DFS, let k be the max speculation depth, then the times
of constraint solvingT k

n can be quantified by the following
equation:

T k
n =

2n (n ≤ k)

2n +
2n − 2(n%k)

2k − 1
(n > k)

(1)

The proof of Equation (1) is shown in the appendix. For a
full binary tree, speculative DFS performs best whenn ≤ k,
saving nearly a half of the constraint solving times. When
n > k, our algorithm gets better with the increase ofk.

Speculative DFS performs worst when the execution tree
only consists of a single path. In this case, although too
many backtrackings affect the performance, our optimization
technique can help to improve SSE. It is hard to take a
precise analysis for the worst case because of the irregularity
of the path spaces of programs.

In fact, both of the best case and worst case hardly happen
in practice, more experimental evaluation is described in the
next section.

IV. I MPLEMENTATION AND EXPERIMENTAL

EVALUATION

A. Implementation

We have implemented the speculative DFS algorithm
and the absurdity based optimization on top of Symbolic
PathFinder (SPF) [13] with Java PathFinder (JPF) v6.0
[15][16]. JPF is an open source model checker for Java
bytecode. It mainly consists of a Java Virtual Machine
to support state storing, state matching and backtracking,
as well as an adaptive search engine to systematically
explore program states. Symbolic PathFinder (SPF) is built
as an extension of JPF. SPF implements symbolic version
semantics for Java bytecode instructions and uses JPF to

systematically explore the execution tree of program under
analysis. The features of our implementation are as follows.

• New search strategy. We have implemented the spec-
ulative DFS algorithm as a new search strategy, named
SpeculativeSegmentDFSearch, to explore the
execution tree of a program speculatively. The back-
tracking mechanism in Figure 5 is employed in the new
search strategy.

• New choice generator. We have designed a new
classSpecuPCChoiceGenerator, which is inher-
ited from PCChoiceGenerator. The new choice
generator is utilized to help backtracking and perform-
ing the absurdity based optimization.

• New semantics of branch instructions. To Support
speculative execution, the semantics of branch instruc-
tions are adapted. Each branch instruction generates
an instance of classSpecuPCChoiceGenerator.
Speculation is performed according to the current spec-
ulation depth as shown in Figure 5.

• Eliminating false alarms. There exist four kinds of
false alarms caused by SSE in SPF: runtime errors in
the analyzed program, property violations, user defined
exceptions and crashes caused by the program under
analysis. We have handled all these issues in our
implementation.

To use SSE in SPF, users need to configure SPF
to use the speculative DFS strategy (using the property
search.class) and specify the max speculation depth
(using the propertysymbolic.speculative.depth).

B. Experiments

To evaluate SSE, we have conducted some experiments.
The objective of the experiments is to investigate the fol-
lowing research questions.

a. Effectiveness and cost. How about the effectiveness
and cost of SSE compared with pure SE?

b. Speculation depth. How does the value of the max
speculation depth influence the results and what is the
optimal speculation depth for a real-world program?

c. Exploration order. In speculative DFS, the execution
tree can be explored from two directions, false-side-first and
true-side-first order, which one is better?

1) Experimental Setup:We choose five programs that are
often used in the experiments related to JPF [13][17][18].
WBS, the Wheel Brake System, comes from the automotive
domain [18]. The rest are all Java data structure programs:
red-black tree (TreeMap), binary search tree (BinTree),
binomial heap (BinHeap) and Fibonacci heap (FibHeap)
[17]. In addition, we write a data structure programList,
which implements a double linked list with sorted elements.
For data structure programs, we use parameterized testing
[17][19] to generate random call sequences of a limited
length. The lines of these programs range from 230 (for

BinTree) to 477 (for TreeMap). The ratios of the in-
feasible branches in the path spaces range from0% (for
WBS) to 42% (for List). We choose these programs in
our experiments for two reasons. Firstly, these programs are
often used in the experiments related to JPF. It is reasonable
to choose these programs as the benchmark to evaluate SSE.
Secondly, the effectiveness of SSE is heavily influenced
by the ratio of infeasible branches in the path space of
a program. For our selected programs, the ratios of the
infeasible branches cover different levels. In fact,42% (for
List) is pretty high. Since each reachable branch has at
least one feasible side, this ratio can never be higher than
50% if each branch only has two sides.

We conduct different experiments to investigate the afore-
mentioned research questions. For each program, we per-
form four kinds of analysis: pure SE with/without opti-
mization and SSE with/without optimization. In each kind
of analysis, we vary the value of the max speculation
depth and the exploration order independently. For each
program, the max speculation depth is increased from 2
to the execution depth of the program. In fact, setting the
max speculation depth larger than the execution depth yields
the same analysis results as setting that as the execution
depth, because in such cases speculation segments always
end because of path ending. We use Yices [20] as the
constraint solver because of its high performance and good
usability. All of the experiments are carried out on an Intel
Core i7 2.80GHz computer with 8 GB of RAM.

