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Abstract—In this paper we develop a dynamic analysis, named
relevant input analysis, that characterizes the role and strength of
inputs in the computation of different values during a program
execution. The role indicates whether a computed value is derived
from an input value or its computation is simply influenced
by an input value. The strength indicates if role (derived or
influenced) relied upon the precise value of the input or it is
among one of many values that can play a similar role. While it
is clear that the results of our analysis can be very useful for the
programmer in understanding relationships between inputs and
program behavior, we also demonstrate the usefulness of the
analysis by developing an efficient delta debugging algorithm.
Other applications of relevant input analysis include—assisting
in generating test inputs and detection of security holes.

Index Terms—value dependence, address dependence, role of
inputs, strength of inputs, delta debugging, testing

I. INTRODUCTION

Understanding the behavior of a program during a specific
execution is critical to many important tasks including: de-
bugging, testing, and security analysis. A variety of dynamic
analysis techniques have been developed to assist with these
tasks (e.g., dynamic slicing [5], [8], delta debugging [10],
[11], [13], generating test inputs [14], [15], [16], [17], in-
formation flow [18], [19]). In these tasks, understanding the
role that input values play during execution can be very
useful in understanding program behavior. During debugging,
when a program crashes, knowing the part of the input that
triggered the crash can help the programmer. During testing,
understanding the role of inputs in one execution can help
in generating new inputs that will likely exercise different
program behaviors. Finally, understanding the role of inputs in
exploiting security vulnerabilities helps identify security holes.

In this paper we develop a dynamic analysis, named relevant
input analysis, that characterizes the role and strength of
inputs in the computation of different values during a program
execution. The role indicates whether a computed value is
derived from an input value or its computation is simply
influenced by an input value. The strength indicates if role
relied upon the precise value of the input or it is among one
of many values that can play a similar role.

In addition to understanding program behavior we demon-
strate the benefits of relevant input analysis by using its results
to enhance the delta debugging [10], [13] algorithm. The
relevant input analysis is used to prune, as well as guide,
and hence accelerate, the search for a minimal fault-inducing
input. The results of our experiments show that our approach
can significantly reduce the number of inputs on which the
program is executed before the minimal input is located. We

also briefly discuss how relevant input analysis can be used to
assist in generating test inputs and detection of security holes.

The remainder of the paper is organized as follows. In
Section II we develop our algorithm for relevant input analysis
and evaluate its cost. In Section III we present our new delta
debugging algorithm and its evaluation, as well as discuss
other applications—test input generation and detection of
vulnerabilities exploitable via malicious inputs. Section IV
concludes the paper.

II. RELEVANT INPUT ANALYSIS

A. Motivating example

Prior relevant input analyses such as lineage tracing [22],
[23], [24] identify the subset of inputs that contribute to a
specified output by considering data dependence only [22],
both data dependence and control dependence [23], or both
data dependence and strict control dependence [24]. However,
they do not characterize the role and strength of inputs in the
computation of different values during execution, as we do.

We now present an example to motivate the approach and
illustrate the effectiveness of our relevant input analysis. The
example is extracted from a real null pointer dereference bug
in Tidy-34132, a program that parses, cleans and corrects ill-
formed HTML documents. The relevant parts of the code
are shown in Figure 1. In this simplified view, an HTML
document contains a Header section (represented by ‘H’) and a
frameset section (represented by ‘S’, lines 4–6). The frameset
section holds one or more Frame elements (represented by
‘F’), specifying the layout of views in the user agent window.
In addition, the frameset section can contain a Noframes
element (represented by ‘N’) to provide alternate content for
browsers that do not support frames or have frames disabled
(line 23). Noframes must contain a Body element (represented
by ‘B’). Framesets can be nested to any level. The body
element can contain multiple Paragraphs (represented by ‘P’).
All the paragraphs should be included in the body element.
When this property is violated, the program calls HandleP-
sOutsideBody (lines 51–56) to fix it. HandlePsOutsideBody
simply discards those paragraphs when a body element has not
been encountered. When the end of the body has been parsed,
HandlePsOutsideBody moves such paragraphs into the body
element by adding all paragraphs after the body as children
of body (line 53–54). The function FindBody (line 71–84)
retrieves the body node. There is a bug in FindBody: the wrong
assumption that noframe is always included in the outermost
frameset. So when the noframe and body are included in an
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parser.c:
1 void ParseHtmlDoc() {
2 doc=malloc(sizeof(Doc));
3 doc−>seeEndBody=FALSE;
4 doc−>head=ParseHead();
5 doc−>fS=NULL;
6 ParseFrameSet(NULL); }
7 void ParseFrameSet(Node∗p)
8 { Node ∗fS=NULL;
9 char c=GetChar(fin);
10 if(c==’S’) {
11 fS=NewNode(fSTag);
12 if(p) AddChild(p,fS);
13 if(doc−>fS==NULL)
14 doc−>fS=fS;
15 c=PeekChar(fin);
16 while(c==’S’
17 ||c==’F’) {
18 if(c==’S’)
19 ParseFrameSet(fS);
20 else ParseFrame(fS);
21 c=PeekChar(fin);
22 }
23 ParseNoFrame(fS);
24 c=GetChar(fin);
25 if(c==’/’) ... }
29 }
30 void ParseNoFrame(Node ∗fS)
31 { char c=GetChar(fin);
32 if(c==’N’) {
33 Node ∗noF=NewNode(noFTag);
34 AddChild(fS,noF);
35 HandlePsOutsideBody();
36 ParseBody(noF);
37 HandlePsOutsideBody();
38 c=GetChar(fin);
39 if(c==’/’) ... }
44 }
45 void ParseFrame(Node ∗fS)
46 { char c=GetChar(fin);
47 if(c==’F’) {
48 Node ∗f=NewNode(fTag);
49 AddChild(fS,f); }
50 }
51 void HandlePsOutsideBody()
52 { if(doc−>seeEndBody==true)
53 { Node ∗body= FindBody();
54 ParseParagraphs(body); }
55 else ConsumeParagraphs();
56 }
57 void ParseBody(Node ∗noF)
58 { char c=GetChar(fin);
59 if(c==’B’) {
60 Node ∗body=NewNode(bTag);
61 AddChild(noF,body);
62 ParseParagraphs(body);

63 c=GetChar(fin);
64 if(c==’/’) {
65 c=GetChar(fin);
66 if(c==’B’)
67 doc−>seeEndBody=true;
68 else Warn(...); }
69 else Warn(...); }
70 else Ungetc(c,fin); }
71 Node ∗FindBody()
72 { Node ∗node=doc−>fS;
73 if(node==NULL) return NULL;
74 node=node−>firstChild;
75 while(node &&
76 node−>type!=noFTag)
77 node=node−>sibling;
78 if(node) {
79 node=node−>firstChild;
80 while(node &&
81 node−>type!=bTag)
82 node=node−>sibling; }
83 return node;
84 }
85 void ParseParagraphs(Node ∗b)
86 { char c=GetChar(fin);
87 while(c==’P’) { ...
90 ParseTextNode(p);
91 c=GetChar(fin);
92 if(c==’/’){
93 c=GetChar(fin);
94 if(c!=’P’) Warn(...); }
95 else Warn(...);
96 c=GetChar(fin); }
97 Ungetc(c,fin);
98 }
99 Node ∗NewNode(NodeType type)
100 { Node ∗node=malloc(...);

