arXiv:1205.4951v2 [cs.SE] 31 May 2012

Speculative Symbolic Execution

Yufeng Zhang, Zhenbang Chen, Ji Wang
National Laboratory for Parallel and Distributed Procesgi
Department of Computing Science, National University ofeDse Technology
Changsha, China
Email: {yufengzhang, zbché@nudt.edu.cn, jiwang@ios.ac.cn

Abstract—Symbolic execution is an effective path oriented a program. Providing that all the path conditions can be

and constraint based program analysis technique. Recently solved successfully, symbolic execution could cover ad th
there is a significant development in the research and ap- behaviors of the program

plication of symbolic execution. However, symbolic execidn In th t boli tion h h t
still suffers from the scalability problem in practice, especially n the past years, Ssymbolic execution has shown a grea

when applied to large-scale or very complex programs. In thé ~ Promise in the application to automated test generation,
paper, we propose a new fashion of symbolic execution, named proving program properties, bug detection and so on [3].
Speculative Symbolic Execution (SSE), to speed up symbolic However, in practice, the scalability problem is still onfe o
execution by reducing the invocation times of constraint dwer. the main obstacles in applying symbolic execution to large-
In SSE, when encountering a branch statement, the search . .

procedure may speculatively explore the branch without regrd scale programs. This issue r_nalnly stems from two C'Ose'Y
to the feasibility. Constraint solver is invoked only when he related reasons: path explosion phenomenon and constraint
speculated branches are accumulated to a specified number. solving overhead. There exists an exponential relatignshi
In addition, we present a key optimization technique that petween the number of conditions and the paths of the
enhances SSE greatly. We have implemented SSE and the ,4qram, making exploring the whole path space infeasible

optimization technique on Symbolic Pathfinder (SPF). Exper for large-scale programs. Constraint solving is the most
imental results on six programs show that, our method can 9 prog : 9

reduce the invocation times of constraint solver by21% to ~ dominant in the running time of SE. When exploring deep
49% (with an average of 30%), and save the search time from paths, the path condition may be very complex, and even

23.6% to 43.6% (with an average of30%). unsolvable. In addition, constraint solving overhead mscit
Keywords-symbolic execution; speculative symbolic execu- always aggravated by the path explosion phenomenon.
tion; constraint solving; Java PathFinder; To alleviate the constraint solving overhead of SE, many
techniques have been proposed. In many symbolic execution
|. INTRODUCTION systems, query optimization techniques are employed to

Symbolic execution (SE) is a basic program analysiseduce the complexity of queries and query times. For
technique that was proposed more than thirty years ago [Lgxample,counterexample cachingtores unsatisfiable path
Recently, SE draws renewed interests both from academieonditions as counterexamples to reuse previous solving
and industry partly due to the impressive progress in conresults [5]. Constraint independencsplits a constraint set
straint solving, related algorithms and computation poweiinto independent ones, aiming to get the related constsaint
[2][3][4]. Instead of executing programs with concrete in- and increase the cache hit rate [5][6][7][®&oncretization
puts, symbolic execution feeds programs with symbolicreduces complex constraints (such as nonlinear consraint
ones, meaning that a symbolic input could initially take[9]) into simpler ones, and is heavily used in concolic
any value of the specific type. Assignment statements arexecution [7][8][10].
interpreted as the manipulations of symbolic expressions. Although these effective techniques improve the perfor-
When encountering a branch statement, the process forkeance of symbolic execution greatly in practice, constrain
and both of the branches are taken. On each path, the processving is still the most dominant in symbolic execution.
maintains a set of constraints calledth conditionwhich ~ According to the experiments of KLEE [510% ~ 90%
must hold along that path. For each branch, the path condaf the whole running time is spent on constraint solving. In
tion is updated according to the corresponding conditiah anthe experiments of Cloud9 [11], constraint solving conssime
submitted to a constraint solver to check the satisfiability more than half of the total execution time. In some experi-
the context of test generation, when a path ends or a bug iments in SE [12], almost all the running time is dominated
found, the path condition can be solved to get a test casday the constraint solving.

For deterministic programs, the same execution path or the This paper proposes a new fashion of symbolic execution,
same bug can be replayed by feeding such test case as inpoamedSpeculative Symbolic Executi@®SE), which speeds

Basically, symbolic execution attempts to achieve autamat up symbolic execution by reducing the invocation times
code comprehension by walking through the path space adf constraint solver, and hence improves the scalability

http://arxiv.org/abs/1205.4951v2

of symbolic execution. Unlike pure symbolic execution, 1. OVERVIEW

which invokes the constraint solver immediately when a path |, this section, we describe how SSE works and why SSE
condition is updated, in SSE, when a branch instructiong petter than pure SE by motivating examples.

is encountered, the path condition is updated accordingly,

but the constraint solver is not necessarily invoked. TheA. Background: Symbolic Execution

search procedure may advance along the path without the ggsengially, symbolic execution feeds programs with sym-
determination of feasibility until the unsolved path condi gjic values as inputs and outputs the result as functions

tions are accumulated to a specified number. If the currents symbolic values. A search procedure is employed to
visiting path is feasible, the procedure continues; otliaw systematically traverse the path space of a program by

it backtracks. maintaining symbolic program states. A symbolic state

Intuitively, SSE takes branches optimistically as feasibl includes the symbolic values of program variables, a path
ones. Path conditions are submitted to constraint solvegondition and a program counter [1]. The path condition is
in batches, not one by one as in pure symbolic execu@ boolean formula that contains the constraints which the
tion. When speculation succeeds, multiple invocations ofnputs should satisfy if they drive the program along the
constraint solvers are replaced by one invocation. Whegurrent path. Operations of variables are interpreted as th
speculation fails, a backtracking mechanism will find themanipulations of symbolic expressions. When encountering
first bad branch that makes the speculation fail. Basicallya branch instruction, both of the branches are taken. For
the more feasible branches in the path space, the better S$8ch branch, the corresponding condition is added into the
performs. path condition and a constraint solver is invoked to check
O}he satisfiability of the new path condition. The process
advances along feasible branches until the path ending
R reached. Finally, the generated symbolic states form a
symbolic execution tree

In this paper, we give out the details of SSE algorithm an
discuss its effectiveness. We also propose an optimizatio
technique, named\bsurdity Based Optimizatiorwhich is
simple but very effective in practice. For programs with

a high ratio of infeasible branches in the path space, thi Take the program in Figure 1 for ex_ample. It computes
L2 . . : . The sum of the absolute values of two integers and outputs
optimization can reduce the times of invoking constraint

o 2 7777 the result if the sum is greater than Initially, the inputs
solver significantly. To some extent, our optimization is

. are represented as two symbols: and Y, and the path

complementary to SSE, and can also be applied to pure ...~ ' .

svmbolic execution condition is (true). Execution path forks when meeting
y Ic execution. the branch statemernitf (x<0). The constraint§ X > 0)

The contribution of this paper is three-fold. and (X < 0) are added to the path conditions of the two

Firstly, we propose speculative symbolic execution, a neypaths refspgctively. A constraint solver is invoI_<ed to check
fashion of symbolic execution, to extend the scalability]Ehe fﬁ?s'tl’:'!'ty of2ther?e tWOh p?_thsl' both of which here h"’?rﬁ
of classical symbolic execution by reducing the invocation ea5|b IEf" igure 2 shows the 'ga exez(:jutlon tree, In whic
times of constraint solver. We also propose absurdity basetyMPolic states are represented as nodes.

optimization technique to improve the reduction further. In this paper, we fc_)cus on h_OW the constraint solver is in-
voked during symbolic execution. We choose the commonly