2) Results:
a. Effectiveness and Cost

Table I shows part of the experimental results of three
kinds of analysis: pure SE, SSE and SSE with optimization.
The first column shows the name of each program associated
with its corresponding call sequence length if any. We only
list the best case and the worst case of SSE (measured by
the search time) when the max speculation depth varies
from 2 to the maximum value. The corresponding max
speculation depth is shown after the notation ‘B.’ and ‘W.’.
The third and fourth columns show the numbers of different
constraint solving results and the percentage of unsat results
respectively. Columns 5 and 6 show the total search time
and the percentage of the time spent on constraint solving
(the average of three runs). The executed instructions are
presented in the last column to show the cost of SSE. All
the results shown in Table 1 are collected under the true-
side-first exploration order.

SSE (without optimization) performs best forWBS, which
has no infeasible branches in the execution tree. SSE reduces
the times of constraint solving by49% in the best case and
35% in the worst case. The search time is saved by43.6%
and32% respectively. SSE performs worst for the program
List. In the best case, SSE reduces5% of the times of
constraint solving and6% of the search time. In the worst
case, SSE brings extra7% of the times of constraint solving

Table I
EXPERIMENTAL RESULTS(SPECU. DEP.=MAX SPECULATION DEPTH, B.=BEST, W.=WORST)

Program
(call seq.
length)

Analysis
(specu.
dep.)

#sat/unsat/all
(Savings)

%
unsat

Search
Time(s)
(Savings)

Solving
Time(s)
(Savings)

Solving
Time
ratio

#Instruction
(extra)

WBS

pure SE 27646/0/27646 0% 66.2 62.9 95% 1382246

SSE B.(10) 14174/0/14174(49%) 0% 37.5(43%) 34.3(45.4%) 91% 1382246(0%)
W.(2) 17886/0/17886(35%) 0% 44.9(32%) 41.8(33.5%) 92% 1382246(0%)

SSE+ B.(10) 14174/0/14174(49%) 0% 37.3(43.6%) 34.1(45.7%) 91% 1382246(0%)
Opi. W.(2) 17886/0/17886(35%) 0% 45(32%) 42(33.2%) 93% 1382246(0%)

TreeMap
(5)

pure SE 27005/17261/44266 39% 80 74.7 93% 855119

SSE B.(2) 18569/22045/40614(8%) 54% 72.2(9.7%) 65598(12%) 91% 1077553(26%)
W.(5) 20096/23772/43868(1%) 54% 79.4(0.8%) 71515(4%) 90% 1548222(81%)

SSE+ B.(2) 11527/23561/35088(21%) 67% 61.1(23.6%) 54.6(27%) 89% 1159619(35.6%)
Opi. W.(5) 13187/23829/37016(16%) 64% 66.4(17%) 59(21%) 89% 1549553(81.2%)

BinTree
(5)

pure SE 22381/15589/37970 41% 76.6 72.2 94% 381092

SSE B.(2) 15913/19215/35128(7.5%) 55% 70.5(8.1%) 65.4(9.4%) 92% 578416(52%)
W.(6) 16841/20975/37816(0.4%) 55% 77(−0.5%) 70.8(2%) 92% 980918(157.4%)

SSE+ B.(2) 9191/20086/29277(23%) 69% 57.7(25%) 52.4(27.4%) 91% 677685(78%)
Opi. W.(10) 9860/20998/30858(19%) 68% 61.6(20%) 55.7(22.8%) 90% 984040(158%)

BinHeap
(6)

pure SE 164116/23576/187692 13% 410 371 90% 21809086

SSE B.(21) 114948/38188/153136(18.4%) 25% 335.9(18.1%) 292.3(21%) 87% 29950152(37.3%)
W.(2) 125178/32932/158110(15.8%) 21% 345.6(15.7%) 306.8(17%) 89% 24138598(10.7%)

SSE+ B.(21) 96600/38202/134802(28.2%) 28% 300(26.8%) 257.5(30.6%) 79% 29950152(37.3%)
Opi. W.(2) 102410/34164/136574(27.2%) 25% 303.9(25.9%) 264.9(28.6%) 81% 25766426(18.1%)