...
104 node−>sibling=NULL;
105 return node; }
106 void AddChild(Node∗p,Node∗c)
107 { if(p>lastChild!=NULL)
108 p−>lastChild−>sibling=c;
109 else p−>firstChild=c;
110 p−>lastChild=c;
111 }
112 void ParseTextNode(Node∗p)
113 { char c=GetChar(fin);
114 if(c==’"’) {
115 c=GetChar(fin);

...
118 c=GetChar(fin);
119 if(c!=’"’) Warn(...); }
120 else Ungetc(c,fin); }
121 char GetChar(Stream ∗fp) {
122 if(fp−>r_ptr>=fp−>r_end)
123 return RefillBuf(fp);
124 return ∗(fp−>r_ptr++); }

Fig. 1. Buggy code for illustrating relevant input analysis.

inner frameset, FindBody will wrongly return a NULL pointer,
which causes a program crash at line 107 (p is NULL here).

Given a failure-inducing input, shown at the top of Fig-
ure 2), the program crashes at the eighth execution of line
107, denoted as 1078. Consider the computation of the relevant
input for variable p at failure point 1078. The results of relevant
input analyses, both as computed by prior work [22], [23],
[24], as well as our algorithm, are given in Figure 2. As the
program crashes when parsing the third P in the input, all the
unprocessed inputs (“b”/P/N/S/S) are successfully excluded
by all approaches. Lineage computation [22] only considers
data dependence, and it gives an empty lineage because no
input propagates into p at 1078 via data dependence edges
only. Penumbra [23] can be configured to consider either
data dependences only, or both data and control dependences.
Thus, it can generate two relevant input sets: one is empty
just as lineage computation [22] or a set that includes almost

Original Input:
S S F F N B P ” a ” / P / B P ” b ” / P / N / S / S

Inputs Labeled with Occurrence Frequency:
S1 S2 F 1 F 2 N1 B1 P 1 ”1 a1 ”2 /1 P 2 /2 B2 P 3 ”3 b1 ”4

/3 P 4 /4 N2 /5 S3 /6 S4

Compute relevant input/lineage for failure Point–1078(p is NULL):
Result of lineage [22]: {}

Result of Penumbra [23]:
{} | {S1, S2, F 1, F 2, N1, B1, P 1, ”1, /1, /2, B2, P 3}

Result of lineage with strict control dependence[24]:
{S1, S2, F 1, F 2, N1, B1, P 1, ”1, /1, /2, B2, P 3}

Result of our approach:
{S2=→NULL(node →sibling@104)} ∧ {S1=, S2=, F 1, F 2, N1=,
B1=, P 1, ”1, /1, /2=, B2=→true(doc→seeEndBody@67), P 3=}
∧ {S1, S2, F 1, F 2, N1, B1, P 1, ”1, /1, /2, B2, P 3}

Fig. 2. Comparing prior work results with our relevant input analysis.

all the parsed inputs. Subsequent improvements of lineage
computation [24] consider both data dependences and strict
control dependences, and produce the same relevant input
set as Penumbra when configured considering both data and
control dependences. By examining the program execution, we
discover that the reason why lineage computation with strict
control dependence and Penumbra include nearly all the inputs
is because of the data and control dependences involving the
index of buffer (fp → r ptr) at line 124. It is a common
programming practice to maintain a buffer to store the input
data and then process the data in the buffer. The program
in Figure 1 maintains such a buffer and parses inputs based
on the buffer (GetChar, Ungetc, PeekChar operates on this
buffer). Hence whenever an input is read (e.g., line 86 reads
the third P used in the predicate at line 87 just before the crash
point), it is data dependent on the last modification of the index
of the input buffer (fp → r ptr at line 124). Because this
buffer index is increased after an input is read at line 124, and
line 124 is (strict) control dependent on the predicates which
guard the execution of GetChar, i.e., GetChar at line 118 is
(strict) control dependent on line 114, and GetChar at line 91
is (strict) control dependent on line 87, such data and control
dependence chains explain why nearly all the processed inputs
are included in the relevant input. Naturally, such broad and
imprecise information will not be very useful in practice.

Our relevant input analysis is based upon two observations.
First, we observe that data dependences incurred by operand
(later defined as value dependence) should be treated dif-
ferently from data dependence incurred by index or pointer
(later defined as address dependence) which is used to select
the operand (i.e., different dependences/inputs have different
roles). Second, we observe that each dependence/input has
different strength regarding the concerned output value. Our
relevant input analysis characterizes the role and strength that
dependence/inputs play in the computation of different values
during a program execution. Going back to the example in
Figure 1, the result of our relevant input analysis is shown
at the bottom of Figure 2. As we can see, instead of one,
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we present three sets: the first set includes only inputs which
the concerned value p is derived from (inputs contribute to
p only through value dependence); the second set includes
inputs which influence p through control dependence and
value dependence; and the third set includes inputs which
influence p through address, control, and value dependence.
Inputs labeled with = in the three sets have a strong impact
on the value of p. Specifically, in order to trigger or understand
this bug, two conditions must be satisfied: (1) the NULL
value must be generated somewhere; (2) the program execution
must reach a point where this NULL value gets dereferenced.
The S2=→NULL(node→sibling@104) in our first set exactly
shows that the NULL value of p is propagated from (node→
sibling) at line 104, and this NULL value again is generated
because of the second frameset (S2=). The S1=, S2=, N1=,
B1=, /2=, B2=→true(doc→seeEndBody@67), P 3= in the
second set shows that in order to cause the execution to
reach this failure point, we must exactly have such inputs:
SSNB/BP (which turns out to be the minimal input to
trigger the same bug). As we can see, our relevant input
analysis provides valuable information for aiding program
comprehension, debugging, test case generation, etc.

B. Definitions

Our relevant input analysis tracks dynamic dependences,
originating from points where the program reads the inputs,
and categorizes them to distinguish the ways in which they
impact the computation of values. Given the ith execution
of statement s (denoted as si), we use VAL(stoi) to denote
the value computed at si, and during this computation, m
variables are used (denoted as sfr1, sfr2, sfrk, ..., sfrm).
The predicate on which si is control-dependent, is denoted as
predj . Statement s itself can also be a predicate, in which
case, VAL(stoi) denotes the evaluated result of this predicate
(TRUE/FALSE). We now describe the three categories.
• Value Dependence – VAL(stoi)

v←VAL(sfrk): VAL(stoi)
is value dependent upon VAL(sfrk) if the latter is used
as an operand for computing the former;

• Address Dependence – VAL(stoi)
a←VAL(sfrk):

VAL(stoi) is address dependent upon VAL(sfrk) if
the latter is used to select the address whose contents
are used as an operand for computing the former. These
dependences arise due to the presence of pointers and
arrays; and

• Control Dependence – VAL(stoi)
c←VAL(predj): stoi is

dynamically control dependent [3], [7] upon predj , i.e.,
VAL(predj) causes the execution of stoi.

