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Abstract—Coverage criteria based on data-flow have long been
discussed in the literature, yet to date they are still of surprising
little practical relevance. This is in part because 1) manually
writing a unit test for a data-flow aspect is more challenging than
writing a unit test that simply covers a branch or statement, 2)
there is a lack of tools to support data-flow testing, and 3) there is
a lack of empirical evidence on how well data-flow testing scales
in practice. To overcome these problems, we present 1) a search-
based technique to automatically generate unit tests for data-flow
criteria, 2) an implementation of this technique in the EVOSUITE
test generation tool, and 3) a large empirical study applying this
tool to the SF100 corpus of 100 open source Java projects. On
average, the number of coverage objectives is three times as high
as for branch coverage. However, the level of coverage achieved
by EVOSUITE is comparable to other criteria, and the increase in
size is only 15%, leading to higher mutation scores. These results
counter the common assumption that data-flow testing does not
scale, and should help to re-establish data-flow testing as a viable
alternative in practice.
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I. INTRODUCTION

Systematic test generation is often driven by coverage
criteria based on structural program entities such as statements
or branches. In contrast to such structural criteria, data-flow
criteria focus on the data-flow interactions within or across
methods. The intuition behind these criteria is that if a value
is computed in one statement and used in another, then it is
necessary to exercise the path between these statements to
reveal potential bad computations. Studies showed that data-
flow testing is particularly suitable for object-oriented code [4],
[17], [31], as object-oriented methods are usually shorter than
functional procedures with complex intra-procedural logic, for
which classic structural criteria are intended.

Despite these studies, data-flow criteria are rarely used in
practice, and this is the case because of two main reasons: First
of all, there is little support for testers to measure the data-flow
coverage of their test suites1, while there is ample choice for
structural criteria2. Secondly, testers have to put more effort
in writing test cases that satisfy data-flow criteria: it is more
difficult to come up with a test case that exercises a variable
definition as well as a use, rather than just having to reach one

1To the best of our knowledge, Coverlipse [21], DaTeC [6], [7] and
DUAF [33] are the only code coverage tools that support data-flow criteria
for Java.

2http://java-source.net/open-source/code-coverage

statement [8]. This emphasizes the importance of automated
test generation tools — however, most existing systematic test
generation tools target either statement or branch coverage.

A further problem preventing wide-spread adoption of data-
flow criteria is a lack of understanding of how well they scale
to real world applications. Intuitively, data-flow criteria result
in more test objectives to cover, and consequently also more
test cases, but the number of infeasible test objectives (i.e.,
infeasible paths from definitions to uses of the same variable)
is also expected to be larger than for simpler structural criteria.
However, there simply is not sufficient empirical evidence to
decide whether this is a show-stopper in adoption of data-flow
testing criteria, or just a minor side effect.

To address these problems, in this paper we present a data-
flow test generation technique implemented as an extension
of the search-based EVOSUITE [11] tool, which we applied
to 100 randomly selected open source Java projects. In detail,
the contributions of this paper are as follows:
• We present a search-based technique to generate unit

tests for data-flow criteria. This technique uses a genetic
algorithm for both, the classical approach of targeting one
test objective at a time, as well as the alternative approach
of targeting all test objectives at the same time.

• We present an implementation of this technique, extend-
ing the EVOSUITE test generation tool to generate test
suites targeting all definition-use pairs.

• We present the results of a large empirical study on
open source Java applications (the SF100 corpus of
classes [12]) in order to shed light on how data-flow
testing scales and compares to other criteria in practice.

The results of our experiments indicate that data-flow testing
is a viable alternative and does not suffer from scalability
problems as feared. Given the same fixed amount of time for
test generation, data-flow testing achieves significantly higher
mutation scores than test suites targeting branch coverage. The
effectiveness of EVOSUITE at producing data-flow oriented
test suites is comparable to that of producing structural test
suites, and thus in theory there is no good reason why data-
flow criteria should not be applied by default in practice.

II. BACKGROUND

Structural testing techniques use the structure of the unit
under test (i.e., nodes and branches in the control flow graph)
as test objectives, and they consider a test suite to be adequate



1class CoffeeMachine{
2 Inventory i;
3 int price;
4 int amtPaid;
5

6 makeCoffee(){
7 boolean canMakeCoffee=

true;
8 if(amtPaid<price)
9 canMakeCoffee=false;

10 if(canMakeCoffee)
11 amtPaid-=price;
12 }
13

14 addCoins(int amt){
15 amtPaid+=amt;
16 }

17 addInventory(int coffee,
int sugar){

18 canAdd=true;
19 if(coffee<0||sugar<0)
20 canAdd=false;
21 else{
22 i.setSugar(
23 i.getSugar+sugar);
24 i.setCoffee(
25 i.getCoffee+coffee);
26 }
27 return canAdd;
28 }
29

30}

Fig. 1. Sample CoffeeMachine Class

only if it covers each of the feasible objectives at least once.
Structural testing criteria operate on a single control flow graph
in isolation, and therefore they are ideal to assure that the test
suite covers all the cases handled in the logic of a procedure.

Data-flow techniques emerged from the intuition that if in
one point of a procedure a value is computed in the wrong
way, the effects of such a fault are visible only when that
value is used at another point. Thus, data-flow techniques
use variable definitions and uses as test objectives, and they
consider a test suite to be adequate only if it exercises program
points representing definitions and uses on the same variable.
Intuitively, data-flow criteria are more complex than structural
techniques, since they may also test relations across different
control flow graphs.