FibHeap
(6)

pure SE 58014/9142/67156 14% 148.5 133 90% 8098034

SSE B.(2) 44498/10898/55396(18%) 20% 125.2(16%) 110(17%) 88% 8416826(3.9%)
W.(8) 40302/15848/56150(16%) 28% 130(13%) 112.6(15%) 87% 10731504(32.5%)

SSE+ B.(2) 37694/11906/49600(26%) 24% 113(23.9%) 97.5(26.7%) 86% 8859148(9.4%)
Opi. W.(10) 33896/16160/50056(25%) 32% 117(21.2%) 100(24.8%) 85% 10731504(32.5%)

List
(6)

pure SE 128076/94380/222456 42% 520.6 501.5 96% 2842969

SSE B.(2) 104299/108116/212415(5%) 51% 489.3(6%) 467.7(7%) 96% 3832245(34.8%)
W.(7) 118384/121056/239440(−7%) 51% 561.4(−8%) 533.6(−6%) 95% 7311109(157.2%)

SSE+ B.(2) 33488/116635/150123(32.5%) 78% 325(37.6%) 303(39.6%) 93% 5371823(89%)
Opi. W.(20) 38705/121176/159881(28.1%) 76% 354.1(32%) 327.7(34.7%) 93% 7333909(157.9%)

and 8% of the search time. The reason is that, the high
ratio of infeasible branches (42%) causes too many failed
speculations, which negate the benefit brought by successful
speculations. In average, SSE (without optimization) reduces
the search time by16.8% in the best case and by8.8% in
the worst case.

SSE with optimization outperforms SE and SSE for all
programs. The optimization brings the most benefits for
List, making SSE reduce32.5% of the times of constraint
solving and37.6% of the search time in the best case. This
is because the high ratio of unsat branches provides a lot
of chances to perform optimization. As expected, forWBS,
our optimization brings no benefit because no infeasible
branches can be used. In average, SSE with optimization
reduces30% of the times of constraint solving and30% of
the search time in the best case, and25% of the times of
constraint solving and24.7% of the search time in the worst
case.

The results in column 7 shows that, in both of pure SE
and SSE, constraint solving dominates most of the search
time. The percentage of the time spent on constraint solving
in the search time is reduced slightly by SSE.

The last column shows the number of executed instruc-
tions in different analysis. We can see that, despite executing

a plenty of extra instructions, SSE is still faster than pure
SE. Another important point is that SSE nearly does not
consume extra memories than pure SE. The reason is that
speculative DFS only spends extra memories to store the
states in failed speculation segments, which can be ignored
in our experiments.

b. Speculation Depth
Figure 8 shows how the max speculation depth impacts

the times of constraint solving in SSE (without optimiza-
tion). Results for larger speculation depths are omitted
since they are nearly the same as the tails of the lines.
For the programP , let T p

P be the times of constraint
solving in pure SE, and letT k

P be the times of constraint
solving in SSE with the max speculation depthk. Figure 8
shows the result ofT k

P /T
p
P × 100%. For List, TreeMap,

BinTree andFibHeap, the optimal speculation depth is
2. Particularly, forList, SSE brings benefit only when the
max speculation depth is 2. This is because the high ratio
of infeasible branches causes too many backtrackings. For
BinHeap, the optimal speculation depth is 6. For the pro-
gram without infeasible branches (WBS), the results decrease
monotonously with the increase of max speculation depth
since the speculations never fail. Figure 9 shows the impact
of the max speculation depth in SSE with optimization, in

0%

20%

40%

60%

80%

100%

0 1 2 3 4 5 6 7 8 9 10 11

#
co

n
st

ra
in

t
so

lv
in

g
 (

n
o

rm
a

li
ze

d
)

max speculation depth

WBS

TreeMap

List

BinTree

BinHeap

FibHeap

Figure 8. Impact of Max Speculation Depth in SSE

0%

20%

40%

60%

80%

100%

0 1 2 3 4 5 6 7 8 9 10 11

#
co

n
st

ra
in

t
so

lv
in

g
 (

n
o

rm
a

li
ze

d
)

max speculation depth

WBS

TreeMap

List

BinTree

BinHeap

FibHeap

Figure 9. Impact of Max Speculation Depth in SSE With Optimization

which the optimal speculation depths for different programs
are the same as that in Figure 8. Generally, regardless of
the tiny fluctuation in the tail, the optimal speculation depth
ranges from 2 to 6 and shifts from small to big when the
ratio of infeasible branches decreases.

