

1

An orchestrated survey of available algorithms and

tools for Combinatorial Testing

Sunint Kaur Khalsa and Yvan Labiche

Department of Systems and Computer Engineering

Carleton University

Ottawa, Canada

sunintkhalsa@cmail.carleton.ca, labiche@sce.carleton.ca

Abstract— For functional testing based on the input domain

of a functionality, parameters and their values are identified and

a test suite is generated using a criterion exercising combinations

of those parameters and values. Since software systems are large,

resulting in large numbers of parameters and values, a technique

based on combinatorics called Combinatorial Testing (CT) is

used to automate the process of creating those combinations. CT

is typically performed with the help of combinatorial objects

called Covering Arrays. The goal of the present work is to

determine available algorithms/tools for generating a

combinatorial test suite. We tried to be as complete as possible by

using a precise protocol for selecting papers describing those

algorithms/tools. The 75 algorithms/tools we identified are then

categorized on the basis of different comparison criteria,

including: the test suite generation technique, the support for

selection (combination) criteria, mixed covering array, the

strength of coverage, and the support for constraints between

parameters. Results can be of interest to researchers or software

companies who are looking for a CT algorithm/tool suitable for

their needs.

Keywords— Combinatorial testing, Covering arrays, strength of

testing, algorithms, Category-partition

I. INTRODUCTION

Software testing is the process of ensuring a software
under test (SUT) performs as intended. Software testing
techniques can be broadly categorized as black box, when test
case construction focuses on functionality, or white box, when
test case construction uses the internal logic and structure of
the code. In this paper we focus on black-box testing, and
more specifically on testing from a plain language
specifications, which requires the identification characteristics
of input and output parameters[1] . Various input parameter
modeling and selection techniques have been suggested in
literature (e.g.,[2-6]), and we primarily consider the Category
Partition method [6].

Category partitioning begins by identifying the parameters
and environment variables of functional subsystems.
Parameters are the inputs to the functional subsystems either
by the user or some other functional unit. Environment
variables are factors that may impact behaviour. These
parameters and environment variables are then envisioned into
categories, which are characteristics of the parameter (or
environment variable) that are deemed important from a
testing point of view. Each characteristic leads to the
definition of so-called choices, which are equivalent classes,

possibly using boundary value analysis, splitting the domain
of values (implicitly) defined by the characteristic. Constraints
can then be used to specify for instance that some choices
from two different categories should always be used together,
can never be used together, or can be used together under
certain condition. The choices (at most one choice per
category) are then combined to form test frames according to a
selection criterion, while satisfying constraints. The test
frames are then provided actual values to produce test cases:
one test frame typically becomes one test case, although it is
possible (though costly) to identify several sets of test inputs
and therefore several test cases for a single test frame.

Four main selection criteria to combine choices have been
defined [1]. With the Each Choice criterion, each choice in
each category must appear in at least one test frame. With the
Pair-wise criterion, an adequate test suite exercises each
possible (according to constraints) pair of choices from
different categories at least once. With the Base Choice
criterion, a base choice is selected for each category. This is
the most “important” choice for the category that is to be
tested more often than other choices. A first test frame is
created by using all the base choices, i.e., the base choice for
each category. Other test frames are created by holding all but
one base choice constant and using each non-base choice once
for the one non-constant choice, while satisfying constraints.
The All combinations (or N-wise) criterion ensures that all the
possible (according to constraints) combinations of choices
are exercised by the set of test frames.

In order to use these selection criteria when one has a large
number of parameters and choices, a technique is required
which can effectively and efficiently make combinations. A
widely used technique for this task is Combinational Testing
(CT), rooted in the mathematical concept of combinatorics
and which leads to the construction of .combinatorial objects
called Orthogonal Arrays (OA) or Covering Arrays (CA). CT
can be broadly applied at two levels [7]: At the configuration
level, system configurations are considered as parameters for
testing e.g. operating systems, browsers, network protocols;
At the input parameter level, the actual inputs to the system or
subsystem are considered either in terms of actual values or in
terms of partition of the input space as defined by equivalence
partitioning.

The reader will notice we need two different
terminologies. With Category partition, parameters are
characterized by categories, which are split into choices, and

mailto:sunintkhalsa@cmail.carleton.ca
mailto:labiche@sce.carleton.ca

choices need to be combined (one choice per category) to
form test frames / test cases. In the CT domain, parameters
have values and one combines those values (one value per
parameter) to form test cases. We can establish a mapping
between the two terminologies: categories and choices
(Category partition) map to parameters and values (CT).
Unless otherwise specified, we will use the category/choice
terms when the discussion is on category partition, and we
will use the parameter/value terms when the discussion is on
CT. We may need to mix terms, though without loss of clarity
when one remembers the mapping.

A CA or an OA is a matrix in which columns represent the
parameters and rows corresponds to the test frames. There are
few differences in the features of OA and CA but for
application in category partition, a CA is typically preferred
for a number of reasons, including: an OA assumes that all the
categories have the same number of choices, which is rarely
the case in practice [8].