Secondly, we have implemented SSE and the optimizatioseddepth first searcDFS) in our illustration.
on tOp of SymbolIC Pathfinder [13] to extend the Scalab”ity Figure 3(a) shows the path space of the examp|e program
of this symbolic execution system. with the same layout in Figure 2. The left side of a node
Finally, to evaluate the effectiveness of our method, wecorresponds to théalse side of the branch statement. The
have conducted several experiments and find a new chafumbern marked on a branch means that the feasibility of
acteristic of the path spaces of programs. The experimentape branch is determined in tmeth invocation of the solver.
results show that our approach can save the search time frof@tally, 14 times of constraint solving are needed.
23.9% to 43.6% (with an average 080%). Based on these
results, we also investigate how to make our approach work

. int x, y;
best when applied to real world programs. 1. ifl(z <xo)y
The remainder of this paper is organized as follows. ; if (y P Z)ix;
Section 2 introduces the background and shows the basic 4: y = -yi
idea of SSE by motivating examples. Section 3 elaborates S X =Xty
. . L . 6: if(x > 2)
the algorithm of SSE and the absurdity based optimization 70 J/AE(x > y)
technique. Section 4 presents our implementation on SPF 8: output (x) ;

and reports the experimental results. Finally, Sectionsdb a
6 discuss the related work and conclude. Figure 1. An Example Program and Its Execution Tree

x:X,y:Y x:X,y:Y
PC: X>=0 PC: X>=0
& Y>=0 A ¥<0
state A 5 4 v
x:X+Y,y:¥Y x:X,y:-Y
4 PC: X>=0 PC: X<=0
v 6 A ¥>=0 A ¥<0
/\ 5 *
x:X+Y,y:Y x:X+Y,y:Y x:X-Y,y:¥Y
PC: X>=0 PC: X>=0 PC: X>=0
A Y>=0 A Y>=0 A ¥<0
A X4Y<=2 A X4Y>2 6 ls
Pathl Path2 x:X-Y,y:¥Y x:X-Y,y:Y
PC: X>=0 PC: X>=0
A ¥Y<0 A ¥Y<0
A X-¥Y<=2 A X-Y>2

Path3

x:-X,y:Y
PC: X<0
Aaji;
x:-X,y:Y x:-X,y:Y
PC: X<0 PC: X<0
A Y>=0 A ¥<0
v 5 v 4
x:-X+Y,y:Y x:-X,y:-Y
PC: X<0 PC: X<0
A Y>=0 6 A ¥<0
- 2 L5
xX:-X+Y,y:Y || x:-X+Y,y:Y x:-X-Y,y:-Y
PC: X<0 PC: X<0 PC: X<0
A ¥Y>=0 A ¥Y>=0 A Y<0
A —X+¥Y<=2 A =X+Y>2 6
Path5 Path6 | X:-X-Y,y:-Y x:-X-Y,y:-Y
PC: X<0 PC: X<0
A ¥<0 A ¥<0
A -X-¥<=2 A -X-¥>2

Path7 Path8

Figure 2. An Example Program and Its Execution Tree

B. Motivating Examples of SSE

When encountering a branch statement, SSE may advance
along the two branches without checking the feasibility.
The constraint solver is invoked only when the number of

unchecked branches reaches a specific humber,neay
speculation depthlf the constraint solver gives a positive
result, it means that the speculation succeeds. Otherwese,

A o A AX
13 AL) (10 7 s AL
< <
(1)(2) (3)(4) (5)(8) (9)(11) 8)(7) (6 (5 @B ()1
¥ Y ¥ ¥ ¥ Y ¥ Yk ¥ X
#1 #2 #3 #4 #5 #6 #7 #8 #1 #2 #3 #4 #5 #6 #7 #8

(a) from left to right (b) from right to left

need bathra(.;k to the last feas_ible .branch- Now we present Figure 4. Constraint Solving in SSE by DFS With Backtracking
how speculation reduces solving times in a DFS manner

with the example in Figure 1.

The initial symbolic state of the program under SSE is the

same as that under SE. Assuming that the max speculati
depth is set as3, for branch statementf (x<0), the
procedure advances along these side without checking
feasibility. Branches of the statemenf (y<0) are han-
dled similarly. When the procedure takes these branch
of statementi £ (x>2) speculatively, the max speculation
depth is reached, therefore a constraint solver is invoke
Since the path segment from root $tate A(in Figure 2)
is executed speculatively, we call this segmespaculation
segmentAs a result, only one time of constraint solving is

enough to know the feasibility of the three branches on pat

#1. As shown in Figure 3(b), the numberassociated on a

N
ZKS g9}\12
LN A Y ¢
3 4 6 7 10 11 13 14 (1) (ZL

¥ K N ¥ ¥ Ny

#1 #2483 H#4 H5 H6 H7 H8 #1

N
AN
A

(3) (4)

A

(5)(6) (7)(8)
¥ ¥ X

Path: #2 #3 HA H5 H6 H#H7 #8

(a) In Pure SE (b) In SSE

Figure 3. Constraint Solving in DFS

h

branch demonstrates the feasibility of the branch is known
in then-th solving. The invocations of constraint solver only

Ve

occur at the branches marked with bracket numbers. In all,
only 8 queries are needed, saving nearly half of that in pure
SE.

Now consider commenting line 6 and uncommenting line
7 in the example program in Figure 1. Path #5 and #7 would

Cre infeasible. In Figure 4, they are marked with a cross.

n this case, the number of constraint solving under pure
SE is still 14. In SSE, as shown in Figure 4(a), the result
of the 5th time of solving with path conditiod X > 0 A

Y <0A X <Y) is unsat In the sequel, the backtracking
mechanism analyzes the current speculation segment (
from root topoint A) in a binary search way to find the first
infeasible branch, which spends two extra times (6th and
7th) of constraint solving. Then the procedure backtracks
to point A and continues on path #6. Constraint solving on
path #7 is similar to that on path #5. Finally] times of
constraint solving with9 sat and 2 unsatare performed,
saving3 out of 14 in pure SE.

It is worth noting that the result of SSE is related to
the order in which the path space is explored. Consider
exploring the path space from right to lefte., exporing
the true side of a branch statement first. As shown in Figure

: search(int maxSpeculationDepth) {
StateStack = {initial state};
while (StateStack not empty) {
s=get next statement;
if (s is non-branch statement)
perform as pure symbolic execution;
else if(s is branch statement) {
choose one unexplored branch;
if (not reach maxSpeculationDepth) {

4(b), only 8 times of constraint solving is enough.

Ill. SPECULATIVE SYMBOLIC EXECUTION

One can imagine using different search styles in SSE.
In this section, we present thepeculative DFSlgorithm
that combines speculation and DFS, and the absurdity based
optimization. Then we discuss the effectiveness of our /!