C. Role of Relevant Inputs

We treat all the external inputs to a program (e.g., file, stdin,
network) as concerned inputs. For simplicity, we model the
input as a string, and the newly-arriving inputs are simply
appended to this string. The relevant inputs for a value VAL
computed in a program execution that reads a set of inputs
INPUTS are represented as follows:

VAL ← DERIVED ∧ CINFLUENCED ∧ AINFLUENCED

• Value VAL is derived from inputs belonging to DERIVED
⊆ INPUTS if there is a chain of value dependences from
each input in DERIVED to VAL:
{r | r ∈ INPUTS ∧ ∃ VAL v← . . .

v← READ(r)}
• Value VAL is control influenced by inputs belonging

to CINFLUENCED ⊆ INPUTS if there is a chain of
value and/or control dependences from each input in
CINFLUENCED to VAL such that at least one control
dependence is present in the chain:

{r | r ∈ INPUTS ∧ ∃ VAL
v/c←− . . .

v/c←− READ(r)}
• Value VAL is address influenced by inputs belonging to

AINFLUENCED ⊆ INPUTS if there is a chain of value,
and/or control, and/or address dependences from each
input in AINFLUENCED to VAL such that at least one
address dependence is present in the chain:

{r | r ∈ INPUTS ∧ ∃ VAL
v/c/a←− . . .

v/c/a←− READ(r)}
We illustrate the aforementioned relevant input notions with

an example in Figure 3 (note that we do not consider the
strength of inputs for now). The code fragment on the left
contains two loops. The first loop reads a sequence of numbers
into the data[] array. The input consists of a sequence of
positive and negative integers which is terminated by the
value 0. The second loop scans the array and computes
the sum of positive numbers (posSum) and sum of negative
numbers (negSum). Finally the values of posSum and negSum

are printed out. In the right column the execution trace and
relevant inputs of computed values is presented for the input
sequence {3, -15, 0}. The results of our analysis show that the
DERIVED sets of posSum and negSum are found to be {3}
and {-15} due to chains of value dependence. The CINFLU-
ENCED set for posSum is {3} due to control/value depen-
dence chain 221

c← 191
v← 181

v← 121
v← 111(READ(3)).

AINFLUENCED set for posSum is empty because no relevant
inputs are propagated along address/control/value dependence
chain. The CINFLUENCED set for negSum is {3,-15} due to
chains of control/value dependences along which the values
3 and -15 are tested by predicates eventually causing the
execution of statement 241. Note that AINFLUENCED set for
negSum is {3} because of such address/control/value chain:

241
v← 182

a← 251
c← 191

v← 181
v← 121

v← 111(READ(3))

D. Strength of Relevant Inputs

Next we show that we can further qualify the inputs
by determining their strength in computing other values. In
particular, we determine if the computed values rely upon
the precise value of an input, or the input value is among
one of many values that can cause similar behavior. For this
purpose a specific input value r will appear in the DERIVED,
CINFLUENCED, or AINFLUENCED sets as r= (to indicate
that computed value depends upon the precise value of r) or
simply r (to indicate that potentially other values will lead to
similar behavior as r). We now present the situations in which

270



Code Execution Trace DERIVED ∧ CINFLUENCED ∧ AINFLUENCED

1 int data[100];
2 int posSum=0;
3 int negSum=0;
4 int dt ;
5 int i ;
6 int num=0;
7 while(! feof ( fin ))
8 {

9 if (num>=100)
10 break;
11 fscanf( fin , ”%d”, &dt);
12 data[num]=dt;
13 num++;

14 }
15 i=0;
16 while(i<num)
17 {
18 dt=data[i ];

19 if (dt==0) // end marker
20 break;
21 if (dt>0)
22 posSum+=dt;

23 else
24 negSum+=dt;
25 i++;
26 }
27 printf ( ”%d”, posSum);

28 printf ( ”%d”, negSum);

21 posSum=0; VAL(posSum) ← {} ∧ {} ∧ {}
31 negSum=0; VAL(negSum) ← {} ∧ {} ∧ {}
61 num=0; VAL(num) ← {} ∧ {} ∧ {}
71 while(!feof(fin)) VAL(!feof(fin)) ← {} ∧ {} ∧ {}
91 if(num>=100) VAL(num>=100) ← {} ∧ {} ∧ {}
111 fscanf(fin,"%d",&dt); // 3 VAL(dt) ← {3} ∧ {} ∧ {}
121 data[num]=dt; VAL(data[num]) ← {3} ∧ {} ∧ {}
131 num++; VAL(num) ← {} ∧ {} ∧ {}
72 while(!feof(fin)) VAL(!feof(fin)) ← {} ∧ {} ∧ {}
92 if(num>=100) VAL(num>=100) ← {} ∧ {} ∧ {}
112 fscanf(fin,"%d",&dt); // -15 VAL(dt) ← {-15} ∧ {} ∧ {}
122 data[num]=dt; VAL(data[num]) ← {-15} ∧ {} ∧ {}
132 num++; VAL(num) ← {} ∧ {} ∧ {}
73 while(!feof(fin)) VAL(!feof(fin)) ← {} ∧ {} ∧ {}
93 if(num>=100) VAL(num>=100) ← {} ∧ {} ∧ {}
113 fscanf(fin,"%d",&dt);// 0 VAL(dt) ← {0} ∧ {} ∧ {}
123 data[num]=dt; VAL(data[num]) ← {0} ∧ {} ∧ {}
133 num++; VAL(num) ← {} ∧ {} ∧ {}
74 while(!feof(fin)) VAL(!feof(fin)) ← {} ∧ {} ∧ {}
151 i=0; VAL(i) ← {} ∧ {} ∧ {}
161 while(i<num) VAL(i<num) ← {} ∧ {} ∧ {}
181 dt=data[i]; // 3 VAL(dt) ← {3} ∧ {} ∧ {}
191 if(dt==0) // end marker VAL(dt==0) ← {3} ∧ {} ∧ {}
211 if(dt>0) VAL(dt>0) ← {3} ∧ {3} ∧ {}
221 posSum+=dt; VAL(posSum) ← {3} ∧ {3} ∧ {}
251 i++; VAL(i) ← {} ∧ {3} ∧ {}
162 while(i<num) VAL(i<num) ← {} ∧ {3} ∧ {}
182 dt=data[i]; // -15 VAL(dt) ← {-15} ∧ {3} ∧ {3}
192 if(dt==0) //end marker VAL(dt==0) ← {-15} ∧ {3} ∧ {3}
212 if(dt>0) VAL(dt>0) ← {-15} ∧ {3,-15} ∧ {3}
241 negSum+=dt; VAL(negSum) ← {-15} ∧ {3,-15} ∧ {3}
252 i++; VAL(i) ← {} ∧ {3,-15} ∧ {3}
163 while(i<num) VAL(i<num) ← {} ∧ {3,-15} ∧ {3}
183 dt=data[i]; // 0 VAL(dt) ← {0} ∧ {3,-15} ∧ {3,-15}
193 if(dt==0) //end marker VAL(dt==0) ← {0} ∧ {3,-15} ∧ {3,-15}
201 break;
271 printf("%d", posSum); VAL(posSum) ← {3} ∧ {3} ∧ {}
281 printf("%d", negSum); VAL(negSum) ← {-15} ∧ {3,-15} ∧ {3}

Fig. 3. Example illustrating the role of input values.

the above attributes can be associated when dynamic value
dependences, control dependences, and address dependences
are encountered.