A. Data-flow Criteria

Herman was the first to identify def-use pairs as the relevant
elements that a test suite should cover [18]. A def-use is a pair
of a definition (i.e., program point where a value is assigned
to a variable) and a use (i.e., program point where the value
of a variable is read) of the same variable when there is at
least one path in the control flow graph from the definition
to the use that does not contain any other definition of the
same variable (i.e., it is a def-clear path). For instance, method
makeCoffee() in Figure 1 has two def-use pairs of the
boolean value canMakeCoffee (lines 7-10 and 9-10).

In his seminal paper, Herman defined what was later called
All Def-Use Coverage criterion, which requires a test suite
to cover each def-use pair at least once, meaning that a test
suite should cover at least one path from each definition to
each one of its uses. Rapps and Weyuker first, and Clarke et
al. later, formally defined a set of data-flow criteria and the
relation among them [5], [32]. Later Harrold and Rothermel
extended such data-flow criteria to test object oriented software
at the unit level [17]. Classic criteria focus on the data-flow
within methods, and across methods only in presence of ex-
plicit method invocations. They do not consider the data-flow
interaction through instance variables when the public methods
of a class are invoked in arbitrary order. This is, however,
particularly important when testing a class in isolation (i.e.,
for unit testing), since it is often the case that the behavior of
a method depends on the instance state, and consequently it

is necessary to invoke any other public method that changes
the instance state before executing the method that accesses
it. For instance, the behavior of makeCoffee() depends
on the amount that has been paid, which can be changed by
executing addCoins(). To address this problem, Harrold
and Rothermel introduced the concept of intra-class def-use
pairs, beside the “classic” intra- and inter-method def-use
pairs:
• Intra-method def-use pairs: The definition and the use of

a variable are within the same method, and the def-use
pair is exercised during a single invocation of that method
(e.g., definition and use of canMakeCoffee at lines 9
and 10).

• Inter-method def-use pairs: The definition and the use of
the same variable are in different methods, and the path
from the definition to the use can be found by following
the method invocations in the control flow graph.

• Intra-class def-use pairs: The definition and the use of
the same instance variable are in two different methods,
and the path from the definition to the use can be
exercised if the two methods are invoked one after the
other (e.g., definition of amtPaid at line 15 by invoking
addCoins() and use of amtPaid at line 8 by invoking
makeCoffee).

In our work we implement the all def-use coverage criterion,
and we identify all the def-use pairs defined by Harrold and
Rothermel. In Section III we provide more details of the data-
flow analysis implemented in EVOSUITE.

B. Search-based Testing

Generating test cases by hand is a tedious task, and while it
is conceivable that a tester takes information from a coverage
tool and tries to add new tests targeting uncovered branches
or statements, writing test cases to cover def-use pairs is more
difficult. To support users in generating tests, researchers pro-
posed several different automated test generation techniques,
such as search-based software testing (SBST). SBST casts the
problem of test generation as a search problem, and applies
efficient search algorithms such as genetic algorithms (GAs)
to generate test cases [26]. This has the big advantage that
a given test generation tool can be adapted to other criteria
easily by replacing the heuristic applied during the search. In
a GA, a population of candidate individuals (i.e., test cases)
is evolved using search operators intended to mimic natural
evolution. Crossover between two individuals produces two
offspring that contain some genetic material from both parents,
while mutation of individuals introduces new genetic material.
The representation and search operators depend on the test
generation problem at hand (e.g., sequences of method calls
for testing classes [34]). A fitness function measures how
good individuals are with respect to the optimization target,
and the better this fitness value is, the higher the probability
of an individual for being selected for reproduction, thus
gradually improving the fitness of the best individual with
each generation, until either an optimal solution is found or
some other stopping condition (e.g., a timeout) holds. The



fitness function executes the program under test with an input
at a time, and measures how close this input is to reaching
a particular structural entity (e.g. node in the control flow
graph) chosen as optimization target. The established heuristic
to measure the distance of a test towards a node in the control
flow graph consists of the approach level, which measures
the closest point of a given execution to the target node, and
the branch distance, which estimates how close a particular
branch was to evaluating to the desired outcome (see [26] for
details):

nodeDistance = approach level + ν(branch distance) (1)

This is a minimising fitness function, i.e., the target has been
covered if this function evaluates to 0. The branch distance is
calculated for the branch where the control flow diverged (i.e.,
the point of diversion measured by the approach level). As
the approach level is an integer number, the branch distance is
commonly normalized in the range [0, 1] using a normalization
function ν, such that the approach level always dominates the
branch distance.

C. EVOSUITE and Whole Test Suite Generation

Optimising individual tests for individual coverage goals can
be problematic as individual coverage goals are usually not
independent, and there is the problem of distributing a fixed
search budget among all coverage goals. To overcome these
problems, whole test suite generation aims to optimise sets of
test cases towards covering all goals described by a coverage
criterion. This is the approach implemented in the EVOSUITE
tool, and studies have confirmed that this is beneficial, since
it leads to higher branch coverage, and it is less affected by
infeasible coverage goals [13].

In EVOSUITE, one individual of the search is a test suite,
which may contain a variable number of test cases. Each
test case in turn is a variable length sequence of calls, i.e.,
invocations of constructors and methods, assignment of values
to fields, generation of arrays or primitive values. When a test
suite individual is mutated, then each of its N test cases is
mutated with probability 1/N , and in addition new test cases
are added with decreasing probability. When a test case is
mutated, then each of its n calls is deleted with probability
1/n and changed with probability 1/n. Finally, new calls
are inserted on random objects at random positions with
decreasing probability.