W 00 J oy Ul i W N

pushState () ;
approach. 11: } else {
12: checkFeasibility();
A. Speculative DES Algorithm 13: if (feasible) {//speculation succeeds
]] . . 14: pushState() ;

Figure 5 shows the algorithm of speculative DFS, includ- 1s: start new speculation segment;
ing the mainsearch procedure and theacktrack pro- o boptes L) specuiarion falis
cedure. The algorithm traverses the path space of program 1g. } '
by DFS and performs speculation with a specially designated 19: }

. - . .o 20: }
backtracking mecha_nlsm. AtateStack is malntaln(_aq o Lf(path ends) {// path end
to store the symbolic states on the current path. Initially, 2. if (in speculation segment)
the initial symbolic state of the program is pushed into the 23: checkFeasibility();
24 backtrack () ;

StateStack. Thewhile loop expands the top element Sl)
of thestateStack until the stack is empty. The procedure 26:)
forwards by symbolically executing the next statement ef th 27z}

. 28: backtrack() {
top state in thestateStack repeatedly. For a non-branch 29: if(speculation fails) |

statement, our algorithm performs identically with pure SE 30: binarySearchFirstBadBranch () ;

When processing a branch statement, if the current specula- 3!: pop unreachable states;

. . 32: backtrack to the last feasible branch;
tion depth has not reached thexSpeculationDepth, 33} else |

the branch is taken without checking feasibility and a 34: backtrack to the last unexplored branch;

new state with updated path condition is pushed into the iz) }

StateStack directly as shown in line 10. Otherwise, as ’

shown in line 12, functiomheckFeasibility () checks Figure 5. Speculative DFS Algorithm
the satisfiability of the current path condition. If the riésu

is sat the current state is pushed into tseateStack {a="bAa#b)is unsatisfiable. In SSE, providing that the

. ; two branch statements in line 2 and line 3 are in a same
and a new speculation segment starts. If the resulh&at . : ,
speculation segment, line 5 would be executed without a

the backtrack () procedure cuts the infeasible branches™". N . .
! prior determination of its reachability. Hence a false @lar
away. The procedure backtracks when reaching the end of a.

path. According to the feasibility of the last speculatiegs will be reported.
ment on the path, theacktrack () procedure performs
differently. Note that, when theaxSpeculationDepth

is set asl, this algorithm is equivalent to pure SE.

The backtracking procedure performs differently in dif-
ferent cases to suit for the context of speculation. For a
failed speculation with branches, the speculation segment
before the last branch (already known as infeasible) is
analyzed to find the first infeasible branch. We adopt the Figure 6. Another Example Program

binary search strategy for its stable performance in difier Technically, this issue can be simply addressed via check-
cases, which needs at mgstg, (k—1)] times of constraint jng the reachability of the potential bug point just before
SOlVing. Line 34 deals with another case when the path en(§enerating the bug report. It is necessary to point out that
with a reachable State, the procedure backtracks to the IaMe exceptions caused by constraint So|ving (Such as caused
unexplored branch. by the constraints beyond the ability of constraint solver)
should be handled carefully, because a repeated readhabili
checking would trigger the same exception again. In this sit
Although SSE generates the same execution tree as pugtion, the speculation segment should be checked carefull

SE, in practice, bugs located in dead code may cause SSf find the first solvable and feasible branch, if any.
yielding different analysis results from pure SE. Consider

the example shown in Figure 6, line 5 contains a ‘divide-by-C- Correctness
zero’ bug; however, it is unreachable since its path coowliti ~ We define the correctness of SSE as

: int a, b;

: if(a == b) {

if(a !'= b) {
// unreachable bug
a = a/0;

}

N oUW N

.

B. Eliminating False Alarms

“Speculative symbolic execution generates the same exexecuted in pure SE. Our backtracking mechanism guaran-

cution tree as pure symbolic execution in the 'end tees that all the infeasible states will be cut away from the
Here we only give an informal description of the correct- execution tree. However, in practice, there may exist some
ness of the speculative DFS algorithm. speculatively executed dead codes that bring influenceeto th

With respect to the states of the generated execution treenbacktrackable components of the system (such as updating
speculative DFS only differs from DFS under pure SE ona database). In such case, when the program behaviors are
that it may touch states that are unreachable in pure SEmpacted by these components, SSE may get a different
Therefore, to show the correctness of speculative DFS, itesult from pure SE. In fact, for such kind of programs,
suffices to prove the following two points: all the statestwit pure SE may not work either.
unsatisfiable path condition touched by speculative DFS wil This issue can be addressed by blocking the influence of
be finally cut away from the execution tree and all the cutspeculatively executed instructions. One typical techeiis
states have unsatisfiable path condition. providing appropriate support for symbolic execution {suc

On one hand, suppose that statis an unreachable state as environment modeling [5]) to make the system more
in pure SE but touched in speculative DFS. There existbacktrackable.

a time that states is the current visited statd.€., at the] o

top of StateStack). Let sq,...,sx(k > 1 A s = s) be E. Absurdity Based Optimization

the corresponding speculation segment ending with state SSE treats an unexplored branches as feasible one at
There are the following four cases need to consider in thés first glance and backtracks when a speculation fails.

while loop. This feature implies that the more feasible branches in the

. Case 1: State sisthe end of a path. Line 23 in Figure ~ €xecution tree, the better SSE performs. Meanwhile, this

5 checks the feasibility of the current state and gets deature also implies that SSE is not good at handling the
negative result. Then in the backtracking procedure, lingorograms with a high ratio of infeasible branches since too
30 analyzes the speculation segment and line 31 and 3®any backtrackings might negate the benefits brought by
backtracks to the last feasible branch. All the states irfuccessful speculation. To address this problem, we peopos
s1, ..., s, with unsatisfiable path condition would be cut @ simple but effective optimizatiorgbsurdity based opti-

off from the execution tree. mization which is complementary to SSE for its effective-
o Case 2: The next statement of state sis not a branch ness on the programs with a high ratio of infeasible branches
statement and, This optimization is based on the following proposition.
o Case 3: The next statement of state s is a branch Proposition 1: Regardless of runtime errors, given a

statement and the max speculation depth has not reachable branch statement, at least one of its branches is
been reached. Speculation segment,, ..., s, will be feasible.
expanded by thewhile loop in Figure 5 without This proposition comes from the well-knoviReductio AD
determining the feasibility until a path end or the max Absurdunin first order logic [14], which says that If; ¢ is
speculation depth is reached. Suppose the expandédconsistent, thel' = —y, whereI is a set of well-formed
speculation segment s, ..., sk, ..., Sm. If 5., is a path ~ formulae (wff) andy is a wif. In the context of symbolic
end, the argument is similar as case 1. Otherwige, ~€xecution, for instance, let statebe a reachable state with
reaches the max speculation depth. Line 12 checks th@ satisfiable path conditiofio; A ... A ¢n). Suppose the
path condition ofs,,. Since s; is unreachables,, next statement is a two-choice branch statementjsayp) ,
must be also unreachable. Then line 17 invokes thavhere¢ is a boolean condition. If the search procedure has
backtracking procedure and sequentially line 30 findsexplored thechen branch and find that it is infeasiblee.,
the unreachable statesdn, ..., si, ..., Sm, Which are in the constraints sefy,, ..., ¢, } and ¢ is inconsistent, then
turn cut off in line 31. we can deduce thapy,..., o, = —¢. Therefore, without
Thereby, we claim that all the states with unsatisfiableduerying the constraint solver, we know that teeése
path condition touched by speculative DFS will be finally Pranch is feasible. _
cut away from the execution tree. This simple optimization is applicable both to pure and
On the other hand, the only place in our algorithm whereSPeculative symbolic execution. In practice, most of the
states are cut off from the execution tree is line 31. Befordranch instructions used in programs only have two choices.
that, line 30 has distinguished the reachable states frem thf herefore, as soon as an infeasible branch is exploredeefor
unreachable ones, so we claim that all the cut states haJt$ counterpart, one invocation time of constraint solven c

unsatisfiable path condition. be saved. A high ratio of infeasible branches in the path
o space can provide many chances to perform this optimiza-
D. Feasibility tion. Consider the example in Figure 1 (comment line 6 and

The only possible thing that brings risk to the feasibility uncomment line 7), if applied with our optimization, the
of SSE is that SSE executes dead code which are nev8th and 11th times of constraint solving are unnecessary.

" exploration order.

/(\7\ o The complexity of path condition§he reduction of
73 (7) (9) constraint solving for complex constraints can make
X SSE more useful.

é“ ‘Zg‘ f) “g" fl ’; f) i « The proportion of the constraint solving time in the total

running time of SEWe only attack the constraint solv-
ing part of SE. Therefore, the proportion of constraint
Figure 7. Speculative DFS With Absurdity Based Optimizatio solving time in the total running time of SE influences
our ultimate goal.