Value Dependence: When the DERIVED set of a com-
puted value VAL contains an input value r= it means that
to keep VAL unchanged, we need the exact value of r
(VAL is highly likely to be changed if the input value r
is changed); otherwise DERIVED simply contains r (VAL
may change if we change the input value r). The example
below illustrates the propagation of value 10 input by the
read statement. When the value 10 is first read into x and
later copied to another variable y (strong value dependence),
the corresponding DERIVED sets contain 10= (strong value
dependence maintains the strength of inputs). However, when
the value of z is computed from the value of x at line 3 (weak
value dependence), z’s DERIVED set contains 10 (weak value
dependence weakens the strength of inputs). Besides, because
10 has already been weakened at line 3, when the value of z is
later copied to w, w contains 10 instead of 10= (strong value
dependence only maintains the strength of inputs). Similarly,
when x is used in the predicate at line 5 (or 6, respectively)
and it tests whether x is equal (not equal, respectively) to
a precise input value 10 and when the predicate outcome is
true (false, respectively), the DERIVED set will contain 10=

(strong value dependence maintains the strength of inputs);

otherwise, DERIVED will simply contain 10 (line 7).
1: read x; VAL(x) ← {10=} ∧ {} ∧ {}
2: y = x; VAL(y) ← {10=} ∧ {} ∧ {}
3: z = f(x); VAL(z) ← {10} ∧ {} ∧ {}
4: w = z; VAL(w) ← {10} ∧ {} ∧ {}
5: if(x==10) true VAL(x==10) ← {10=} ∧ {} ∧ {}
6: if(x!=10) false VAL(x!=10) ← {10=} ∧ {} ∧ {}
7: if(x > 0) VAL(x > 0) ← {10} ∧ {} ∧ {}
Control Dependence: If a predicate tests whether the

value of a variable is equal (not equal, respectively) to a precise
input value r, then the CINFLUENCED set of a statement
that is control dependent upon the true (false, respectively)
outcome of the predicate will contain r=; otherwise CINFLU-
ENCED will simply contain r. The example below illustrates
the propagation of value 0= input by the read statement
and thus contained in DERIVED set of x. The value 0= is
propagated to the CINFLUENCED sets of values of w and y
via control dependences.

1: read x; VAL(x) ← {0=} ∧ {} ∧ {}
2: z = x; VAL(z) ← {0=} ∧ {} ∧ {}
3: if (x==0) VAL(x==0) ← {0=} ∧ {} ∧ {}
4: w = z; VAL(w) ← {0=} ∧ {0=} ∧ {}
5: y = 1; VAL(y) ← {0= →1(y@5)} ∧ {0=}∧{}
6: if(y < 100) VAL(y < 100) ← {0} ∧ {0}∧{}
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Consider a predicate that tests if an input value is precisely
equal to constant c1, and if the predicate evaluates to true, it
sets another variable to a constant value c2. Such a computa-
tion essentially maps the value of c1 to the value c2, i.e., c2 is
derived from c1. Therefore in this situation we also propagate
input value c1 from the DERIVED set of a predicate to the
DERIVED set of a control dependent statement that assigns
c2. The propagation also captures the mapping by including
c1 → c2 in the DERIVED set. In the above example, 0=

is propagated from DERIVED set of predicate (x==0) to the
DERIVED set of y’s value by inclusion of 0= →1(y@5). Note
that in such chains all values are exact values. Note that if y is
later used in line 6 (weak value dependence), DERIVED and
CINFLUENCED sets include 0 instead of 0= (weak value
dependence weakens the strength of inputs).

Address Dependence: If the value of a variable v used to
select the address whose content (e.g., ∗v) is used as operand
exactly relies on some input r, then the AINFLUENCED
set of computed value VAL contain r= (changing the value
of r will highly likely change the value of v and then ∗v);
otherwise AINFLUENCED will simply contain r (changing
value of r may change the value of v and then ∗v). The
example below illustrates the propagation of value 10 input
by the read statement. When the value 10 is first read into x
and later used to select the address, the computed value z’s
AINFLUENCED set contains 10=. On the other hand, when
a value of y is computed from the value of x and then used
to select address, the computed value w’s AINFLUENCED
set contains 10. When z is tested in predicate if(z > 0), the
AINFLUENCED set for this predicate contains 10, rather than
10=.

1: read x; VAL(x) ← {10=} ∧ {} ∧ {}
2: z = buf[x]; VAL(z) ← {50=} ∧ {} ∧ {10=}
3: y = f(x); VAL(y) ← {10} ∧ {} ∧ {}
4: w = buf[y]; VAL(w) ← {40=} ∧ {} ∧ {10}
5: if(z > 0) VAL(z > 0) ← {50} ∧ {} ∧ {10}

E. Computation of Relevant Inputs

The dynamic value analysis is performed by instrumenting
the program such that for each instruction that is executed, the
relevant input sets of the computed value are found accord-
ing to the dynamic dependences of the executed instruction.
Figure 4 shows how the DERIVED (DER), CINFLUENCED
(CINF) and AINFLUENCED (AINF) sets are computed via
propagation of relevant input information along all dynamic
dependences (Value, Address, and Control). The ] operation
used in the figure is a slight modification of traditional union.
When two values derived from same input are encountered,
the stronger condition is retained:

{c=} ] {c} = {c=}
Similarly, when two chains are encountered such that one

is a prefix of another, then the longer chain is retained as it
represents a stronger condition.

{c= → d(var@s)} ] {c=} = {c= → d(var@s)}
The S[c= . . . /c] operation used in Figure 4 is used to drop

the = label (i.e., weaken the strength of inputs), and it is

Initialize: DER(stoi) ← CINF(stoi) ← AINF(stoi) ← φ;
Compute DER(stoi) ∧ CINF(stoi) as follows:
for each prior statement execution on which
VAL(stoi) is directly dependent do

– Value Dependence
case VAL(stoi)

v←VAL(sfrk):
case stoi : . . . = sfrk:
case stoi : if (sfrk == c1) TRUE:
case stoi : if (sfrk ! = c1) FALSE:
DER(stoi) ← DER(stoi) ] DER(sfrk)
CINF(stoi) ← CINF(stoi) ] CINF(sfrk)
AINF(stoi) ← AINF(stoi) ] AINF(sfrk)
otherwise:
DER(stoi) ← DER(stoi) ] DER(sfrk)[c= . . . /c]
CINF(stoi) ← CINF(stoi) ] CINF(sfrk)[c= . . . /c]
AINF(stoi) ← AINF(stoi) ] AINF(sfrk)[c= . . . /c]