The fitness function in whole test suite generation aims to
produce a test suite that satisfies all coverage objectives. To
optimize for branch coverage it is necessary that all branches
in a program evaluate to true and to false. For each branch,
the following distance is calculated, where dmin(b, T ) is the
minimal branch distance of branch b on all executions in test
suite T :

d(b, T ) =


0 if the branch has been covered,

ν(dmin(b, T )) if the predicate has been
executed at least twice,

1 otherwise.

This function applies to all branching instructions in the
code, rather than edges in the control flow. The reason to
require each branch to be covered twice is that if a branch is
only covered once then optimizing it to evaluate to the other
outcome will not improve the coverage. The resulting fitness
function is simply the sum of the individual branch distances
as well as requiring all methods M to be called (MT is the
set of methods called by T ) in case there are methods without
branching instructions [13]:

branchFitness(T ) = |M | − |MT |+
∑
bk∈B

d(bk, T ) (2)

III. DATA-FLOW TESTING WITH EVOSUITE

The data-flow testing process in EVOSUITE consists of two
main phases: The data-flow analysis phase statically identifies
the testing objectives, i.e., the def-use pairs, in the class
under test. Then, EVOSUITE generates the test cases aiming
at maximizing the coverage of the def-use pairs.

A. Data-flow Analysis

The data-flow criterion implemented in EVOSUITE com-
bines the criterion for object-oriented software proposed by
Harrold and Rothermel [17], and the all def-use pairs criterion
originally proposed by Herman [18]. Thus, the data-flow
analysis statically identifies intra- and inter-method def-use
pairs according to standard data-flow algorithms, and intra-
class def-use pairs according to the algorithm proposed by
Harrold and Rothermel.

Each class under test (CUT) is considered in isolation. For
each CUT, the first step consists of creating the graphs needed
for the analysis: one control flow graph per each method, and
a class control flow graph (CCFG) that connects them. The
CCFG is the graph used in Harrold and Rothermel’s algorithm
to compute the intra-class def-use pairs. It simply connects all
the public methods through a frame node that allows the data-
flow of instance variables across these methods.

The analysis starts by visiting the methods that do not
invoke any other method of the same class. To compute the
intra- and inter-method pairs, we implemented a standard
forward may analysis to identify which variable definitions
may reach a node in the control flow graph [28]. For each
node we compute which definitions may reach it from the
entry node, and we create a def-use pair for each use of
the same variable within the node. Finally, we add the pair
to the objectives that the test suite should cover. The data-
flow analysis considers local, instance and static variables. We
consider each formal parameter to be defined at the beginning
of the method to capture intra-method def-use pairs, and we
later substitute the variable name of the formal parameter
definitions and uses with the respective actual parameter to
capture inter-method pairs. We call those intra-method pairs
involving parameters parameter def-use pairs, in order to
distinguish them from other intra-method pairs.

Our current implementation does not consider reference
aliasing, and consequently the analysis may miss some def-
use pairs. On the other hand, a sound alias analysis would



potentially increase the overall number of def-use pairs and
the number of infeasible def-use pairs significantly, and may
thus have a negative impact on the scalability of the technique.
We plan to investigate the impact of reference aliasing on the
scalability of the analysis and on the infeasibility of the test
objectives as future work.

The analysis handles method invocations within a control
flow graph depending on what class the invoked method
belongs to. In case the invoked method belongs to the current
CUT, the data-flow analysis follows the method invocation,
and gets the data-flow analysis results of the invoked method
with a standard inter-procedural data-flow analysis. If the in-
voked method does not belong to the current CUT, we approx-
imate the analysis. Similarly to what Martena et al. proposed
to test interclass relations in object oriented software [24],
we classify the invoked methods according to the potential
effects that they might have on the instance. If the method
is an inspector, i.e., if it does not change the instance state,
then we consider the method invocation as a use of the object
reference on which the method is invoked. Similarly, if the
invoked method is a modifier, i.e., if it may mutate the instance
state, we consider the method invocation as a definition of
the object reference on which the method is invoked. For
instance, at line 22 the invocation i.setSugar() would be
considered as a definition of reference i, and the invocation
i.getSugar(), at line 23, as a use of the same reference.
To minimize the time required by the analysis, we computed
the set of inspectors and modifiers in the Java standard library
once, and we stored this information such that it can be reused.

Another approximation in our analysis regards arrays. We
approximate operations on arrays by considering the array
as a single whole element. Consequently, we consider any
operation (i.e., definition or use) on any element of the array
as an operation on the whole array.

B. Covering Def-Use Pairs

Def-use pairs can be represented as node-node fitness func-
tions according to the categorization by Wegener et al. [35].
This means that the optimization first aims to reach the first
node (the definition), and then consequently the second node
(the use), and standard fitness metrics such as Equation 1 are
used to represent the distance to a node.