As shown in Figure 7, branches where constraint solving is The upper bound of speculative DFS algorithm is speci-
saved are marked with asterisk. fied by the following proposition.

Absurdity based optimization is also related to the order Proposition 2: The times of constraint solving in specu-
in which the execution tree is explored. If the path space inative depth first search are larger than half of that in pure
Figure 7 is explored from right to left, since no infeasible symbolic execution.
branch is explored before its counterpart, no informat@m ¢~ The proof of Proposition 2 is shown in the appendix.
be used to perform optimization. Thereby, we always attemp$pecially, when a path space is a full binary tree with height
to explore the infeasible side first in practice. n (the number of branches in the longest path), in pure
E Discussion SE, the times of constraint solving &' — 2 (equal to

]]))) the number of branches in the tree). While in speculative
In this subsection, we first explain the benefits and cost 0hrg et 1 be the max speculation depth, then the times

SSE, then we discuss what factors influence the effecti\ssene%f constraint solving'’* can be quantified by the following
of SSE, and finally, we take a theoretical analysis on theequation: "

speculative DFS algorithm.

Path: #1 #2 #3 #4 #5 H6 H#7 #8

The benefit brought by SSE is the saved constraint solv- 2m (n<k)
ings when speculation succeeds. A successful speculation o TF = on _ o(n%k) Q)
a speculation segment of lengttonly need once constraint Mt —— (n>k)

solving, savingk — 1 times compared with pure SE. 2F -1
The cost of our approach lies in failed specula- The proofof Equation (1) is shown in the appendix. For a
tions. Consider a speculation segment withbranches full binary tree, speculative DFS performs best whert &,
by, ..., bi, ..., be(1 < i < k), where branches aftér (includ- saving nearly a half of the constraint solving times. When
ing b;) are infeasible ones, the corresponding path conditiong > &, our algorithm gets better with the increasekof
areps, ..., pi, ..., pr. In SSE, the instructions betweénand Speculative DFS performs worst when the execution tree
b, are executed speculatively, which consumes extra tim@nly consists of a single path. In this case, although too
and memories. In addition to the first time of solvinggn ~ Many backtrackings affect the performance, our optinuzati
binary search between ~ p,_; to find backtracking point technique can h8|p to improve SSE. It is hard to take a
needs at mosflog,(k — 1)] times of queries. This may be precise analysis for the worst case because of the irreégular
more expensive than solving for path conditigns~ p; in Of the path spaces of programs.
pure SE when is small. In fact, both of the best case and worst case hardly happen
The effectiveness of our approach is influenced by thdn practice, more experimental evaluation is describedhén t
characteristics of the program under analysis. Speciallypext section.
there are the following factors:

« The ratio of infeasible branches in the path space
SSE is suitable for the programs with a high ratio of _
feasible branches. For the programs with a high ratid® 'mplementation
of infeasible branches, SSE can be improved by the We have implemented the speculative DFS algorithm
absurdity based optimization. Generally, this factor isand the absurdity based optimization on top of Symbolic
the most important one. PathFinder (SPF) [13] with Java PathFinder (JPF) v6.0

« The shape of the path spac®SE is also related to the [15][16]. JPF is an open source model checker for Java
shape of the path space. For example, the continuousytecode. It mainly consists of a Java Virtual Machine
branches on the same directiare(all left turning or to support state storing, state matching and backtracking,
right turning) in the execution tree could increase theas well as an adaptive search engine to systematically
success rate of speculation. explore program states. Symbolic PathFinder (SPF) is built

« The exploration order over the path spaée discussed as an extension of JPF. SPF implements symbolic version
before, both SSE and optimization depend on thesemantics for Java bytecode instructions and uses JPF to

IV. IMPLEMENTATION AND EXPERIMENTAL
EVALUATION

systematically explore the execution tree of program undeBinTree) to 477 (for TreeMap). The ratios of the in-
analysis. The features of our implementation are as followsfeasible branches in the path spaces range f6dtn(for

« New search strategy We have implemented the spec- WBS) to 42% (for List). We choose these programs in

ulative DFS algorithm as a new search strategy, name@Ur experiments for two reasons. Firstly, these programs ar
SpeculativeSegmentDFSearch, to explore the Often used in the experiments related to JPF. It is reasenabl

execution tree of a program speculatively. The backi0 choose these programs as the benchmark to evaluate SSE.

tracking mechanism in Figure 5 is employed in the newS€condly, the effectiveness of SSE is heavily influenced
search strategy. by the ratio of infeasible branches in the path space of

« New choice generator We have designed a new & Program. For our selected programs, the ratios of the
classSpecuPCChoiceGenerator, which is inher- infeasible branches cover different levels. In fatd% (for
ited from PCChoiceGenerator. The new choice List) is pretty high. Since each reachable branch has at

generator is utilized to help backtracking and perform-'€ast one feasible side, this ratio can never be higher than
ing the absurdity based optimization. 50% if each branch only has two sides.

« New semantics of branch instructions To Support We conduct different experiments to investigate the afore-
speculative execution, the semantics of branch instrucnéntioned research questions. For each program, we per-
tions are adapted. Each branch instruction generatd@'m four kinds of analysis: pure SE with/without opti-
an instance of classpecuPCChoiceGenerator. Mization and SSE with/without optimization. In each kind
Speculation is performed according to the current specOf analysis, we vary the value of the max speculation
ulation depth as shown in Figure 5. depth and the exploration order independently. For each

. Eliminating false alarms. There exist four kinds of Program, the max speculation depth is increased from 2
false alarms caused by SSE in SPF: runtime errors if0 the execution depth of the program. In fact, setting the
the analyzed program, property violations, user definedn@x speculation depth larger than the execution depthgield
exceptions and crashes caused by the program undthe same analysis results as setting that as the execution
analysis. We have handled all these issues in ouflepth, because in such cases speculation segments always
implementation. end because of path ending. We use Yices [20] as the

To use SSE in SPF, users need to configure SP|gonstralnt solver because of its high performance and good

: . usability. All of the experiments are carried out on an Intel
to use the speculative DFS strategy (using the propert&Ore 7 2 80GHz computer with 8 GB of RAM
search.class) and specify the max speculation depth) P '

i ,) 2) Results:
(using the propertysymbolic.speculative.depth). a. Effectiveness and Cost

Table | shows part of the experimental results of three
kinds of analysis: pure SE, SSE and SSE with optimization.

To evaluate SSE, we have conducted some experimentghe first column shows the name of each program associated
The objective of the experiments is to investigate the fol-ith its corresponding call sequence length if any. We only

B. Experiments

lowing research questions. _ list the best case and the worst case of SSE (measured by
a. Effectiveness and costH_ow about the effectiveness the search time) when the max speculation depth varies
and cost of SSE compared with pure SE? from 2 to the maximum value. The corresponding max

b. Speculation depth How does the value of the max speculation depth is shown after the notation ‘B.” and ‘W.".
speculation depth influence the results and what is th@he third and fourth columns show the numbers of different
optimal speculation depth for a real-world program? constraint solving results and the percentage of unsaltsesu

c. Exploration order. In speculative DFS, the execution respectively. Columns 5 and 6 show the total search time
tree can be explored from two directions, false-side-finst a and the percentage of the time spent on constraint solving
true-side-first order, which one is better? (the average of three runs). The executed instructions are