– Address Dependence
case VAL(stoi)

a←VAL(sfrk):
case stoi : . . . = ∗sfrk:
case stoi : ∗sfrk = . . .:
case stoi : if (∗sfrk == c1) TRUE:
case stoi : if (∗sfrk ! = c1) FALSE:
AINF(stoi) ← AINF(stoi) ] DER(sfrk)
] CINF(sfrj ) ] AINF(sfrk)

otherwise:
AINF(stoi) ← AINF(stoi) ] DER(sfrk)[c= . . . /c]
] CINF(sfrk)[c= . . . /c] ] AINF(sfrk)[c= . . . /c]

– Control Dependence
case VAL(stoi)

c←VAL(predj ):
case stoi : . . . = sfrk:
case stoi : if (. . .):
CINF(stoi) ← CINF(stoi) ] DER(predj ) ] CINF(predj )
otherwise:
CINF(stoi) ← CINF(stoi) ] DER(predj )[c= . . . /c]
] CINF(predj )[c= . . . /c]

DER(stoi) ← DER(stoi) ] CHAIN, such that
case stoi : stoi = c2 is TRUE dependent

on predj : if(var == c1):
case stoi : stoi = c2 is FALSE dependent

on predj : if(var! = c1):
CHAIN={c=1 . . .→ c2(stoi@s)|c=1 . . . ∈ DER(predj )}

otherwise: CHAIN = φ
endfor

Fig. 4. Dynamically Computing Relevant Inputs of VAL(stoi).

defined as follows:
S[c= . . . /c] = {c | c ∈ S ∨ c= . . . ∈ S}

For example,
{c=1 , c=2 → d(var@s), c3}[c= . . . /c] = {c1, c2, c3}

In Figure 5 we present the results of the above analysis
when it is applied to a code segment that parses a string
and if the string is “body,” then seeBody is set to true. The
input in this case is contained in name[] and we assume
that it is indeed the string “body” terminated by “\0”. The
first loop in the code fragment compares the input string with
“body” which is stored in str. If there is an exact match,
we exit the loop after setting cmp to 0. A chain of mappings
\0=→0(cmp@12)→BODY(tag@27)→true(seeBody@29) fi-
nally leads us to statement return seeBody (line 30).

Both DERIVED and CINFLUENCED sets of seeBody

at statement 301 capture very useful information. The chain
\0=→0(cmp@12)→BODY(tag@27)→true(seeBody@29) in
DERIVED set indicates how \0 is mapped to 0 for cmp

first, and then eventually to true for seeBody. The CINFLU-
ENCED indicates that the exact characters in “body” must be
encountered as the set contains b=, o=, d=, y=, and \0=. As
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Code Execution Trace DERIVED ∧ CINFLUENCED ∧ AINFLUENCED

1 Parse(char∗name)
2{
3 seeBody=false;
4 str=”body”;
5 int cmp;
6 int i=0;
7 c=name[i];
8 while(c==str[ i ])
9 {
10 if (c == ’\0’)
11 {
12 cmp = 0;
13 break;
14 }
15 i++;
16 c=name[i];
17 }
18 if (c!=str [ i ])
19 {
20 if (c>str[i ])
21 cmp= 1;
22 else
23 cmp=−1;
24 }
25 TAG tag=OTHER;
26 if (cmp==0)
27 tag=BODY;
28 if (tag==BODY)
29 seeBody=true;
30 ret seeBody;
31}

11 Parse(node) // node→name="body\0"
31 seeBody=false; VAL(31)←{} ∧ {} ∧ {}
41 str="body"; VAL(41)←{} ∧ {} ∧ {}
61 i=0; VAL(61)←{} ∧ {} ∧ {}
71 c=name[i];//’b’ VAL(71)←{b=} ∧ {} ∧ {}
81 while(c==str[i]) VAL(81)←{b=} ∧ {} ∧ {}
101 if (c == ’\0’) VAL(101)←{b} ∧ {b=} ∧ {}
151 i++; VAL(151)←{} ∧ {b} ∧ {}
161 c=name[i];//’o’ VAL(161)←{o=} ∧ {b=} ∧ {b}
82 while(c==str[i]) VAL(82)←{o=} ∧ {b=} ∧ {b}
102 if (c == ’\0’) VAL(102)←{o} ∧{b=,o=} ∧ {b}
152 i++; VAL(152)←{} ∧ {b,o} ∧ {b}
162 c=name[i];//’d’ VAL(162)←{d=} ∧ {b=,o=} ∧ {b,o}
83 while(c==str[i]) VAL(83)←{d=} ∧ {b=,o=} ∧ {b,o}
103 if (c == ’\0’) VAL(103)← {d} ∧ {b=,o=,d=} ∧ {b,o}
153 i++; VAL(153)←{} ∧ {b,o,d} ∧ {b,o}
163 c=name[i];//’y’ VAL(163)←{y=} ∧ {b=,o=,d=} ∧ {b,o,d}
84 while(c==str[i]) VAL(84)←{y=} ∧ {b=,o=,d=} ∧ {b,o,d}
104 if (c == ’\0’) VAL(104) ← {y} ∧ {b=,o=,d=,y=} ∧ {b,o,d}
154 i++; VAL(154)←{} ∧ {b,o,d,y} ∧ {b,o,d}
164 c=name[i];//\0 VAL(164)←{\0=} ∧ {b=,o=,d=,y=} ∧ {b,o,d,y}
85 while(c==str[i]) VAL(85)←{\0=} ∧ {b=,o=,d=,y=} ∧ {b,o,d,y}
105 if (c == ’\0’) VAL(105)←{\0=} ∧ {b=,o=,d=,y=,\0=} ∧ {b,o,d,y }
121 cmp= 0; VAL(121)←{\0=→0(cmp@12)} ∧ {b=,o=,d=,y=,\0=} ∧ {b,o,d,y}
181 if (c!= str[i]) VAL(181)←{\0=} ∧ {b=,o=,d=,y=} ∧ {b,o,d,y}
251 tag=OTHER; VAL(251)←{} ∧ {} ∧ {}
261 if (cmp==0) VAL(261)←{\0=→0(cmp@12)} ∧ {b=,o=,d=,y=,\0=} ∧ {b,o,d,y}
271 tag=BODY; VAL(271)←{\0=→0(cmp@12)→BODY(tag@27)} ∧ {b=,o=,d=,y=,\0=} ∧ {b,o,d,y}
281 if (tag==BODY) VAL(281)←{\0=→0(cmp@12)→BODY(tag@27)} ∧ {b=,o=,d=,y=,\0=} ∧ {b,o,d,y}
291 seeBody=true; VAL(291)←{\0=→0(cmp@12)→BODY(tag@27)→true(seeBody@29)}

∧ {b=,o=,d=,y=,\0=} ∧ {b,o,d,y}
301 ret seeBody; VAL(301)←{\0=→0(cmp@12)→BODY(tag@27)→true(seeBody@29)}

∧ {b=,o=,d=,y=,\0=} ∧ {b,o,d,y}

Fig. 5. Body parse example.

we can see, such information will be very useful for program
comprehension and fault localization.
F. Implementation