However, the coverage of the use-node is not as straight
forward as simply applying Equation 1: First, we need to
ensure that there is no killing definition (i.e., another definition
of the same variable) between the source definition and the
target use. Second, in unit testing there can be several instances
of each class at any time, and we need to ensure that the
definition and the use are covered on the same instance. To
achieve this, we instrument the target class such that we collect
an execution trace during execution of test t:

trace(t) = 〈(id1, o1, bd1), (id2, o2, bd2), (id3, o3, bd3), . . .〉
(3)

Each id represents a basic block in the control flow graph of
the CUT, and o is a unique ID that identifies the instance

on which this basic block was executed. In addition, bd
represents the branch distance to executing the alternative
branch.3 In practice, we use Java’s bytecode instrumentation
facilities to add tracing calls that keep track which basic
block (and definition or use) was executed, and we use Java’s
identityHashCode function to uniquely identify objects.
Each definition and each use corresponds to a unique basic
block id. The branch distance is determined by applying
standard rules [26]. The projection of an execution trace on
an object O is a sequence of basic block ids consisting of all
ids where the corresponding object equals O:

p(〈(id1, o1, bd1), (id2, o2, bd2), . . .〉, O) = 〈(id, o, bd) | o = O〉
(4)

We denote a sub-trace of trace t from position i to position
j (inclusive) as ti,j . Let def(d, t) be the set of positions in
sequence t for which the basic block includes definition d, and
use(u, t) be the set of positions in sequence t for which the
basic block includes use u.

The distance to reaching a definition is calculated us-
ing Equation 1 on the execution trace: in this case
the approach level is defined as the minimal distance
between a basic block in the execution trace t =
〈(id1, o1, bd1), (id2, o2, bd2), (id3, o3, bd3), . . .〉, and the basic
block containing the definition def in the control dependence
graph; the branch distance, instead, is the value bd for the
corresponding position in the execution trace.

If the definition has been reached, then the approach level
and branch distance are 0 by definition, and there is at least one
occurrence of (def, oi, bdi) for that definition in the execution
trace. To calculate the distance towards reaching the use,
we require a sub-trace of the execution trace for which this
definition is active. We thus calculate for each occurrence
(def, oi, bdi) of the target definition in the execution trace the
sub-trace ti,j , where i is the position of (def, oi, bdi) and j is
the position of the next occurrence of a definition def ′ of the
same variable on the same object (def ′, oi, bdi), or else the
end of the execution trace if there is no further definition. Then
t′i,j = p(ti,j , oi) is the projection of ti,j on object oi. The use-
distance for this definition is now calculated using Equation 1
on t′i,j as described above for definitions. The overall distance
to reaching the use-node is the minimum distance for each of
the definitions.

The overall fitness of a test case with respect to def-use pair
(d, u) on trace t is thus (assuming all li and lj are adjacent
definitions):

duFitness(d, u, t) =


1 + nodeDistance(d, t)

if d is not covered by t,

ν(min({nodeDistance(u, tli,lj )
| li, lj ∈ def(d, t)}))

if d is covered by t

3For simplicity we assume there is always one alternative branch. However,
this can be generalized to any number of alternative branches without loss of
generality.



C. Evolving Test Suites for Data-flow Coverage

When targeting individual coverage goals with a limited
search budget one faces the issue of having to distribute the
available resources on all coverage goals, or to select some
that are more important. Furthermore, if some of the coverage
goals are infeasible, then any resources invested to cover these
are wasted by definition. As data-flow criteria are expected
to result in more coverage goals and also more infeasible
coverage goals, this potentially is an issue, which can be
countered by applying whole test suite generation.

A first observation is that in order to cover all def-use pairs,
a test suite should first of all reach each definition. Every
definition is guaranteed to be reached if all statements or all
branches of a program are covered, therefore we can simply
reuse the branch coverage fitness function (Equation 2) to
achieve that all definitions are reached.

A second observation is that each definition and use may
be part of several def-use pairs. Consequently, covering a
definition or a use a single time may not be sufficient to
achieve full coverage, and optimizing towards one def-use pair
may lead to loss of coverage of another def-use pair involving
the same definition or use. Therefore, the fitness function needs
to drive test suites towards an adequate size where each def-use
pair can be covered without impeding optimization towards
other def-use pairs. The exact number of times a definition
needs to be executed is difficult to determine as one execution
of a definition may lead to coverage of several def-use pairs.
Therefore, a conservative assumption is that each definition
needs to be covered as many times as there are def-use pairs
it is part of. If there are redundant executions in the end, then
this is not problematic as typically test suites and test cases
are minimized before they are presented to the developer.

Finally, for each definition that is covered by a test suite
we need to determine the minimal distance to a use of that
definition as described above. To simplify the notation, we use
the following shorthand to denote the minimal use-distance for
a def-use pair on a given test suite T , normalized to [0, 1]:

duse(def, use, T ) =


1
if def is not covered by T ,

ν(nodeDistance(ui, t)) for ui with
minimal distance after def

Assuming a function exec(n, T ) that returns the number of
times a node n has been executed in a test suite T , this results
in the following overall fitness function:

defuseFitness(T ) = branchFitness(T )
+

∑
defi

(|{(d, u) | d = defi}| − |exec(defi, T )|)

+
∑

(defi,usei)
duse(defi, usei, T )

(5)

IV. EVALUATION

To gain insights into how well data-flow testing works in
practice, we have implemented the described technique as part
of the EVOSUITE test generation tool and performed a set

of experiments on the SF100 corpus of classes [12]. This is
a statistically representative sample of 100 open source Java
applications, which increases the confidence that the results
generalize to open source software in general. In detail, we
aim to answer the following research questions:

RQ1: How many def-use pairs does EVOSUITE identify in
open source software?

RQ2: How many of the def-use pairs can EVOSUITE
cover?