1) Experimental SetupiVe choose five programs that are presented in the last column to show the cost of SSE. All
often used in the experiments related to JPF [13][17][18]the results shown in Table 1 are collected under the true-
WBS, the Wheel Brake System, comes from the automotiveside-first exploration order.
domain [18]. The rest are all Java data structure programs: SSE (without optimization) performs best f@Bs, which
red-black tree TreeMap), binary search treeBinTree), has no infeasible branches in the execution tree. SSE reduce
binomial heap inHeap) and Fibonacci heaF@ibHeap) the times of constraint solving b§9% in the best case and
[17]. In addition, we write a data structure programst, 35% in the worst case. The search time is savedt®¥%
which implements a double linked list with sorted elementsand 32% respectively. SSE performs worst for the program
For data structure programs, we use parameterized testinmgist. In the best case, SSE reducg® of the times of
[17][19] to generate random call sequences of a limitedconstraint solving ané% of the search time. In the worst
length. The lines of these programs range from 230 (forcase, SSE brings exti@ of the times of constraint solving

Table |

EXPERIMENTAL RESULTS(SPECU DEP.=MAX SPECULATION DEPTH, B.=BEST, W.=WORST)

Program Analysis #sat/unsat/all % S_earch S_olving Sc_)lving #nstruction
(call seq. (specu. (Savings) unsat Time(s) Time(s) Time (extra)
length) dep.) (Savings) (Savings) ratio
pure SE 27646/0/27646 0% 66.2 62.9 95% 1382246
SSE B.(10) 14174/0/14174(49%) 0% 37.5(43%) 34.3(45.4%) 91% 1382246(0%)
WBS W.(2) 17886,/0/17886(35%) 0% 44.9(32%) 41.8(33.5%) 92% 1382246(0%)
SSE+ B.(0) 14174/0/14174(49%) 0% 37.3(43.6%) 34.1(45.7%) 91% 1382246(0%)
Opi. W.(2) 17886,/0/17886(35%) 0% 45(32%) 42(33.2%) 93% 1382246(0%)
pure SE 27005/17261/44266 39% 80 74.7 93% 855119
TreeMap SSE B.(2) 18569,/22045/40614(8%) 54% 72.2(9.7%) 65598(12%) 91% 1077553(26%)
) W.(5) 20096,/23772/43868(1%) 54% 79.4(0.8%) 71515(4%) 90% 1548222(81%)
SSE+ B.D) 11527/23561/35088(21%) 67% 61.1(23.6%) 54.6(27%) 89% 1159619(35.6%)
Opi. W.(5) 13187/23829/37016(16%) 64% 66.4(17%) 59(21%) 89% 1549553(81.2%)
pure SE 22381/15589/37970 41% 76.6 72.2 91% 381092
BinTree SSE B.(2) 15913/19215/35128(7.5%) 55% 70.5(8.1%) 65.4(9.4%) 92% 578416(52%)
) W.(6) 16841/20975/37816(0.4%) 55% 77(—0.5%) 70.8(2%) 92% 980918(157.4%)
SSE+ B.D) 9191/20086,/29277(23%) 69% 57.7(25%) 52.4(27.4%) 91% 677685(78%)
Opi. W.(10) 9860,/20998/30858(19%) 68% 61.6(20%) 55.7(22.8%) 90% 984040(158%)
pure SE 164116,/23576/187692 13% 410 371 90% 21809086
BinHeap SSE B.(21) | 114948/38188/153136(18.4%) | 25% | 335.9(18.1%) 292.3(21%) 87% 29950152(37.3%)
©) W.(2) | 125178/32932/158110(15.8%) | 21% | 345.6(15.7%) 306.8(17%) 89% 24138598(10.7%)
SSE+ B.LI) 96600,/38202/134802(28.2%) 28% 300(26.8%) 257.5(30.6%) 79% 29950152(37.3%)
Opi. W.(2) | 102410/34164/136574(27.2%) | 25% | 303.9(25.9%) | 264.9(28.6%) 81% 25766426(18.1%)
pure SE 58014/9142/67156 14% 148.5 133 90% 8098034
FibHeap SSE B.(2) 44498/10898/55396(18%) 20% 125.2(16%) 110(17%) 88% 8416826(3.9%)
©) W.(8) 40302/15848/56150(16%) 28% 130(13%) 112.6(15%) 87% 10731504(32.5%)
SSE+ B.D) 37694,/11906,/49600(26%) 24% 113(23.9%) 97.5(26.7%) 86% 8859148(9.4%)
Opi. W.(10) 33896,/16160,/50056(25%) 32% 117(21.2%) 100(24.8%) 85% 10731504(32.5%)
pure SE 128076,/94380/222456 42% 520.6 501.5 96% 2842969
List SSE B.(2) 104299/108116/212415(5%) 51% 489.3(6%) 467.7(7%) 96% 3832245(34.8%)
©) W.(7) | 118384/121056/239440(—7%) | 51% | 561.4(—8%) 533.6(—6%) 95% | 7311109(157.2%)
SSE+ B.D) 33488/116635/150123(32.5%) | 78% 325(37.6%) 303(39.6%) 93% 5371823(89%)
Opi. W.(20) | 38705/121176/159881(28.1%) | 76% 354.1(32%) 327.7(34.7%) 93% 7333909(157.9%)

and 8% of the search time. The reason is that, the higha plenty of extra instructions, SSE is still faster than pure
ratio of infeasible branchestZ%) causes too many failed SE. Another important point is that SSE nearly does not
speculations, which negate the benefit brought by sucdessfaonsume extra memories than pure SE. The reason is that
speculations. In average, SSE (without optimization) cedu speculative DFS only spends extra memories to store the
the search time by6.8% in the best case and /8% in states in failed speculation segments, which can be ignored
the worst case. in our experiments.

SSE with optimization outperforms SE and SSE for allb. Speculation Depth
programs. The optimization brings the most benefits for Figyre 8 shows how the max speculation depth impacts
List, making SSE reducg2.5% of the times of constraint the times of constraint solving in SSE (without optimiza-
solving and37.6% of the search time in the best case. Thistjon). Results for larger speculation depths are omitted
is because the high ratio of unsat branches provides a IQfince they are nearly the same as the tails of the lines.
of chances to perform optimization. As expected, W&, For the programP, let T be the times of constraint
our optimization brings no benefit because no infeasibleglying in pure SE, and leT; be the times of constraint
branches can be used. In average, SSE with optimizatiogg|ying in SSE with the max speculation dethFigure 8
reduces30% of the times of constraint solving ar’% of shows the result of’k/T% x 100%. For List, TreeMap,
the search time in the best case, & of the times of p;nTree andribHeap, the optimal speculation depth is
constraint solving and4.7% of the search time in the worst 2 particularly, forList, SSE brings benefit only when the
case. max speculation depth is 2. This is because the high ratio

The results in column 7 shows that, in both of pure SEof infeasible branches causes too many backtrackings. For
and SSE, constraint solving dominates most of the searchinHeap, the optimal speculation depth is 6. For the pro-
time. The percentage of the time spent on constraint solvingram without infeasible branchesKs), the results decrease
in the search time is reduced slightly by SSE. monotonously with the increase of max speculation depth

The last column shows the number of executed instrucsince the speculations never fail. Figure 9 shows the impact
tions in different analysis. We can see that, despite ekagut of the max speculation depth in SSE with optimization, in

10%

9,
100% s |-
0%

5% t

—— WBS

) ©
=} =}
X X

=l

ﬂ [

s £

£ =

s io

= 8 5 0% -+~ WBS

£ — ©

% \—o—o—o—o—o—+ —8—TreeMap 3 € 159 | —=&— TreeMap

a =}

2 40% —a—List S < Lo L —a— List

© = .