We have implemented the relevant input analysis using the
Pin [21] dynamic instrumentation framework. As shown in
Figure 4, we need to update DERIVED, CINFLUENCED and
AINFLUENCED sets for each written value based on the rele-
vant input sets of used values and the control-dependent pred-
icate. To get more accurate control dependence, we adopted
the online dynamic control dependence detection algorithm
in [7]. To speed up the look-up of relevant input sets for
each dependent value, we bound each computed value with
its relevant input sets by shadow memory. To save space and
allow efficient set operations, we stored all distinct computed
relevant input sets in a balanced binary tree, and then only
stored the pointer to each set in shadow memory. The CHAIN
was implemented similarly to save time and space.
G. Performance Evaluation

Next we use several real programs (described in Sec-
tion III-A) to investigate whether the time overhead of our
technique is acceptable. The experiments were conducted on
a machine with a 3.0GHz Intel Xeon processor and 3GB
RAM, running Linux, kernel version 2.6.18. We use the “Null
Pin” (the program running under Pin without our debugger)
time overhead as the baseline, which is shown in the second
column, and the time overhead with relevant input analysis
on is given in the third column. From Table II, we can see
that the time overhead incurred by our technique ranges from

31.7x to 39.2x compared to the baseline, which is reasonable
compared to related work [22], [7].

TABLE I
OVERVIEW OF BENCHMARKS.

Program LOC Bug Source Program description
tidy-34132 35.9K BugNet [20] HTML checking & cleanup
bc-1.06 10.7K BugNet [20] Arbitrary-precision Calculator

expat-1.95.3 11.9K sourceforge.net/p/expat/bugs XML parser

TABLE II
PROGRAM EXECUTION TIMES (FROM START TO FAILURE POINT), WITH

RELEVANT INPUT ANALYSIS.
Program name Null Pin Relevant Input Analysis

seconds seconds (factor)
tidy-34132 1.08 37.4(34.6x)
bc-1.06 0.73 28.6(39.2x)
expat-1.95.3 0.48 15.2(31.7x)

H. Related Work

While many different forms of value flow analysis have been
developed before, their purpose is quite different from ours.
Static analysis techniques to reason about values with the goal
of optimizing code have been developed [1], [2]. While static
analysis techniques are aimed at identifying properties that
hold during all executions of a program, our work is aimed at
analyzing the flow of input values during a particular execu-
tion. Dynamic analysis is much more suitable for applications
such as debugging [11], test input generation [14], [17], and
security [4]. As mentioned earlier, the most closely-related ef-
fort to our relevant input analysis is lineage tracing [22], [23],
[24]. However, none of previous approaches differentiate the
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role and strength inputs play in computing a specified value.
Our relevant input analysis characterizes the role and strength
of inputs play in the computation of different values during a
program execution. Dynamic information flow analysis (e.g.,
taint analysis) has been used in security applications [18],
[19], [4]. The information we collect is much richer and hence
enables a wider range of applications (e.g., delta debugging)
as illustrated in this paper. While dynamic slicing [5], [8] has
been widely studied to assist in debugging, the relevant input
analysis presented in this paper differs from dynamic slicing
in two important ways: dynamic slicing treats both value and
address dependences as data dependences while we distinguish
between them; and our analysis yields much richer information
that characterizes role and strength.

III. APPLICATIONS OF RELEVANT INPUT ANALYSIS
A. Delta Debugging

From the results of the preceding section it is clear that
relevant input analysis can help in understanding program
behavior. Therefore, in this section we show that the results
of analysis can be used to develop an enhanced delta debug-
ging [10], [11] algorithm. Given a program input on which the
execution of a program fails, delta debugging automatically
simplifies the input such that the resulting simplified input
causes the same failure. In particular, it finds a 1-minimal
input, i.e., an input from which removal of any entity causes
the failure to disappear. This is achieved by carrying out
a search in which: new simpler inputs are generated; the
program is executed to determine if same failure is caused by
the simpler input; and the above steps are repeatedly applied
until the input cannot be simplified any further.

We now present a new delta debugging algorithm, called
IDTHDD (Input Decomposition Tree-based Hierarchical Delta
Debugging), that uses relevant input analysis to accelerate the
search for the 1-minimal input. This is achieved as follows:
• Step 1: Removal of Irrelevant Inputs. The input is

simplified by removing entities that do not appear in
the relevant input set of the wrong value identifying the
failure (e.g., wrong output or reference causing a crash).

• Step 2: Construct Input Decomposition Tree. From the
dynamic dependence chop, that includes all dependence
chains from input entities to faulty value, we derive a tree
that represents a hierarchical decomposition of the entire
input into subsets of input entities.

• Step 3: Search for 1-Minimal Input. The decomposition
tree enables a pruned search (relative to the default delta
debugging) for finding a 1-minimal input.

Next we will present the three steps in detail and illustrate
our algorithm on the program in Figure 1. To better illustrate
our algorithm, we use a longer failing input which has 59
entities; after removal of irrelevant inputs failing input size is
10, and finally the 1-minimal input size is 7.

Step 1: Remove Irrelevant Inputs: On a failing run,
the failure is revealed either because the program crashes or
it generates a wrong output. In either case, at some point in
execution, a wrong value is produced and detected. Since the

goal of input simplification is to reproduce the same failure,
we can reduce the original input by removing all irrelevant
input entities, i.e., those entities that do not appear in the
relevant input set of the wrong value. We further try to reduce
the input size by generating multiple inputs of different sizes
from the relevant input set of the wrong value. In particular,
we generate the following inputs and select the first input
that reproduces the same failure. The DER=, CINF= and
AINF= sets include only those subsets of input entities from
DER, CINF , and AINF that are attributed with =.

First Input: DER=

Second Input: DER= ∪ CINF=

Third Input: DER= ∪ CINF= ∪ AINF=

Fourth Input: DER ∪ CINF= ∪ AINF=

Fifth Input: DER ∪ CINF ∪ AINF=

Sixth Input: DER ∪ CINF ∪ AINF
In Figure 6 we show the impact of removing irrelevant

inputs for our running example. The original, 59-entities input
is reduced to a simple 10-entities failing input. Note that it is
possible that none of the subsets can reproduce the original
fault because the removal of irrelevant parts may result in a
malformed input. In this case, our algorithm simply defaults
to the standard delta debugging algorithm.

Step 2: Construct Input Decomposition Tree: Next, for
the input obtained in the previous step, an input decomposition
tree is constructed that hierarchically decomposes the input
as follows. The root of the tree represents the wrong value
computed in the failing run and its children represent a subset
of other values computed during execution upon which the
root value is dependent. Moreover, while the root is labeled
with the entire input on which it is dependent, its children
are labeled with disjoint subsets of inputs labeling the root
node. The inputs labeling each child node of the root node
are similarly further decomposed among their children and so
on. Finally, each leaf node represents a read of an input value.

Thus, each level in the tree represents a decomposition of
the input into disjoint subsets such that at the root node all
inputs are in a single partition while at each subsequent level
the inputs are decomposed into increasing number of disjoint
subsets. During delta debugging, from the input decomposition
at a given level in the tree, simpler inputs will be constructed
by excluding or including each subset as a unit. This reduces
the search space explored by delta debugging and thus accel-
erates the search for a 1-minimal input.