We can see that, the optimization technique improves SSE
significantly. Another interesting observation is that there-
sults become stable when the max speculation depth reaches
a threshold. This also demonstrates that our backtracking
mechanism is quite efficient. Besides, the impacts of the
max speculation depth on the search time are not shown
because they are nearly the same as that on the times of
constraint solving.
c. Exploration Order

Figure 10 illustrates the difference of the search time
under two different exploration orders in SSE without opti-
mization. For a programP , let tpf be the search time of pure
SE in false-side-first order,tkt be the search time of SSE with
true-side-first order andtkf be the search time of SSE with
false-side-first order, wherek is the max speculation depth.
Figure 10 shows the result of(tkf − tkt)/t

p
s × 100%. We can

observe that there exists a distinct advantage of false-side-
first order. Figure 11 shows the same calculation under SSE
with optimization. In this case, the true-side-first order is
slightly better than the false-side-first order, especially when
the speculation depth is set as the optimal value.

To find the reasons, we collect the constraint solving
results of the two sides of the branches under pure SE.

-35%

-30%

-25%

-20%

-15%

-10%

-5%

0%

5%

10%

0 2 4 6 8 10

d
if

fe
re

n
ce

 o
f

se
a

rc
h

 t
im

e

(n
o

rm
a

li
ze

d
)

max speculation depth

WBS

TreeMap

List

BinTree

BinHeap

FibHeap

Figure 10. Difference of Search Time Between Different Exploration
Orders in SSE

-15%

-10%

-5%

0%

5%

10%

15%

20%

25%

30%

35%

40%

0 2 4 6 8 10d
if

fe
re

n
ce

 o
f

se
a

rc
h

 t
im

e

(n
o

rm
a

li
ze

d
)

max speculation depth

WBS

TreeMap

List

BinTree

BinHeap

FibHeap

Figure 11. Difference of Search Time Between Different Exploration
Orders in SSE With Optimization

The results are shown in Table II. Column 2 to 5 show
the constraint solving results of the two sides in the whole
execution tree. Column 6 to 9 show the constraint solving
results of the branches with equation constraints. We can see
that, the true side has a higher probability to be infeasible
in comparison with the false side. The reason is twofold.
Firstly, for branches with equation constraints, the true
sides have a more than two times higher probability to
be infeasible than the false sides. The equation constraint
makes the path space along the true side narrower. Secondly,
the ratio of the infeasible true sides of the branches with
inequation constraints are also higher. We argue that this
stems from the characteristics of programs. In programming
practice, special cases are usually handled in thethen

branch and other cases are put in theelse branch. It is
reasonable to think that thethen branch is easier to be
infeasible. This finding implies that the execution trees of
programs are not bilateral symmetry, but tend to incline to
the false sides of the branches.

As a result, the higher rate of feasible false side branches
endows SSE in false-side-first order with a higher success
rate of speculation, while the lower rate of feasible true side
branches provides more information to the optimization. In
summary, the dissymmetry of the path space of programs
makes SSE with optimization in the true-side-first order the
optimal in our experiments, since the shape of the execution
tree can be leveraged to the utmost extent.

Table II
#CONSTRAINT SOLVING RESULTS OFTWO SIDES

Program
#feasible
true sides

#infeasible
true sides(%)

#feasible
false sides

#infeasible
false sides(%)

#feasible
true sides
of equation

#infeasible
true sides
of equation(%)

#feasible
false sides
of equation

#infeasible
false sides
of equation(%)

WBS 13823 0(0%) 13823 0(0%) 3005 0(0%) 3005 0(0%)
List 30276 80952(73%) 97800 13428(12%) 24660 35328(58.9%) 46560 13428(22.4%)
TreeMap 11567 10566(48%) 15438 6695(30%) 5601 7048(55.7%) 9484 3165(25%)
BinTree 9214 9771(52%) 13167 5818(31%) 3839 6095(61.4%) 7793 2141(21.6%)
BinHeap 70270 23576(25%) 93846 0(0%) 0 0(−) 0 0(−)
FibHeap 25006 8572(26%) 33008 570(2%) 0 0(−) 0 0(−)

C. Threats to Validity

The main validity problems need to consider in our ex-
periments are threats to the external validity, which include
two aspects: the chosen programs and the implementation
platform.

We chose 6 programs in our experiments, 5 of which
are often used in the experiments related to JPF. The
characteristics of the path spaces of these programs influence
the results definitely and our selected programs may not
be representative. The ratios of the infeasible branches in
our chosen programs range from0 to 42%. From this
perspective, our subjects are quite representative. We limit
the call sequences length for data structure programs to
control the running time of the experiments. Longer bounds
would make constraint solving more time-consuming and
may affect the results. The conditions of some branches
in data structure programs are heap constraints. We do not
perform speculation for heap constraints because the sub-
sequent instructions heavily depends on the condition. We
believe that for other types of programs, such as numerical
programs or control programs (WBS in our experiments), the
results may be better.