2 —»— BinTree ;OE) 259% | ——%-- BinTree

c o © "

é 20% BinHeap 30% | N o N —*— BinHeap
i ---o--- FibHeap

—e— FibHeap 35%

— max speculation depth
012 3 456 7 8 91011
max speculation depth

Figure 10. Difference of Search Time Between Different Bxraiion

i i ; Orders in SSE
Figure 8. Impact of Max Speculation Depth in SSE raers in

40%

9
100% s |

30%
80%

25% |
20% |

#constraint solving (normalized)

o
£
=
ST
3
60% ——wss R --4---WBS
—5—TreeMap o g 10% - —aa—) | —B—TreeMap
% S
40% List £E5 5% s —a— List
. a 0% > N 0. 42;*‘*7%* w
——BinTree b= ° Y —=— BinTree
20% S R A
° —*—BinHeap © 5% ¢ Wﬁi% g/g\ﬁ’ —— BinHeap
—o— FibHea L o I i
0% P o--- FibHeap

T SR R N

-15%

01 2 3 45 6 7 8 9 1011 : max speculation depth
max speculation depth

)))) o Figure 11. Difference of Search Time Between Different Bxraiion
Figure 9. Impact of Max Speculation Depth in SSE With Optatian Orders in SSE With Optimization

which the optimal speculation depths for different progsam
are the same as that in Figure 8. Generally, regardless dihe results are shown in Table II. Column 2 to 5 show
the tiny fluctuation in the tail, the optimal speculation ttep the constraint solving results of the two sides in the whole
ranges from 2 to 6 and shifts from small to big when theexecution tree. Column 6 to 9 show the constraint solving
ratio of infeasible branches decreases. results of the branches with equation constraints. We can se
We can see that, the optimization technique improves SSEhat, the true side has a higher probability to be infeasible
significantly. Another interesting observation is that tke in comparison with the false side. The reason is twofold.
sults become stable when the max speculation depth reachegstly, for branches with equation constraints, the true
a threshold. This also demonstrates that our backtrackingides have a more than two times higher probability to
mechanism is quite efficient. Besides, the impacts of thde infeasible than the false sides. The equation constraint
max speculation depth on the search time are not showmakes the path space along the true side narrower. Secondly,
because they are nearly the same as that on the times #fe ratio of the infeasible true sides of the branches with
constraint solving. inequation constraints are also higher. We argue that this
c. Exploration Order stems from the characteristics of programs. In programming
Figure 10 illustrates the difference of the search timePractice, special cases are usually handled in then
under two different exploration orders in SSE without opti- branch and other cases are put in these branch. It is
mization. For a progran, let t? be the search time of pure reasonable to think that thehen branch is easier to be
SE in false-side-first ordef? be the search time of SSE with infeasible. This finding implies that the execution trees of
true-side-first order and} be the search time of SSE with Programs are not bilateral symmetry, but tend to incline to
false-side-first order, where is the max speculation depth. the false sides of the branches.
Figure 10 shows the result @f’; —tF)/t2 x 100%. We can As a result, the higher rate of feasible false side branches
observe that there exists a distinct advantage of false-sid endows SSE in false-side-first order with a higher success
first order. Figure 11 shows the same calculation under SSkate of speculation, while the lower rate of feasible trukesi
with optimization. In this case, the true-side-first order i branches provides more information to the optimization. In
slightly better than the false-side-first order, espegiathen summary, the dissymmetry of the path space of programs
the speculation depth is set as the optimal value. makes SSE with optimization in the true-side-first order the
To find the reasons, we collect the constraint solvingoptimal in our experiments, since the shape of the execution
results of the two sides of the branches under pure SBEree can be leveraged to the utmost extent.

Table I
#CONSTRAINT SOLVING RESULTS OFTWO SIDES

. #feasible #infeasible #feasible #infeasible

Program #easible #infeasible #feasible #infeasible true sides true sides false sides false sides
true sides true sides(%) false sides false sides(%) : - :)
of equation of equation(%) of equation of equation(%)
WBS 13823 0(0%) 13823 0(0%) 3005 0(0%) 3005 0(0%)
List 30276 80952(73%) 97800 13428(12%) 24660 35328(58.9%) 46560 13428(22.4%)
TreeMap 11567 10566(48%) 15438 6695(30%) 5601 7048(55.7%) 9484 3165(25%)
BinTree 9214 9771(52%) 13167 5818(31%) 3839 6095(61.4%) 7793 2141(21.6%)
BinHeap 70270 23576(25%) 93846 0(0%) 0 0(-) 0 0(—)
FibHeap 25006 8572(26%) 33008 570(2%) 0 0(—) 0 0(—)
C. Threats to Validity we are the first to conduct systematic research on using

The main validity problems need to consider in our ex-SPe€culation in symbolic execution.
periments are threats to the external validity, which idelu ~ Our work is also related to the large body of work on the
two aspects: the chosen programs and the implementaticifalability problem in symbolic execution, which stemsniro
platform. two reasons: path explosion problem and constraint solving

We chose 6 programs in our experiments, 5 of whichoverhead. To attack the path explosion problem, reseacher
are often used in the experiments related to JPF. ThBave proposed to use path pruning [24][25][26], compo-
characteristics of the path spaces of these programs icguenSitional method [27], abstraction [28], state merging [29]
the results definitely and our selected programs may ndgarallelism [11][18] and so on to improve path exploration.
be representative. The ratios of the infeasible branches ifi© alleviate the constraint solving overhead, a plenty afiwo
our chosen programs range frofto 42%. From this have been proposed [5][6][7][8][9][10][19][30]. Genelsal
perspective, our subjects are quite representative. \Wé limthe optimization techniques employed in current symbolic
the call sequences length for data structure programs tgxecution systems attack the constraint solving overhead
control the running time of the experiments. Longer bounddy duery simplification, reusing previous results or fast
would make constraint solving more time-consuming andchecking before constraint solving [6][5][7][8].
may affect the results. The conditions of some branches The work proposed in this paper is an orthogonal and
in data structure programs are heap constraints. We do n§@mplementary approach. SSE employs a new fashion of
perform speculation for heap constraints because the suath exploration technique, aiming to attack the constrain
sequent instructions heavily depends on the condition. Wé0lving overhead by reducing the invocation times of con-
believe that for other types of programs, such as numericaltraint solver. SSE neither reduces the complexity of the
programs or control programwis in our experiments), the queries submitted to the solver, nor caches constraints to
results may be better. reuse previous constraint solving results. SSE reduces the

We selected SPF as the implementation platform angonstraint solving overhead from a unique perspective.
Yices as the constraint solver. A different selection may Lei Bu et al. use the idea of speculation in [31] for the
yield different running time, whereas the times of constrai '€achability checking of linear hybird automata. Differen

solving would not change. from their work, the speculation in SSE is limited by a
specific number, but the speculation in [31] stops when
V. RELATED WORK a target location is reached, which is more like a target

Our work is inspired by the speculation execution useddriven ‘slicing’. This is caused by different contexts of
in pipelined processors [21], which predicts the outcomeusing speculation. Another difference is the backtracking
of a branch and issues the subsequent instructions beforeechanism. We use binary search to find backtracking
the actual branch outcome is known. SSE also executes thmints, whereas the irreducible infeasible set techni®@2é [
instructions after a branch before the feasibility of thertmh is employed in [31] for backtracking. For SSE, binary
is known. That is why we use the terspeculative symbolic search is stable and effective. Nevertheless, the minimal
executionin this paper. unsatisfiable core extraction technique [33] may also bd use

Speculation is used to improve performance in many othein the backtracking of SSE to reduce the times of constraint
systems, such as operating systems [22], distributed filsolving further.
systems [23]. An essential difference between these sgstem At the time of this writing, EPFL released?5 v1.2
and the work proposed in this paper is that, the performanci84]. An optimization namedspeculative forkingis used
improvement brought by our method stems from the dein the concolic execution, where symbolic states are forked
crease of the execution times of special operations, rathavithout regard to the feasibility at the branch that depends
than the better parallelization brought by speculatiortireo on symbolic values. These speculatively generated states
systems mentioned above. To the best of our knowledgere used as backtracking points (if feasible) to avoid re-

execution from scratch when new inputs are generated[5] C. Cadar, D. Dunbar, and D. Engler, “Klee: Unassisted

Although we both use the similar term, speculation is used

to achieve different goals.