Figure 7 shows the input decomposition tree for our running
example. As we can see, while the input associated with the
root node is the entire input found in Step 1 (SFFFSNB/BP),
each of the leaf nodes has a single input entity attached to it,
which is the specific entity that was read by the leaf node.
Internal nodes correspond to larger subsets of the input set.
Note that although the leaf nodes at levels other than the
last level are shown once, these nodes must be viewed as
being repeated at later levels so that each level represents a
decomposition of the entire input.

The input decomposition tree is derived from the dy-
namic dependence subgraph consisting of dynamic depen-
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Original Input:
H ” t ” / H S F F F S F F N P ” a ” / P P ” b ” / P B P ” c ” / P P ” d ” / P / B P ” e ” / P P ” f ” / P / N / S / S

Inputs Labeled with Occurrence Frequency:
H1 ”1 t1 ”2 /1 H2 S1 F 1 F 2 F 3 S2 F 4 F 5 N1 P 1 ”3a1”4/2P 2 P 3 ”5 b1 ”6 /3 P 4 B1 P 5 ”7 c1 ”8 /4 P 6 P 7 ”9 d1 ”10

/5 P 8 /6 B2 P 9 ”11 e1 ”12 /7 P 10 P 11 ”13 f1 ”14 /8 P 12 /9 N2 /10 S3 /11 S4

Relevant Inputs for 10714 (Failure Point, p is NULL) :
VAL(10714) ← {S2=→NULL(node→sibling@104)} ∧ {H1, ”1, /1, S1=, F 1=, F 2=, F 3=, S2=, F 4, F 5,
N1=, P 1, ”3, /2, P 3, ”5, /3, B1=, P 5, ”7, /4, P 7, ”9, /5, /6=, B2=→true(doc→seeEndBody@67), P 9=}
∧ { H1, ”1, /1, S1, F 1, F 2, F 3, S2, F 4, F 5, N1, P 1, ”3, /2, P 3, ”5, /3, B1, P 5, ”7, /4, P 7, ”9, /5, /6, B2, P 9 }

Construct and Try Simpler Inputs:
First Input Constructed from: DER=={S2}

−→ S −→ original failure cannot be reproduced.
Second Input Constructed from: DER=∪ CINF== {S1, F 1, F 2, F 3, S2, N1, B1, /6, B2, P 9}

−→ S F F F S N B / B P −→ original failure is reproduced !!

Resulting Simpler Input following Step 1: −→ S F F F S N B / B P

Fig. 6. Step 1: Removing irrelevant inputs.
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Fig. 7. Step 2: Generating the Input Decomposition Tree.

Level Step Test Case Result

1 1 ∇21
P

√

2 ∇22
S F F F S N B / B

√
Go to next level

2 3 ∇21
N B / B P

√

4 ∇22
S F F F S P

√
Go to next level

3

5 ∇21
N B / B P

√

6 ∇22
S F F F S P

√
Increase granularity

7 ∇51 S N B / B P
√

8 ∇52
S F F F N B / B P

√

9 ∇53
S F F F S B / B P

√

10 ∇54
S F F F S N B P

√

11 ∇55 S F F F S N B / P
√

Go to next level

4

12 ∇21 S N B / B P
√

13 ∇22 S F F F S N B P
√

Increase granularity
14 ∇41

F S N B / B P
√

15 ∇42
S F F S N B / B P × Reduce to complement

16 ∇31 S N B / B P
√

17 ∇32
S F F S N / B P

√

18 ∇33
S F F S N B B P

√
Go to next level

5 19 ∇21
F S N B / B P

√

20 ∇22
S F S N B / B P × Reduce to complement

6
21 ∇21

F S N B / B P
√

22 ∇22 S S N B / B P × Done - 1-minimal
Input found !!

Fig. 8. Step 3: Searching for 1-minimal Input – found S S N B / B P .

dence chains originating from the input entities and termi-
nating at the faulty value, produced as follows:

• Construct a breadth first spanning tree starting from the
faulty value as the root and continuing until all inputs
the faulty value is dependent on (i.e., inputs identified in
Step 1) have been included in the tree. Collapse chains
such that no node in the tree has only a single child.

• Label each node with its input subset which is simply
the set of inputs that are reachable from the node via
the edges in the spanning tree. Note that for any given
level in the spanning tree, each node at that level will
be labeled by a disjoint input subset since the input sets
are computed using the paths that exist in the spanning
tree, i.e., no input is reachable from multiple nodes at the
same level in the spanning tree.

Step 3: Search for 1-Minimal Input: Let us briefly
discuss how the input decomposition tree is used to search
for a 1-minimal input. We apply hierarchical delta debugging

according to levels in the spanning tree. At each level when
delta debugging is applied, each distinct input subset at that
level is viewed as a single entity, i.e., it is either entirely
included in or entirely excluded from a generated input. This
is similar to the hierarchical delta debugging [13]; although
the source of hierarchy is altogether different. When applying
delta debugging to each level of the input decomposition tree,
we only try each complementary set instead of first trying
delta sets and then complementary sets. This is based on
the observation that step 1 already successfully pruned large
failure irrelevant chunks from the input.

Taking the spanning tree given in Figure 7 as input, the input
simplification using delta debugging is illustrated in Figure 8.
We consider the root as being level 0. Therefore the figure
shows inputs derived from level 1 onward. At levels 1, 2, and
3 delta debugging generates 2, 2, and 7 simpler inputs; but
none of them cause a failure. Thus, we go to level 4 where
the fourth simpler input reproduces the failure. This input
is further simplified by applying delta debugging at level 5
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which yields a simpler input that is further simplified at level
6, yielding the 1-minimal input (SSNB/BP).

As we can see, when we apply delta debugging to the
input decomposition tree, for leaf nodes we have two choices:
always include the leaf node in the generated input (called
IDTHDD), or reconsider this leaf node again when we go
to next level (called as IDTHDD*). Figure 8 adopts the first
choice. That is, assuming we are applying delta debugging to
level l in the input decomposition tree, each simpler input
we try consists of two parts: the input generated by delta
debugging at level l, and inputs from leaf nodes in upper levels.
For example, all inputs tested at level 2 include the leaf node in
level 1 (“P”) in Figure 8. Because all nodes which read input
from outside will be the leaf node in the input decomposition
tree, IDTHDD* guarantees that we can get 1-minimal input.
Intuitively, IDTHDD* can generate smaller (or equal) inputs
with more test runs, compared with IDTHDD. However, as
our experiments (discussed soon) show, IDTHDD is already
good enough to get similar minimized input with much fewer
test runs, compared to IDTHDD*.

Comparison with standard delta debugging: As we
have shown, for our running example, the original input of
size 59 is converted to a simpler 1-minimal input of size 7
and during this process the program is executed on 17 different
inputs (on 2 inputs in step 1, and on 15 inputs in step 3). We
now compare these results with those obtained by standard
delta debugging. We found that to identify a 1-minimal input,
the standard delta debugging required executing the program
on 222 different inputs. Moreover, it yielded a 1-minimal input
whose size is 24 (H””/HSSNPPBP””/PP””/P/BP) in contrast
to the 1-minimal input of size 7 (SSNB/BP) generated by our
algorithm. Thus, pruning the search space using relevant input
analysis is very effective in both reducing the size of the input
and the number of executions required.