RQ3: Is the whole test suite generation approach beneficial
for data-flow testing?

RQ4: How does the computational complexity of the fit-
ness function affect the search?

RQ5: How do def-use test suites compare to other criteria
in terms of the resulting size and length?

RQ6: What is the fault detection ability of the generated
def-use test suites, and how do they compare to test
suites generated with other criteria?

A. Experimental Setup

We used the SF100 corpus as case study for our ex-
periments. SF100 consists of 100 projects that were ran-
domly sampled from all Java projects on the SourceForge
open source development platform. The current version of
EVOSUITE reports 9, 268 testable classes. For each of these
classes we applied EVOSUITE to generate def-use coverage,
branch coverage, and weak mutation test suites, and measured
each of these coverage criteria and the mutation score of
the resulting test suites. Weak mutation testing differs from
the mutation score in that mutation testing requires that a
mutant can be detected with an assertion, whereas weak
mutation only requires state infection [14]. In addition we also
ran EVOSUITE targeting individual def-use pairs rather than
optimizing whole test suites. Each run had a timeout of 2
minutes, and used the default parameters of EVOSUITE. After
test generation each test suite was minimized with respect to
the target criterion. For each class/configuration, experiments
were repeated 10 times with different random seeds to take
into account the stochastic nature of EVOSUITE [2]. In total,
we had 9, 268× 4× 10 = 370, 720 runs of EVOSUITE.

Following the guidelines in [2], all data was analyzed statis-
tically using the Vargha-Delaney Â12 effect size and Wilcox-
Mann-Whitney U-test. Given a performance measure K (e.g.,
def-use coverage), Âxy measures the probability that running
algorithm x yields higher K values than running algorithm y.
If the two algorithms are equivalent, then Âxy = 0.5. This
effect size is independent of the raw values of K, and it
becomes a necessity when analyzing the data of large case
studies involving artifacts with different difficulty and different
orders of magnitude for K. E.g., Âxy = 0.7 entails one would
obtain better results 70% of the time with x.

B. Data-flow Analysis Results

Table I lists the statistics on the def-use pairs identified
in the classes of SF100. In total, there are 819,997 def-
use pairs, which is almost three times as many as there are



TABLE I
STATISTICS ON THE DEF-USE PAIRS AND OTHER COVERAGE ENTITIES IN

THE SF100 CORPUS OF CLASSES.

Name Min Avg Median Max Total

Branches 0 30.27 17.00 2,478 277,757
Mutants 0 147.60 56.00 27,828 1,349,349
Def-Use Pairs 0 89.27 33.00 29,727 819,997

Intra-Method Pairs 0 34.32 13.00 1,620 315,293
Parameter Pairs 0 14.85 8.00 1,008 136,445
Inter-Method Pairs 0 1.42 0.00 466 13,007
Intra-Class Pairs 0 38.67 2.00 29,053 355,252
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Fig. 2. Comparison of achieved coverage per class

branches to cover (277,757), but significantly less than mutants
produced by EVOSUITE (1,349,349). The largest share of def-
use pairs are intra-class pairs, followed by intra-method pairs.
Interestingly, there are only comparatively few inter-method
pairs; in part this is because we only consider inter-method
pairs within the same class. Figure 2(a) shows that there is
a strong correlation between the number of branches and the
number of def-use pairs (Pearson’s correlation of 0.866 with
95 percent confidence interval of [0.8606, 0.8708]).

RQ1: On average, classes have three times as many
def-use pairs as branches, but significantly more mutants.

C. Achieved Coverage

To illustrate EVOSUITE’s performance at covering these
def-use pairs, Table II summarizes the coverage achieved
when targeting branch coverage, def-use coverage, and weak
mutation testing. As expected, targeting each of the criteria
achieved the highest average coverage for that particular
criterion. On average, EVOSUITE achieved 54% def-use pairs
coverage. At first sight this may seem low, but considering that
targeting branch coverage leads to only 56% branch coverage
reveals that there are many factors in SF100 that affect the
achievable coverage (e.g., environmental dependencies on files
and network sockets etc [12]). The branch coverage achieved
by the def-use test suites is the lowest of all (49%), suggesting
that the exploration of the search space did not have as
much time to advance as in the case of simpler criteria.
Given more time, EVOSUITE would therefore likely achieve
higher coverage values. Branch coverage achieves the lowest
coverage of def-use pairs and weak mutation testing. However,

TABLE II
AVERAGE COVERAGE VALUES ACHIEVED BY TARGETING DIFFERENT

COVERAGE CRITERIA.

Criterion Branch Def-Use Weak
Mutation

Def-Use Coverage 0.49 0.54 0.46
Branch Coverage 0.56 0.48 0.45
Weak Mutation 0.50 0.51 0.50
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Fig. 3. Boxplot of achieved coverage per types of def-use pairs.

weak mutation testing covers 51% of the def-use pairs, which
is significantly more than branch coverage.

RQ2: On average, test suites produced by EVOSUITE
cover 54% of the identified def-use pairs.

To see how the complexity of a class influences the achieved
coverage, Figure 2(b) plots the achieved def-use coverage
against the number of def-use pairs (on a logarithmic scale).
This illustrates that, although the average is as low as 54%,
the range of coverage values is spread all across the spectrum
up to 100%. There is a clear tendency that classes with more
def-use pairs lead to lower coverage; this is confirmed by the
correlation between number of achieved coverage and number
of def-use pairs, which is −0.47 (Pearson’s correlation with
95 percent confidence interval of [−0.4828− 0.4509]). There
is also a large cluster of trivial classes with none or a very low
number of def-use pairs on which 100% coverage is (trivially)
achieved.