Specifically, in the context of category partition, a test
engineer would be looking for a CA generation solution that
could support one or more of the following: different
categories typically have different number of choices; choices
are typically associated with constraints to enforce or prevent
some combinations, or to ensure that a choice only appears
once in the set of test frames; different selection criteria (see
previous discussion) can be considered to generate
combinations of choices. Contrary to other studies that
compare the effectiveness of CA generation technologies at
producing the least number of test cases, we are interested in
functionalities of such technologies. We believe this
comparison will help researchers and practitioners to analyse
the tools and algorithms befitting to their needs.

As further discussed below in section II, our search for
such information was not successful. We therefore decided to
systematically identify and review existing CA generation
technologies and compare them according to the above-
mentioned objectives (among other things).

The rest of the paper is structured as follows. Section II
discusses related work. Section III discusses the protocol we
followed to identify algorithms/tools generating covering
arrays, while section IV discusses the comparison criteria we
are interested in. Sections V and VI present results. Section
VII discusses threats to the validity of our study. We conclude
in section VIII.

II. RELATED WORK

Various types of CAs have been defined [9]. A (standard)
Covering Array is typically defined as an array of N rows and
p columns, N being the number of test cases and p the number
of parameters, each one having v possible values, such that for
every selection of t columns (t being called the strength of the
array) all possible t-tuples of v values appear within the rows
of the array [10]. A Mixed Covering Array (MCA) allows
parameters to have various numbers of values [10]. A Variable
Strength Covering Array (VSCA) ensures several strength
values are achieved for different set of parameters [10]. A
Constraint Covering Array (CCA) accounts for forbidden
combinations of values, a.k.a., forbidden tuples [11]. A

sequence covering array [12] accounts for sequence in which
parameter values must be provided to the system under test,
which is especially relevant when testing GUI-based software.
For obvious reasons, these are the covering arrays we are
mostly interested in, for use with category partition.

Other covering arrays include Error Locating Arrays [13],
Test Case Aware Covering arrays [14], Cost aware covering
arrays [9, 15], Incremental Covering arrays [16] and l-Biased
Covering array [17].

We found papers [18, 19] which surveyed methods for
generating covering arrays. These papers surveyed covering
arrays generation techniques on the basis of size and time of
generation of covering arrays. They however did not discuss
extensively the tools or algorithms which supported a specific
technique, the coverage strength or selection criteria. Other
survey (e.g., [8, 20-23]) focussed on the techniques but did not
discuss all the tools and algorithms supporting those
techniques in detail. For instance they do not discuss support
for constraints or higher coverage strength which is essential
in our category partition context. The nearest work to our
survey is by Rahman et al. [22], who discussed various
techniques, their strengths and weaknesses along with the
coverage strengths they support. They also mentioned if a
specific technique supports constraints. They did not
extensively mention the tools or algorithms supporting a
specific technique, the constraint handling and representation
technique adopted by a tool/algorithm, the selection criteria
supported by a tool. In other words we intend to provide a
more complete picture than what can be found in the literature
to date. There is only one research work [11], to the best of
our knowledge, which discusses the constraint handling
support in tools/algorithms for nine tools whereas we discuss
32 such tools.

To summarize, none of the research work, to the best of
our knowledge, surveys the tools and algorithms as
extensively as what we report in this paper or compare them
on the basis of comparison criteria which we outlined earlier.

III. SELECTION PROTOCOL

We did not strictly follow established guidelines [24] to
conduct a systematic mapping study [25], mostly deviating
from those guidelines in the way we identified relevant
publications since we did not rely on online databases such as
IEEE eXplore. We nevertheless followed the SMS principles
by considering research questions (section III.A), establishing
a precise procedure to identify relevant publications (section
III.B), clearly stating publication inclusion and exclusion
criteria (sections III.C and III.D), and by defining a
publication comparison framework (section IV). This way, we
intend to be as systematic and reproducible as possible and we
therefore dedicate a fair amount of space in this paper to those
details.

A. Research questions

Recall that we are interested in using a CA generation
technology to produce test frames in the context of category
partition testing technique. We therefore identified the
following research questions:

RQ1: What are the available tools/algorithms for
generating combinatorial tests?

RQ2: Which techniques, e.g., based on mathematical
construct or based on a meta-heuristic search, are used for
generating covering arrays for combinatorial testing?

RQ3: Which selection criteria (to generate test frames, i.e.,
combinations of choices) does each tool/algorithm support?

RQ4: What is the maximum coverage strength supported
by each tool/algorithm?

RQ5: Which tools support constraints and how do they
represent and handle them?

RQ6: Which tools support mixed covering arrays?

B. Selection procedure

The selection procedure we followed started from survey
papers [8, 18-23], which gave a fairly good idea regarding the
techniques used for generating combinational tests (Covering
Arrays). But since our objective was to search for available
tools/algorithms which support each specific technique, we
first looked at the tools/algorithms mentioned in those
surveys. We searched and studied literature on these
tools/algorithms one by one. We extensively reviewed the
related work and result sections of these papers, searching for
new tools/algorithms being compared to the first list of
tools/algorithms. We repeated this process multiple times,
recursively, until no new tool/algorithm was identified.