We observe that removal of irrelevant inputs by Step 1 is
very useful in finding smaller 1-minimal inputs. This can be
explained as follows. In general, for a given original input,
there may be many 1-minimal inputs that can be derived from
it. The larger the original input, the more likely it is that the
sizes of these 1-minimal inputs vary significantly. Since the
search for 1-minimal input terminates as soon as the first such
input is found, we may end up with one of the larger 1-minimal
inputs when standard delta debugging is used. On the other
hand, our algorithm engages in the search for a 1-minimal
input only after it has eliminated the irrelevant inputs. Starting
from an already simpler (i.e., smaller) input is likely to yield a
smaller 1-minimal input. This is indeed what happened in the
above example. After the irrelevant inputs have been removed,
the input’s size is 10 which is much smaller than 24, size of
the 1-minimal input found by standard delta debugging.

Finally, note that finding the 1-minimal input of size 7
from the input of size 10 produced after step 1 (i.e., SFFF-
SNB/BP) required our algorithm to perform 15 executions of
the program. On the other hand, if standard delta debugging is
applied to this size 10 input (i.e., SFFFSNB/BP), it finds the
same 1-minimal input as our algorithm after 37 executions

of the program. Thus, guiding the search using the input
decomposition tree also improves the efficiency of the search
significantly (i.e., 15 vs. 37 executions).

Experimental evaluation: A summary of benchmarks
used in our evaluation is shown in Table I; each benchmark
contains a real reported bug in a widely-used program, with
the details in columns 2-4. Tidy-34132 contains a NULL
pointer dereference bug. It has a similar bug trigger condition
as the example in Figure 1: a noframe tag is included in
an inner frameset and some paragraphs are wrongly placed
outside body. Bc-1.06 fails with a memory corruption error
due to heap buffer overflow (variable v count is misused due
to a code clone error). Expat-1.95.3 fails when XML DTD is
not defined and an empty function pointer is dereferenced to
allocate memory for an entity name.

Comparison with standard delta debugging: The
comparison of our approach with standard delta debugging is
summarized in Table III. The size of original failure-inducing
input is given in the second column. The number of test runs
and size of minimized input for standard delta debugging
is given in third and fourth column respectively. The fifth
(seventh, respectively) and sixth (eighth, respectively) columns
show the number of test runs and size of minimized input for
IDTHDD (IDTHDD*).

As we can see, for tidy-34132, IDTHDD only requires 176
test runs and produces a smaller input with size 44, while
standard delta debugging needs to run 852 different inputs to
produce the a minimized input with size 50. For the bug in bc-
1.06, IDTHDD greatly outperforms standard delta debugging
with 9 times fewer test runs than standard delta debugging,
while generating a slightly smaller input. For expat-1.95.3
IDTHDD generates a smaller input (52 vs. 63 characters) than
standard delta debugging with much fewer test runs (8 times
fewer) than standard delta debugging. For each of the three
bugs, IDTHDD* generates a smaller input than IDTHDD, but
requires more test runs.

To further evaluate how our relevant input analysis helps
with delta debugging, the detailed comparison of our approach
with standard delta debugging is presented in Table IV. The
third and fourth columns show the number of test runs and
size of simplified input for step 1 of our algorithm. The
seventh (eighth, respectively) column shows the number of
test runs for step 3 of IDTHDD (IDTHDD*, respectively).
To show the effectiveness of input decomposition tree-based
delta debugging, we also show the number of test runs and
size of minimized input by applying standard delta debugging
to the simplified input after step 1. As we can see, step 1 alone
reduces the input size from 2018 to 124 for tidy-34132 (16x
smaller) with 3 test runs, and from 1138 to 125 for expat-
1.95.3 (9x smaller) with 2 test runs.

By comparing step 3 of IDTHDD with standard delta
debugging, we can see that IDTHDD generates smaller (or
equal) inputs with fewer test runs for the three bugs (e.g.,
1192 test runs vs. 8372 runs for bc-1.06, and 214 test runs vs.
896 runs for expat-1.95.3).
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TABLE III
SUMMARY OF COMPARISON WITH STANDARD DELTA DEBUGGING.

Program Test Case DDMIN IDTHDD IDTHDD*
(input size) # (test runs) # (minimized input) # (test runs) # (minimized input) # (test runs) # (minimized input)

tidy-34132 test1.html(2018) 852 50 176 44 405 39
bc-1.06 test1.b(1310) 10800 191 1194 190 4185 190
expat-1.95.3 test1.xml(1138) 1785 63 216 52 393 49

TABLE IV
COMPARISON WITH STANDARD DELTA DEBUGGING AFTER STEP 1.

Program Test Case Step 1 DDMIN on Simplified Input IDTHDD-Step3 IDTHDD*-Step3
(input size) # (test runs) # (simplified input) # (test runs) # (minimized input) # (test runs) # (test runs)

tidy-34132 test1.html(2018) 3 124 378 44 173 402
bc-1.06 test1.b(1310) 2 399 8372 190 1192 4183
expat-1.95.3 test1.xml(1138) 2 125 896 56 214 391

Comparison with hierarchical delta debugging: Our
approach has several advantages compared to hierarchical
delta debugging (HDD) [13]. First, HDD requires that the
initial failure-inducing input be well-formed; otherwise, the
parser which HDD is based on will fail. Note that HDD only
generates syntactically valid input. However, it is common
that programs often fail because of ill-formed input. For
example, the original failure-inducing inputs for tidy-34132,
expat-1.95.3 and the program in Figure 1 are ill-formed,
so HDD would fail for such kind of bugs. Second, HDD
users must provide infrastructure for input parsing, unparsing
a configuration, and pruning nodes from the input tree for
different languages, which turns out to be non-trivial [13].

B. Other Applications

Test Input Generation: Dynamic techniques require
multiple program executions for generating desired test in-
puts [14]. The cost of test input generation can be reduced by
using symbolic execution [15] for Java programs. For pointer
based languages such as C, execution based analysis is more
effective. A test input generation algorithm can make use of
DERIVED and CINFLUENCED sets from a single execution
to effectively derive test inputs at a moderate cost.

Security: Buffer overflow bugs can be exploited to
launch attacks via which an attacker can transfer program con-
trol to malicious code. To detect such bugs, taint analysis can
be used to track values that are data dependent on the inputs; if
tainted values are used in computing branch target addresses,
the vulnerability has been successfully detected [18]. However,
data dependences may be obfuscated as control dependences to
avoid detection. Our formation of chains in the DERIVED and
AINFLUENCED sets help capture obfuscated vulnerabilities.

IV. CONCLUSIONS

We introduced a novel relevant input analysis that, for
a particular execution, determines the role inputs play in
deriving values, controlling branch predicate outcomes, and
selecting referenced addresses. This information is useful for
delta debugging, test input generation, and detecting potential
security vulnerabilities. Experiments show that relevant input
analysis significantly narrows down the scope of inputs that are
relevant for computing a value during execution. The benefits
of narrowing the scope were demonstrated by developing an
effective and efficient delta debugging algorithm.
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