The philosophy of SSE is a little similar to that used in
many static analysis systems, which consider extra program
behaviors and eliminate false alarms in the end [35][36]. [6]
The difference is that SSE prunes the infeasible behaviors
in an appropriate chance to keep results precise and make a
good tradeoff between the cost and the benefit as well.

VI. CONCLUSION AND FUTURE WORK

[7]

We have proposed a new fashion of symbolic execu—[I
tion namedspeculative symbolic executido reduce the

invocation times of constraint solver, and hence extend the

scalability of symbolic execution. SSE attacks the coinstra

solving overhead, which is almost always the most domi-

nant in the running time of symbolic execution. We have
proposed the speculative DFS algorithm and discussed its

effectiveness. We also propose a key optimization tecteiqu [10]

named absurdity based optimizationto further improve
SSE. This optimization is very effective especially for the
programs with a high ratio of infeasible branches.

We have implemented SSE and our optimization tech-

9]

nigue on top of SPF. Experiments have been conducted
to investigate several important research questions. The

experimental results on six programs show that, SSE calt?

reduce the invocation times of constraint solveriy; to
49% (with a medium of30%), and save the search time
from 23.6% to 43.6% (with a medium 0f30%). For future
work, we plan to research on different search styles andf3]
use existing query optimization techniques to enhance SSE
further.

ACKNOWLEDGMENT

We would like to thank Corina Pasareanu and Willem 4]
Visser for their helps and discussions on using JPF and SPE

(1]

(2]

(3]

REFERENCES

J. King, “Symbolic execution and program testingdmmu-
nications of the ACMvol. 19, no. 7, pp. 385-394, 1976.

C. Cadar, P. Godefroid, S. Khurshid, C. Pasareanu, K, Sen

(15]

(16]

N. Tillmann, and W. Visser, “Symbolic execution for soft- [17]

ware testing in practice: preliminary assessment3aftware
Engineering (ICSE), 2011 33rd International Conference on
IEEE, 2011, pp. 1066-1071.

C. Pasareanu and W. Visser, “"A survey of new trends in[18]

symbolic execution for software testing and analysister-
national Journal on Software Tools for Technology Transfer
(STTT) vol. 11, no. 4, pp. 339-353, 2009.

[4] ——, “Symbolic execution and model checking for testing,

in Proceedings of the 3rd international Haifa verification eon
ference on Hardware and software: verification and testing
Springer-Verlag, 2007, pp. 17-18.

(19]

and automatic generation of high-coverage tests for com-
plex systems programs,” iRroceedings of the 8th USENIX
conference on Operating systems design and implementation
USENIX Association, 2008, pp. 209-224.

C. Cadar, V. Ganesh, P. Pawlowski, D. Dill, and D. En-
gler, “EXE: automatically generating inputs of deatACM
Transactions on Information and System Security (TISSEC)
vol. 12, no. 2, p. 10, 2008.

K. Sen, D. Marinov, and G. AghaCUTE: A concolic unit
testing engine for C ACM, 2005, vol. 30, no. 5.

P. Godefroid, M. Levin, D. Molnaet al., “Automated white-
box fuzz testing.” NDSS, 2008.

C. Pasareanu, N. Rungta, and W. Visser, “Symbolic etien
with mixed concrete-symbolic solving,” ifProceedings of
the 2011 International Symposium on Software Testing and
Analysis ACM, 2011, pp. 34-44.

P. Godefroid, N. Klarlund, and K. Sen, “Dart: directed-a
tomated random testing,” IACM Sigplan Noticesvol. 40,
no. 6. ACM, 2005, pp. 213-223.

11] L. Ciortea, C. Zamfir, S. Bucur, V. Chipounov, and G. Caad

“Cloud9: A software testing serviceACM SIGOPS Operat-
ing Systems Reviewol. 43, no. 4, pp. 5-10, 2010.

] V. Chipounov, V. Kuznetsov, and G. Candea, “S2E: A plat-

form for in-vivo multi-path analysis of software systems,”
ACM SIGARCH Computer Architecture Newsl. 39, no. 1,
pp. 265-278, 2011.

C. Psreanu, P. Mehlitz, D. Bushnell, K. Gundy-Burlet,
M. Lowry, S. Person, and M. Pape, “Combining unit-level
symbolic execution and system-level concrete execution fo
testing nasa software,” iProceedings of the 2008 interna-
tional symposium on Software testing and analysiaCM,
2008, pp. 15-26.

H. Enderton,A mathematical introduction to logic, second
edition Academic press, 2001.

JPF, http://babelfish.arc.nasa.gov/trac/jpf.

W. Visser, K. Havelund, G. Brat, S. Park, and F. Lerda,
“Model checking programs,Automated Software Engineer-
ing, vol. 10, no. 2, pp. 203-232, 2003.

W. Visser, C. Psreanu, and R. Pelanek, “Test input gt

for java containers using state matching,”Pmoceedings of
the 2006 international symposium on Software testing and
analysis ACM, 2006, pp. 37-48.

M. Staats and C. Psreanu, “Parallel symbolic execufan
structural test generation,” iRroceedings of the 19th inter-
national symposium on Software testing and analy#;&M,
2010, pp. 183-194.

N. Tillmann and J. De Halleux, “Pex—white box test gener
tion for. net,” Tests and Proofgop. 134-153, 2008.

[20] Yices, http:/lyices.csl.sri.com/.

[21] J. E. Smith, “A study of branch prediction strategiesy” [36] Y. Jung, J. Kim, J. Shin, and K. Yi, “Taming false alarms
Proceedings of the 8th annual symposium on Computer from a domain-unaware ¢ analyzer by a bayesian statistical
Architecture ser. ISCA 1981. Los Alamitos, CA, USA: post analysis,'Static Analysispp. 203-217, 2005.

IEEE Computer Society Press, 1981, pp. 135-148. [Online].
Available: http://dl.acm.org/citation.cfm?id=8000821871

[22] B. Wester, P. Chen, and J. Flinn, “Operating system sttpp
for application-specific speculation,” iRroceedings of the
sixth conference on Computer systemsACM, 2011, pp.
229-242.

[23] E. Nightingale, P. Chen, and J. Flinn, “Speculativecexi®n
in a distributed file system,” iPACM SIGOPS Operating
Systems Reviewol. 39, no. 5. ACM, 2005, pp. 191-205.

[24] S. Bardin and P. Herrmann, “Pruning the search space in
path-based test generation,” 8oftware Testing Verification
and Validation, 2009. ICST'09. International Conferenae o
IEEE, 2009, pp. 240-249.

[25] V. Chipounov, V. Georgescu, C. Zamfir, and G. Candea,
“Selective symbolic execution,” iWorkshop on Hot Topics
in Dependable System2009.

[26] J. Burnim and K. Sen, “Heuristics for scalable dynan@stt
generation,” inProceedings of the 2008 23rd IEEE/ACM
international conference on automated software engimegeri
IEEE Computer Society, 2008, pp. 443-446.

[27] P. Godefroid, “Compositional dynamic test generatidn
ACM SIGPLAN Noticesvol. 42, no. 1. ACM, 2007, pp.
47-54.

[28] S. Anand, C. Pasareanu, and W. Visser, “Symbolic etten
with abstraction,International Journal on Software Tools for
Technology Transfer (STT,Yol. 11, no. 1, pp. 53-67, 2009.

[29] V. Kuznetsov, J. Kinder, S. Bucur, and G. Candea, “Efiti
state merging in symbolic execution,” 2012.