We selected SPF as the implementation platform and
Yices as the constraint solver. A different selection may
yield different running time, whereas the times of constraint
solving would not change.

V. RELATED WORK

Our work is inspired by the speculation execution used
in pipelined processors [21], which predicts the outcome
of a branch and issues the subsequent instructions before
the actual branch outcome is known. SSE also executes the
instructions after a branch before the feasibility of the branch
is known. That is why we use the termspeculative symbolic
executionin this paper.

Speculation is used to improve performance in many other
systems, such as operating systems [22], distributed file
systems [23]. An essential difference between these systems
and the work proposed in this paper is that, the performance
improvement brought by our method stems from the de-
crease of the execution times of special operations, rather
than the better parallelization brought by speculation in other
systems mentioned above. To the best of our knowledge,

we are the first to conduct systematic research on using
speculation in symbolic execution.

Our work is also related to the large body of work on the
scalability problem in symbolic execution, which stems from
two reasons: path explosion problem and constraint solving
overhead. To attack the path explosion problem, researchers
have proposed to use path pruning [24][25][26], compo-
sitional method [27], abstraction [28], state merging [29],
parallelism [11][18] and so on to improve path exploration.
To alleviate the constraint solving overhead, a plenty of work
have been proposed [5][6][7][8][9][10][19][30]. Generally,
the optimization techniques employed in current symbolic
execution systems attack the constraint solving overhead
by query simplification, reusing previous results or fast
checking before constraint solving [6][5][7][8].

The work proposed in this paper is an orthogonal and
complementary approach. SSE employs a new fashion of
path exploration technique, aiming to attack the constraint
solving overhead by reducing the invocation times of con-
straint solver. SSE neither reduces the complexity of the
queries submitted to the solver, nor caches constraints to
reuse previous constraint solving results. SSE reduces the
constraint solving overhead from a unique perspective.

Lei Bu et al. use the idea of speculation in [31] for the
reachability checking of linear hybird automata. Different
from their work, the speculation in SSE is limited by a
specific number, but the speculation in [31] stops when
a target location is reached, which is more like a target
driven ‘slicing’. This is caused by different contexts of
using speculation. Another difference is the backtracking
mechanism. We use binary search to find backtracking
points, whereas the irreducible infeasible set technique [32]
is employed in [31] for backtracking. For SSE, binary
search is stable and effective. Nevertheless, the minimal
unsatisfiable core extraction technique [33] may also be used
in the backtracking of SSE to reduce the times of constraint
solving further.

At the time of this writing, EPFL released S2E v1.2
[34]. An optimization namedspeculative forkingis used
in the concolic execution, where symbolic states are forked
without regard to the feasibility at the branch that depends
on symbolic values. These speculatively generated states
are used as backtracking points (if feasible) to avoid re-

execution from scratch when new inputs are generated.
Although we both use the similar term, speculation is used
to achieve different goals.

The philosophy of SSE is a little similar to that used in
many static analysis systems, which consider extra program
behaviors and eliminate false alarms in the end [35][36].
The difference is that SSE prunes the infeasible behaviors
in an appropriate chance to keep results precise and make a
good tradeoff between the cost and the benefit as well.

VI. CONCLUSION AND FUTURE WORK

We have proposed a new fashion of symbolic execu-
tion namedspeculative symbolic executionto reduce the
invocation times of constraint solver, and hence extend the
scalability of symbolic execution. SSE attacks the constraint
solving overhead, which is almost always the most domi-
nant in the running time of symbolic execution. We have
proposed the speculative DFS algorithm and discussed its
effectiveness. We also propose a key optimization technique,
named absurdity based optimization, to further improve
SSE. This optimization is very effective especially for the
programs with a high ratio of infeasible branches.

We have implemented SSE and our optimization tech-
nique on top of SPF. Experiments have been conducted
to investigate several important research questions. The
experimental results on six programs show that, SSE can
reduce the invocation times of constraint solver by21% to
49% (with a medium of30%), and save the search time
from 23.6% to 43.6% (with a medium of30%). For future
work, we plan to research on different search styles and
use existing query optimization techniques to enhance SSE
further.

ACKNOWLEDGMENT

We would like to thank Corina Pǎsǎreanu and Willem
Visser for their helps and discussions on using JPF and SPF.

REFERENCES

[1] J. King, “Symbolic execution and program testing,”Commu-
nications of the ACM, vol. 19, no. 7, pp. 385–394, 1976.