Figure 3 illustrates the achieved coverage per type of def-
use pair. Parameter-pairs have the highest average coverage,
whereas inter-method pairs are the most difficult to cover.
Indeed, EVOSUITE seems to have problems in covering inter-
method pairs, which will merit further investigations to im-
prove test generation. However, as the number of inter-method
pairs is the smallest (cf. Table I) this does not affect the overall
coverage very much. Intra-method and intra-class pairs seem
to be very similar in their complexity, but more difficult than
parameter pairs.

Figure 4 shows how the coverage of def-use pairs related
to the other target criteria, i.e., it compares for each class the
def-use coverage when targeting def-use coverage with the
branch coverage when targeting branch coverage, respectively
the same for weak mutation testing. The correlation between
coverage of def-use pairs and branch coverage is 0.818
(Pearson’s correlation with 95 percent confidence interval of
[0.8108, 0.8244]), and the correlation between coverage of def-
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Fig. 4. Comparison of achieved coverage per class

use pairs and weak mutation score is 0.719 (Pearson’s correla-
tion with 95 percent confidence interval of [0.7087, 0.7285]).
This correlation is very high, and this suggests that if a class
is well testable using any of the criteria it will also be testable
by the other criteria.

D. Effects of Whole Test Suite Generation

In previous work [13], [14] we have shown that whole
test suite generation is beneficial when generating test suites
targeting branch coverage and weak mutation testing. In both
these cases the complexity of the fitness function was linear
in the size of the traces of a test suite; our def-use fitness
function is not linear. Therefore, we compare the results of
using the whole test suite generation approach to the traditional
approach targeting one def-use pair at a time. Table III sum-
marizes the results in terms of the achieved def-use coverage.
The improvement of the whole test suite generation approach
is very clear with Â12 = 0.74.

This result is particularly interesting because previous stud-
ies [9], [36] reported large numbers of infeasible def-use pairs,
i.e., pairs for which there exist no test cases that would cover
them. Although we cannot report numbers of infeasible pairs
without manual investigation, one of the main advantages
of the whole test suite generation approach is that it is not
adversely affected by infeasible test objectives. Since in our
fitness function every def-use pair incurs some computational
overhead once the definition is covered, it is not the case
that the approach is completely oblivious to the number of
infeasible pairs. However, the results clearly show that the
problem of infeasible pairs is attenuated by the whole test
suite generation approach.

RQ3: Whole test suite generation leads to significantly
higher def-use coverage compared to the traditional

approach of targeting individual def-use pairs.

E. Computational Overhead

The complexity of the def-use fitness function is higher than
that of other coverage criteria, and intuitively one would expect
def-use coverage to tend towards longer test cases (as will be

4Values in brackets are for the comparisons that are statistically significant
at α = 0.05 level; p-values are of the test for Â12 symmetry around 0.5.

TABLE III
AVERAGE DEF-USE PAIR COVERAGE.

For each class, we counted how often the whole test suite generation approach led to
worse (Â12 < 0.5), equivalent (Â12 = 0.5) and better (Â12 > 0.5) def-use

coverage compared to the traditional approach of targeting individual def-use pairs.4

Name Coverage Worse Equal Better Â12 p-value

Def-Use Cov.
(whole) 0.54 - - - - -

Def-Use Cov.
(individual) 0.52 995 (840) 2900 5306 (1865) 0.74 0.000

TABLE IV
AVERAGE NUMBER OF EXECUTED STATEMENTS FOR BRANCH COVERAGE
TEST SUITES, DEF-USE PAIR COVERAGE, AND WEAK MUTATION TESTING.

For each class, we counted how often the def-use coverage test suite led to fewer
(Â12 < 0.5), equivalent (Â12 = 0.5) and more (Â12 > 0.5) executed statements.4

Criterion Statements Worse Equal Better Â12 p-valueExecuted

Def-Use
Coverage 54728.49 - - - - -

Branch
Coverage 83760.28 5716 (3277) 1086 2398 (767) 0.36 0.000

Weak
Mutation 1e+05 5584 (3453) 1496 2120 (415) 0.34 0.000

analyzed in Section IV-F). These factors may adversely affect
the search, as within a fixed search budget (e.g., time) less
exploration of the search space can be performed. To quantify
the effect on the search, we compare the number of executed
statements per technique and class. The reason for counting
statements is that the number of tests in a test suite as well
as the number of statements in a test case can vary, therefore
the only comparable measurement is the number of statements
executed.

Table IV compares the number of executed statements for
runs with def-use coverage with runs using branch coverage
and weak mutation testing. In both cases the number of
executed statements is significantly lower for def-use coverage,
and the effect sizes are 0.36 and 0.34. Consequently, we can
conclude that the overhead of the def-use calculation affects
the search, and def-use coverage would require more time to
achieve the same level of exploration.

RQ4: Def-use coverage leads to significantly fewer
executed statements in a fixed time compared to branch

coverage and weak mutation testing.