[30] I. Erete and A. Orso, “Optimizing constraint solvinghetter
support symbolic execution,” iBoftware Testing, Verification
and Validation Workshops (ICSTW), 2011 IEEE Fourth Inter-
national Conference on IEEE, 2011, pp. 310-315.

[31] L. Bu, Y. Yang, and X. Li, “llIS-guided dfs for efficient
bounded reachability analysis of linear hybrid automaita,”
Proceedings of Haifa Verification Conference Springer,
2011.

[32] J. Chinneck and E. Dravnieks, “Locating minimal infises
constraint sets in linear programs)RSA Journal on Com-
puting vol. 3, no. 2, pp. 157-168, 1991.

[33] A. Cimatti, A. Griggio, and R. Sebastiani, “Computingall
unsatisfiable cores in satisfiability modulo theoriekurnal
of Artificial Intelligence Researclvol. 40, no. 1, pp. 701-728,
2011.

[34] S2E, https://s2e.epfl.ch/.

[35] M. Zitser, R. Lippmann, and T. Leek, “Testing static kna
ysis tools using exploitable buffer overflows from open
source code,” ilACM SIGSOFT Software Engineering Notes
vol. 29, no. 6. ACM, 2004, pp. 97-106.

VIlI. APPENDIXA spends one time of constraint solving. In summary, the two
new branches brings 1 or 2 extra times of constraint solving
in SP-DFS.
We define the height of an execution tree as the number Case 2:b; is feasible and b,. is infeasible. The argument
of branches in the longest path in the tree. lfet, be an s similar to case 1, except that is unsatisfiable.
arbitrary execution tree with height. Let T?(Tr,) and Case 3:b; is infeasible and b, is feasible. If point A
T*(Tr,) be the times of constraint solving in performing reaches the max speculation depth when expldfing then
pure SE and speculative DFS (SP-DFS)Ian, respectively, when exploringT’r,, 1, one time of constraint solving is
wherek is the max speculation depth. Proposition 2 claimsneeded foi;. Otherwise, when exploringr,, 1, b; will be
that for anyT'r,, T"(Tr,) > 1/2 x T?(Tr,). We use included in the same speculation segment with the branch
induction on the height of the execution tree to prove thisabovepoint A This speculation fails becausgis infeasible,
proposition. and needslog, k1 or [log, k]+1 times of constraint solving
Basis Fonn = 1, as shown in Figure 12, there are threein backtracking. Fom,., one time of solving is needed. In
possible shapes fdfr;. In each case, both of SP-DFS and summaryp; andb, bring [log, k] + 1 or [log, k] + 2 times
pure SE need two times of constraint solving. So Propositiomf constraint solving.
2 holds forn = 1. In summary, for each of the three cases abéyealways
Induction step: Suppose that Proposition 2 holds for needs one time of constraint solving, andbrings 0 or more
Tr,, ie, TF(Tr,) > 1/2 x T?(Tr,), we now show times. Since); andb, need 2 times of constraint solving in
T*(Trps1) > 1/2 % TP(Trp11). pure SE, therefore the increased times of constraint splvin
As shown in Figure 131r,,1 can be regarded as in SP-DFS is larger than half of that in pure SE. According
constructed by adding a level of branches to some leave® the induction hypothesi§*(Tr,) > 1/2xT?(Tr,), we
(at least one) ofl'r,,. Let e be a leaf ofT'r,,, as shown in can getl™™(Tr,11) > 1/2 x TP(Trp41).
Figure 13,e can be extended in three different cases. Let We claim that proposition 2 holds for an arbitray execu-
b; andb, (at least one is feasible) be the two new branchesion tree.
undere. In pure SE, each ob, and b, need one time of B. Proof of Equation (1)
constraint solving, no matter the branch is feasible or not.
Now we analyze what difference these new branches brlng Let Tree,, be a full binary execution tree of height
to the times of constraint solving between exploration of=et T*(T'reen) be the times of constraint solving in SP-
Tr, andTr,.1 by SP-DFS. DFS, _Wherek is the max speculation depth. There are the
Case 1:b; and b, are both feasible. In SP-DFS, if following two cases:

point A (In Figure 13) reaches the max speculation depth \C/:Va;]se 1:71% k. lati s al terminate b
when exploringl'r,, then in exploration o¥'r,, 11, @ new enn = &, Speculation segments always terminate be-

speculation segment starts {at so b; consumes one time gigl‘j‘?so;pzfz er:%'ngf' ':S theswtt_]’i;? n;gzg fr?éwi?w%oa::h;vt?gr?
of constraint solving. Ifpoint A does not reach the max i ¢ traint sol path, Lo th ber of paths. S
speculation depth, theh; will be included in the same IMes ot constraint solver equal to the number ot paths. S0

speculation segment with the branch ab@aént A Since we get
b; is satisfiable, it brings no extra constraint solving. What’
more, to completé,., SP-DFS backtracks tpoint A and

A. Proof of Proposition 2

TH(Tree,) = 2"(n < k) (A.2)

Case 2:n > k.
Now we calculate the relation betwedr (Tree,) and

A f\ A T*(Treen 1)

case 1 case? case3 As shown in Figure 147 ree,; is composed of two
symmetrical subtrees, sajree’,, and Treel ; respec-
Figure 12. Execution Tree With Height 1 tively, each of which is constructed by adding a branch on
top of aTree,,.
A /\ According to the SP-DFS procedure, it is easy to know
| & A TH(Treek,) = TF(Treel,) and T*(Tree,41) = 2 x
mo N N T*(Treek). Therefore, to calculate the relation between
‘ A \ T*(Tree,) andT*(Tree, 1), it suffices to know the rela-
- tion betweenl ™ (Tree,,) andT*(Treel . ;).
pointA A A ------ A A As shown in Figure 157 ree . | consists of al'ree,
Case 1 Case? Case3 and a branch on the top. Now we focus on what difference

this new branch brings to the times of constraint solving in
Figure 13. Execution Tree With Height + 1 exploring TT€€£+1 andT'ree,, by SP-DFS.

Treent1

Figure 14. A Full Binary Tree With Height of + 1

ol
Tree, .,

pointB ——______

->
pointA ~_ /
)

Figure 15. Impact of Adding a Branch on Top ®f-ee,,

For Tree,,, SP-DFS starts gioint A (in Figure 15). The
first completed path iff'ree,, is the leftmost one, say,
which is marked with thick arrows in Figure 15. It is easy
to know that when exploring?, a total of [n/k] times
of constraint solving are needed. Besides, the lengths of
these speculation segments are /alexcept the last one,
which includes: %k branches. After completg, the search
procedure backtracks tpoint C and starts to traverse the
other part ofT'ree,,.

ForTreel ., SP-DFS starts gtoint B. The leftmost path
is still the first to complete, needing a total pfn + 1)/k]
times of constraint solving. After completing the leftmost
path, SP-DFS backtracks to thpmint C and continues. It
is clear that aftepoint C, SP-DFS performs identically as
that in exploringT'ree,, because the backtracking points
separate the the leftmost path and the other parts of the
tree. Therefore, the only difference in exploriﬂ@eeﬁﬂ
happens on the leftmost path.

Since

n/k n%k # 0
[(n+1)/k] = {[/F] (#0) (A.3)
[n/k]+1 (n%k=0)
The relation betweef* (Tree, 1) andT*(Tree,) can be
guantified by the following equation:

T*(Tree,) (n%k # 0)

T*(Treek,) =
(T€€n+1) Tk(Treen) +1 (n%k — O)

(A.4)

From Equation A.4, it is not hard to get the following

T*(Tree,) =

equation, which quantifies the times of constraint solvimg i
performing SP-DFS ofi'ree,.

2m (n<k)
on _ 2(n%k) (A5)