[2] C. Cadar, P. Godefroid, S. Khurshid, C. Pasareanu, K. Sen,
N. Tillmann, and W. Visser, “Symbolic execution for soft-
ware testing in practice: preliminary assessment,” inSoftware
Engineering (ICSE), 2011 33rd International Conference on.
IEEE, 2011, pp. 1066–1071.

[3] C. Păsăreanu and W. Visser, “A survey of new trends in
symbolic execution for software testing and analysis,”Inter-
national Journal on Software Tools for Technology Transfer
(STTT), vol. 11, no. 4, pp. 339–353, 2009.

[4] ——, “Symbolic execution and model checking for testing,”
in Proceedings of the 3rd international Haifa verification con-
ference on Hardware and software: verification and testing.
Springer-Verlag, 2007, pp. 17–18.

[5] C. Cadar, D. Dunbar, and D. Engler, “Klee: Unassisted
and automatic generation of high-coverage tests for com-
plex systems programs,” inProceedings of the 8th USENIX
conference on Operating systems design and implementation.
USENIX Association, 2008, pp. 209–224.

[6] C. Cadar, V. Ganesh, P. Pawlowski, D. Dill, and D. En-
gler, “EXE: automatically generating inputs of death,”ACM
Transactions on Information and System Security (TISSEC),
vol. 12, no. 2, p. 10, 2008.

[7] K. Sen, D. Marinov, and G. Agha,CUTE: A concolic unit
testing engine for C. ACM, 2005, vol. 30, no. 5.

[8] P. Godefroid, M. Levin, D. Molnaret al., “Automated white-
box fuzz testing.” NDSS, 2008.

[9] C. Păsăreanu, N. Rungta, and W. Visser, “Symbolic execution
with mixed concrete-symbolic solving,” inProceedings of
the 2011 International Symposium on Software Testing and
Analysis. ACM, 2011, pp. 34–44.

[10] P. Godefroid, N. Klarlund, and K. Sen, “Dart: directed au-
tomated random testing,” inACM Sigplan Notices, vol. 40,
no. 6. ACM, 2005, pp. 213–223.

[11] L. Ciortea, C. Zamfir, S. Bucur, V. Chipounov, and G. Candea,
“Cloud9: A software testing service,”ACM SIGOPS Operat-
ing Systems Review, vol. 43, no. 4, pp. 5–10, 2010.

[12] V. Chipounov, V. Kuznetsov, and G. Candea, “S2E: A plat-
form for in-vivo multi-path analysis of software systems,”
ACM SIGARCH Computer Architecture News, vol. 39, no. 1,
pp. 265–278, 2011.

[13] C. Psreanu, P. Mehlitz, D. Bushnell, K. Gundy-Burlet,
M. Lowry, S. Person, and M. Pape, “Combining unit-level
symbolic execution and system-level concrete execution for
testing nasa software,” inProceedings of the 2008 interna-
tional symposium on Software testing and analysis. ACM,
2008, pp. 15–26.

[14] H. Enderton,A mathematical introduction to logic, second
edition. Academic press, 2001.

[15] JPF, http://babelfish.arc.nasa.gov/trac/jpf.

[16] W. Visser, K. Havelund, G. Brat, S. Park, and F. Lerda,
“Model checking programs,”Automated Software Engineer-
ing, vol. 10, no. 2, pp. 203–232, 2003.

[17] W. Visser, C. Psreanu, and R. Pelánek, “Test input generation
for java containers using state matching,” inProceedings of
the 2006 international symposium on Software testing and
analysis. ACM, 2006, pp. 37–48.

[18] M. Staats and C. Psreanu, “Parallel symbolic executionfor
structural test generation,” inProceedings of the 19th inter-
national symposium on Software testing and analysis. ACM,
2010, pp. 183–194.

[19] N. Tillmann and J. De Halleux, “Pex–white box test genera-
tion for. net,” Tests and Proofs, pp. 134–153, 2008.

[20] Yices, http://yices.csl.sri.com/.

[21] J. E. Smith, “A study of branch prediction strategies,”in
Proceedings of the 8th annual symposium on Computer
Architecture, ser. ISCA 1981. Los Alamitos, CA, USA:
IEEE Computer Society Press, 1981, pp. 135–148. [Online].
Available: http://dl.acm.org/citation.cfm?id=800052.801871

[22] B. Wester, P. Chen, and J. Flinn, “Operating system support
for application-specific speculation,” inProceedings of the
sixth conference on Computer systems. ACM, 2011, pp.
229–242.

[23] E. Nightingale, P. Chen, and J. Flinn, “Speculative execution
in a distributed file system,” inACM SIGOPS Operating
Systems Review, vol. 39, no. 5. ACM, 2005, pp. 191–205.