F. Test Suite Size

Considering that there are typically more def-use pairs than
branches, it is to be expected that there are more tests in def-
use test suites than in branch coverage test suites. However,
the question also is how the criterion influences the individual
tests. In particular, given that intra-class pairs require more
than one call, one would expect an increase in the average
length of test cases (i.e. the number of statements in each test
case). Table V compares the coverage criteria in terms of the
number of tests generated, their total length (the sum of the
lengths of the constituent tests), and the average length of the
individual tests. In addition, we compare for each criterion
whether the overall length of the test suites is larger than
those produced by def-use coverage. Def-use coverage leads to
larger test suites than branch coverage, but smaller test suites



TABLE V
AVERAGE SIZES FOR DEF-USE PAIR COVERAGE TEST SUITES, BRANCH COVERAGE TEST SUITES, AND WEAK MUTATION TESTING.

For each class, we counted how often the def-use coverage test suite led to smaller (Â12 < 0.5), equivalent (Â12 = 0.5) and larger (Â12 > 0.5) test suites.4

Criterion Tests Average Length Total Length Shorter Equal Longer Â12 p-value

Def-Use Coverage 6.84 3.00 25.98 - - - - -
Branch Coverage 6.69 2.86 22.54 2634 (969) 2111 4455 (2207) 0.57 7.78e-123
Weak Mutation 6.97 2.98 26.18 3757 (1760) 2563 2880 (1357) 0.48 4.6e-18

TABLE VI
AVERAGE MUTATION SCORE RESULTS FOR BRANCH COVERAGE TEST
SUITES, DEF-USE PAIR COVERAGE, AND WEAK MUTATION TESTING.

For each class, we counted how often the def-use coverage test suite led to worse
(Â12 < 0.5), equivalent (Â12 = 0.5) and better (Â12 > 0.5) mutation score. 4

Name MS Worse Equal Better Â12 p-value

Def-Use
Coverage 0.16 - - - - -

Branch
Coverage 0.14 793 (180) 5742 2665 (1650) 0.57 1.29e-278

Weak
Mutation 0.18 2714 (1525) 5625 861 (302) 0.44 1.11e-213

than mutation testing. On average, test cases produced for
def-use coverage are longer than those produced for branch
coverage and those produced for weak mutation testing.

RQ5: Def-use coverage leads to longer tests than branch
coverage and weak mutation testing, but weak mutation

testing leads to more tests.

G. Fault Detection Ability

To determine how good the resulting test suites are at
detecting faults, we use mutation analysis as a proxy measure-
ment [1]. EVOSUITE can measure the mutation score (i.e., the
ratio of detected to undetected mutants) in terms of the mutants
it produces. A mutant is considered to be killed by a test case
if there exists an assertion that can distinguish execution on
the original version of the class and the mutant (i.e., it fails
on one version and passes on the other).

Table VI summarizes how the def-use test suites compare
to branch coverage and weak mutation test suites. Branch
coverage achieves worse mutation scores in 2, 665 cases, and
better mutation scores in 793, and thus is statistically worse
with an effect size of Â12 = 0.57. Consequently, we can
conclude that def-use test suites are better at detecting faults
than branch coverage test suites. This is an interesting result
as we have seen that def-use coverage results in significantly
more coverage goals, and the overall target coverage in the
fixed search budget (2 minutes) is lower than that achieved
when targeting branch coverage. In addition, the branch cov-
erage achieved by the data-flow test suites is lower than that
achieved when targeting branch coverage, yet the mutation
score is higher. This suggests that branch coverage is not a
good proxy measurement for fault detection ability.

Compared to the weak mutation test suites the situation
is the other way round: Def-use test suites are only better
in 861 cases but worse in 2, 714 cases, thus def-use test
suites are worse with an effect size of 0.44. This is not
surprising, considering that the weak mutation test suites were

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

DefUse Coverage

M
ut

at
io

n 
S

co
re

Hexagonal Binning

1

80

158

237

316

394

473

551

630

709

787

866

944

1023

1102

1180

1259

Counts

Fig. 5. Scatterplot of covered def-use pairs vs mutation score.

optimized towards the same mutants that are used to measure
the mutation score, making this a biased measurement.

RQ6: Def-use coverage results in higher mutation scores
than branch coverage, but lower mutation scores than weak

mutation testing.

One striking result is that mutation scores are generally very
low. SF100 is a very large and diverse corpus of classes, and
obviously one needs to be careful when just looking at average
values. Indeed, Figure 5 reveals that the mutation scores are
very diverse, although it seems easier to achieve high def-
use coverage than it is to achieve a high mutation score. The
correlation between coverage of def-use pairs and achieved
mutation score is 0.435 (Pearson’s correlation with 95 percent
confidence interval of [0.4185, 0.4516]). This suggests that
achieving a high coverage of def-use pairs is likely to also
lead to a high mutation score.

The average mutation score is generally low for all criteria,
and this is mainly due to two reasons: First, classes in SF100
represent many problems that yet need to be addressed by
test generation tools, e.g., handling file accesses and net-
work sockets. Second, classes in SF100 generally tend to
be less “testable” in the sense that the public API of these
classes exhibits fewer possibilities to add assertions (i.e., not
enough observer methods or public fields). As a side-note,
the mutation scores are also a bit lower than in our previous
experiments on mutation analysis [14]. This is because in
previous experiments EVOSUITE crashed on a larger number
of classes which in the current version of EVOSUITE do not



lead to a crash, but still are not testable and do not lead to
test suites.

H. Threats to Validity

Threats to internal validity may result from how the empir-
ical study was carried out. EVOSUITE and our experimental
setup have been carefully tested, although testing can of course
not prove the absence of defects. To accommodate for the
randomness of the underlying techniques, each experiment was
run 10 times and results were statistically evaluated.

Threats to construct validity are on how we measured the
performance of a testing technique. We mainly focused on
coverage, but in practice a small increase in code coverage
might not be desirable if it implies a large increase of the test
suite size. Furthermore, using only coverage does not take the
human oracle costs into account, i.e., how difficult it will be to
manually evaluate the test cases and to add assert statements.

Threats to external validity were minimized by using the
SF100 corpus was employed as case study, which is a
collection of 100 Java projects randomly selected from Source-
Forge [12]. This provides high confidence in the possibility
to generalize our results to other open source software. We
only used EVOSUITE for experiments and did not compare
with other tools. The reason is that we are aware of no other
tool that can be automatically and safely (EVOSUITE uses a
sandbox to prevent potentially unsafe operations, e.g., accesses
to the filesystem) be applied to SF100.

V. RELATED WORK

A. Comparison of Data-flow with Other Criteria

Frankl and Weiss measured the ability of detecting faults
in several test suites of different size and with different all-
uses and statement coverage values [9], and they show that test
suites with high all-uses coverage are more effective, although
they are usually longer. Their study, though, involved only
9 small-sized Pascal programs with seeded errors. Moreover,
their data does not show that the probability of detecting a
failure increases as the percentage of def-use pairs or edges
covered increases, nor give conclusive results in the case of
equal-size test suites. Similarly, Hutchins et al. studied the
effectiveness of all c-use/some p-use criterion and all-def-use
pairs coverage criterion compared to statement coverage cri-
terion and random testing [20]. They used 130 faulty program
versions derived from seven small-sized (141 to 512 LOC) C
programs. They observed that both all-def-use pairs and all-
statements test suites are more effective than random testing,
but they have similar detection rate, although they frequently
detect different faults, and are therefore complementary.

Other studies investigated the effectiveness of data-flow
testing with respect to mutation testing [10], [25], [30]. They
all compared the mutation score and the fault detection ratio of
test suites with high data-flow coverage and of test suites gen-
erated using mutation testing. The results show that mutation
testing requires a higher number of test cases than data-flow
testing (up to 200% more test cases), and is slightly better in
terms of fault detection capability. All the mentioned studies

were conducted on limited sets of procedural programs, and
therefore they cannot be generalized to large object oriented
applications.

B. Data-flow Test Generation

Hong et al. [19] applied model checking to derive test cases
for data-flow criteria. They model the data-flow graph of a
program as a Kripke structure, and then express the coverage
criterion as a set of CTL properties, such that a counterexample
to such a property represents a test case that covers a def-
use pair encoded by the property. This approach can be used
for different data-flow criteria by simply changing the CTL
properties produced. However, this approach was only applied
to a single flow graph, and does not support inter procedural
analysis.

Search-based testing has been considered for data-flow
testing at several points. Wegener et al. [35] defined different
types of fitness functions for structural testing, and data-flow
criteria are classified as “node-node” fitness functions, where
the search is first guided towards reaching the first node (the
definition), and then from there on towards reaching the second
node (the use). Some experimental results on small example
classes were presented later by Liaskos and Roper [22], [23],
and a variation of this approach was also independently pro-
posed and evaluated on small examples by Ghiduk et al. [15]
and in the Testful tool [3], [27]. Although genetic algorithms
are the most commonly applied search algorithm, there have
also been attempts at using ant colony optimization [16]
or particle swarm optimization [29], although none of these
approaches has been demonstrated on non-toy problems.

Besides these search-based attempts, Buy et al. [4] com-
bined data-flow analysis, symbolic execution and automated
reasoning to generate test cases. Symbolic execution is ex-
ploited to obtain the method pre-conditions that must be
satisfied in order to traverse a feasible, definition-clear path
for each def-use pair, and automated deduction is used to
determine the ordering of method invocations that allows
satisfying the preconditions of interest. However, there is no
evidence of how well this approach works in practice.

VI. CONCLUSIONS

In this paper we have presented a search-based approach
to generate test suites for data-flow coverage criteria, and
evaluated it on the SF100 corpus of classes. The experiments
confirm that data-flow testing produces more coverage goals
and, given the same search budget, more test cases than
simpler criteria such as branch coverage. Mutation analysis
suggests that the resulting test suites have a better fault
detection ability as branch coverage test suites. On the other
hand, weak mutation testing can outperform data-flow testing
in terms of the mutation score, but therefore produces more
test objectives and test cases. As these results were achieved
on a representative sample of open source software, we can
expect them to generalize to all open source software.

The most important insight of our experiments is that def-
use coverage is practically applicable, and represents a viable



alternative or supplement to simpler structural criteria such
as branch coverage. This counters the common belief that
data-flow testing does not scale, and the use of an automated
tool to produce the tests overcomes the difficulty of manually
covering def-use pairs. This is an encouraging result that will
hopefully foster the use of data-flow criteria in practice.

There are limitations to our approach that need to be
addressed in future work. As we do not consider aliasing
or contextual def-use pairs, the overall number of def-use
pairs in our analysis is smaller than theoretically possible.
We will extend EVOSUITE and continue experimentation with
other data-flow testing variants and criteria. Finally, the use of
SF100 has shown that, besides data-flow testing, there are
significant open challenges in automated test generation [12],
such as handling file and network dependencies.

To learn more about EVOSUITE and SF100, visit our Web
site:

http://www.evosuite.org
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