[24] S. Bardin and P. Herrmann, “Pruning the search space in
path-based test generation,” inSoftware Testing Verification
and Validation, 2009. ICST’09. International Conference on.
IEEE, 2009, pp. 240–249.

[25] V. Chipounov, V. Georgescu, C. Zamfir, and G. Candea,
“Selective symbolic execution,” inWorkshop on Hot Topics
in Dependable Systems, 2009.

[26] J. Burnim and K. Sen, “Heuristics for scalable dynamic test
generation,” inProceedings of the 2008 23rd IEEE/ACM
international conference on automated software engineering.
IEEE Computer Society, 2008, pp. 443–446.

[27] P. Godefroid, “Compositional dynamic test generation,” in
ACM SIGPLAN Notices, vol. 42, no. 1. ACM, 2007, pp.
47–54.

[28] S. Anand, C. Păsăreanu, and W. Visser, “Symbolic execution
with abstraction,”International Journal on Software Tools for
Technology Transfer (STTT), vol. 11, no. 1, pp. 53–67, 2009.

[29] V. Kuznetsov, J. Kinder, S. Bucur, and G. Candea, “Efficient
state merging in symbolic execution,” 2012.

[30] I. Erete and A. Orso, “Optimizing constraint solving tobetter
support symbolic execution,” inSoftware Testing, Verification
and Validation Workshops (ICSTW), 2011 IEEE Fourth Inter-
national Conference on. IEEE, 2011, pp. 310–315.

[31] L. Bu, Y. Yang, and X. Li, “IIS-guided dfs for efficient
bounded reachability analysis of linear hybrid automata,”in
Proceedings of Haifa Verification Conference. Springer,
2011.

[32] J. Chinneck and E. Dravnieks, “Locating minimal infeasible
constraint sets in linear programs,”ORSA Journal on Com-
puting, vol. 3, no. 2, pp. 157–168, 1991.

[33] A. Cimatti, A. Griggio, and R. Sebastiani, “Computing small
unsatisfiable cores in satisfiability modulo theories,”Journal
of Artificial Intelligence Research, vol. 40, no. 1, pp. 701–728,
2011.

[34] S2E, https://s2e.epfl.ch/.

[35] M. Zitser, R. Lippmann, and T. Leek, “Testing static anal-
ysis tools using exploitable buffer overflows from open
source code,” inACM SIGSOFT Software Engineering Notes,
vol. 29, no. 6. ACM, 2004, pp. 97–106.

[36] Y. Jung, J. Kim, J. Shin, and K. Yi, “Taming false alarms
from a domain-unaware c analyzer by a bayesian statistical
post analysis,”Static Analysis, pp. 203–217, 2005.

VII. A PPENDIX A

A. Proof of Proposition 2

We define the height of an execution tree as the number
of branches in the longest path in the tree. LetTrn be an
arbitrary execution tree with heightn. Let T p(Trn) and
T k(Trn) be the times of constraint solving in performing
pure SE and speculative DFS (SP-DFS) onTrn respectively,
wherek is the max speculation depth. Proposition 2 claims
that for anyTrn, T k(Trn) > 1/2 × T p(Trn). We use
induction on the height of the execution tree to prove this
proposition.

Basis: Fonn = 1, as shown in Figure 12, there are three
possible shapes forTr1. In each case, both of SP-DFS and
pure SE need two times of constraint solving. So Proposition
2 holds forn = 1.

Induction step: Suppose that Proposition 2 holds for
Trn, i.e., T k(Trn) > 1/2 × T p(Trn), we now show
T k(Trn+1) > 1/2× T p(Trn+1).

As shown in Figure 13,Trn+1 can be regarded as
constructed by adding a level of branches to some leaves
(at least one) ofTrn. Let e be a leaf ofTrn, as shown in
Figure 13,e can be extended in three different cases. Let
bl andbr (at least one is feasible) be the two new branches
under e. In pure SE, each ofbl and br need one time of
constraint solving, no matter the branch is feasible or not.
Now we analyze what difference these new branches bring
to the times of constraint solving between exploration of
Trn andTrn+1 by SP-DFS.

Case 1: bl and br are both feasible. In SP-DFS, if
point A (In Figure 13) reaches the max speculation depth
when exploringTrn, then in exploration onTrn+1, a new
speculation segment starts atbl, so bl consumes one time
of constraint solving. Ifpoint A does not reach the max
speculation depth, thenbl will be included in the same
speculation segment with the branch abovepoint A. Since
bl is satisfiable, it brings no extra constraint solving. What’s
more, to completebr, SP-DFS backtracks topoint A and

X X

case 1 case 2 case 3

Figure 12. Execution Tree With Height 1

m

X

Case 1 Case 2

X

Case 3

point A

Figure 13. Execution Tree With Heightn+ 1

spends one time of constraint solving. In summary, the two
new branches brings 1 or 2 extra times of constraint solving
in SP-DFS.

Case 2:bl is feasible and br is infeasible. The argument
is similar to case 1, except thatbr is unsatisfiable.

Case 3: bl is infeasible and br is feasible. If point A
reaches the max speculation depth when exploringTrn, then
when exploringTrn+1, one time of constraint solving is
needed forbl. Otherwise, when exploringTrn+1, bl will be
included in the same speculation segment with the branch
abovepoint A. This speculation fails becausebl is infeasible,
and needs⌈log2 k⌉ or ⌈log2 k⌉+1 times of constraint solving
in backtracking. Forbr, one time of solving is needed. In
summary,bl andbr bring ⌈log2 k⌉+1 or ⌈log2 k⌉+2 times
of constraint solving.

In summary, for each of the three cases above,br always
needs one time of constraint solving, andbl brings 0 or more
times. Sincebl andbr need 2 times of constraint solving in
pure SE, therefore the increased times of constraint solving
in SP-DFS is larger than half of that in pure SE. According
to the induction hypothesis,T k(Trn) > 1/2×T p(Trn), we
can getT k(Trn+1) > 1/2× T p(Trn+1).

We claim that proposition 2 holds for an arbitray execu-
tion tree.

B. Proof of Equation (1)

Let Treen be a full binary execution tree of heightn.
Let T k(Treen) be the times of constraint solving in SP-
DFS, wherek is the max speculation depth. There are the
following two cases:

Case 1:n ≤ k.
Whenn ≤ k, speculation segments always terminate be-

cause of path ending. As a result, constraint solving always
occurs at the end of a path, which makes the invocation
times of constraint solver equal to the number of paths. So
we get

T k(Treen) = 2n(n ≤ k) (A.2)

Case 2:n > k.
Now we calculate the relation betweenT k(Treen) and

T k(Treen+1).
As shown in Figure 14,Treen+1 is composed of two

symmetrical subtrees, sayTreeLn+1 and TreeRn+1 respec-
tively, each of which is constructed by adding a branch on
top of aTreen.

According to the SP-DFS procedure, it is easy to know
T k(TreeLn+1) = T k(TreeRn+1) and T k(Treen+1) = 2 ×
T k(TreeLn+1). Therefore, to calculate the relation between
T k(Treen) andT k(Treen+1), it suffices to know the rela-
tion betweenT k(Treen) andT k(TreeLn+1).

As shown in Figure 15,TreeLn+1 consists of aTreen
and a branch on the top. Now we focus on what difference
this new branch brings to the times of constraint solving in
exploringTreeLn+1 andTreen by SP-DFS.

Figure 14. A Full Binary Tree With Height ofn+ 1

…...

…...

point A

point B

point C

Figure 15. Impact of Adding a Branch on Top ofTreen

For Treen, SP-DFS starts atpoint A (in Figure 15). The
first completed path inTreen is the leftmost one, sayPl,
which is marked with thick arrows in Figure 15. It is easy
to know that when exploringPl, a total of ⌈n/k⌉ times
of constraint solving are needed. Besides, the lengths of
these speculation segments are allk except the last one,
which includesn%k branches. After completePl, the search
procedure backtracks topoint C and starts to traverse the
other part ofTreen.

ForTreeLn+1, SP-DFS starts atpoint B. The leftmost path
is still the first to complete, needing a total of⌈(n+ 1)/k⌉
times of constraint solving. After completing the leftmost
path, SP-DFS backtracks to thepoint C and continues. It
is clear that afterpoint C, SP-DFS performs identically as
that in exploringTreen, because the backtracking points
separate the the leftmost path and the other parts of the
tree. Therefore, the only difference in exploringTreeLn+1

happens on the leftmost path.
Since

⌈(n+ 1)/k⌉ =

{

⌈n/k⌉ (n%k 6= 0)

⌈n/k⌉+ 1 (n%k = 0)
(A.3)

The relation betweenT k(Treen+1) andT k(Treen) can be
quantified by the following equation:

T k(TreeLn+1) =

T k(Treen) (n%k 6= 0)

T k(Treen) + 1 (n%k = 0)
(A.4)

From Equation A.4, it is not hard to get the following

equation, which quantifies the times of constraint solving in
performing SP-DFS onTreen.

T k(Treen) =

2n (n ≤ k)

2n +
2n − 2(n%k)

2k − 1
(n > k)

(A.5)