Further, to ensure that our list was as complete as possible,
we also searched for tools/algorithms in the papers where the
survey papers were cited. We further reviewed the thesis of
various researchers [17, 26-28], technical reports [29], books
[7], websites (e.g., www.pairwise.org) and feature documents
of various tools (e.g., ACTS, PICT).

C. Excluded papers

During the selection procedure we identified many studies
which proposed an improvement over another existing
algorithms, such as lowering the bound of CAs, but these
papers did not have an implementation or much experimental
results of comparison with other algorithms, and were not
changing the essence of the algorithm to such an extent that
our classification of the new algorithm would differ from that
of the original. Hence these studies were excluded.
Tools/algorithms based on Orthogonal Arrays (e.g., OATS,
rdExpert, reducearray2, reducearray3) were excluded because
of their limitations mentioned in the Introduction. Papers on
other input parameter modeling technique e.g. classification
trees (CTE_XL), Combinatorial testing for Software Product
lines, Grammar based combinatorial testing, testing of
compilers were also excluded. Algorithms/tools supporting
prioritization of the values or parameters were also excluded.
We have focused on literature only in English.

D. Included papers

We have included tools and algorithms which generate
combinatorial test suite. We included tools/algorithms which
support input/output relationships, distance based techniques
for the selection of parameters and values. We have made an

exception here regarding the selection of an algorithm named
Distance Based Technique [30]. This work does not perform
comparison with other tools but we have included it in our
survey because it supports three selection criteria, coverage
strength of 5 and is the only distance based technique which
supports constraints. The basis of this inclusion is the variety
in results.

The AETG’s Web service [31] is based on the algorithm
proposed by Cohen et al. [32] which was further improved by
Cohen in [26]. For our review we will be considering the
commercial tool AETG Web Service which is available
online. ACTS [33] implements several combinatorial test
generations algorithms like IPOG and IPOD [34], IPOF [35],
IPOF2 [35], and IPOG-C [36] which uses constraints, all
being rooted in the In parameter Order (IPO) algorithm [37].
We decided to consider ACTS itself rather than all these
improvements separately.

IV. COMPARISON FRAMEWORK

The comparison framework consists of various comparison
criteria, derived from our research questions, we will use for
comparing the tools and algorithms we selected (section III).

A. Techniques for the generation of covering array

Various techniques for generating covering arrays for CT
have been proposed in literature. The construction of CAs are
usually performed in two steps [7]. In the first step a set
containing all the possible t-wise combinations is generated.
In the second step the test suite is generated to cover all the
combinations obtained in the first step. Both steps collectively
are called the technique for test suite generation. Researchers
have suggested various paradigms for the characterization of
the test suite generation techniques. Grindal et al. [8]
characterize techniques on the basis of the determinism of the
generated output. They broadly categorized techniques as
deterministic and non-deterministic and further into heuristic,
artificial life based, iterative (test suite generated in iterative
steps) and instant (test suite generated in one step) depending
on the type of algorithm being used and how the test suite is
generated. In this classification the categories however are not
disjoint. For instance they have classified covering arrays as
deterministic although an algorithm generating a CA does not
necessarily produce deterministic results when they are
generated using Simulated Annealing [38].

Nie and Leung [20] performed an extensive survey and
provided another classification scheme which classified the
covering array generation techniques into greedy algorithms,
heuristic search, mathematical methods and random method. It
is interesting to note that, as reported by Nie and Leung, a
technique may fall into more than one category: e.g., the
hybrid techniques of Bryce and Charles [39] combines a
heuristic search and a greedy algorithm to benefit from both
techniques. We extended this taxonomy in this paper.

B. Test generation strategy

The algorithms for combinatorial test suite generation can
be broadly categorized into Test based generation and
Parameter based generation. An algorithm uses either a test
case or a parameter as the building block for the generation of

http://www.pairwise.org/

the test suite. In test-based generation, one test is build at a
time such that the test covers as many t-way combinations as
possible and hence spans over all the parameters. Automatic
Test Case Generator (AETG) [32] falls in this strategy.
Parameter based generation, begins with t parameters, makes a
test suite for t-wise interaction and then adds more parameters
to it. While adding new parameters new test (rows) are also
added, often greedily, so that each addition leads to maximum
t-way interactions in the extended set of parameters. This is
the strategy of In Parameter Order [40]. The Algebraic
Techniques which follow a recursive approach also use a
parameter based strategy. The building block in a recursive
algebraic technique is a smaller covering array, which is a
group of parameters, and the larger arrays are obtained from
smaller arrays [41].

C. Selection Criteria

In a typical situation, exercising all the possible
combinations of parameter values, i.e., t-way coverage for a
problem with t parameters, is simply not practical or feasible
because of the large set of parameters and values. Hence, it is
important to select the parameters and values strategically so
that their combinations can lead to a manageable set of test
cases. In software testing, this is typically achieved thanks to
test selection criteria, four of which have already been
mentioned in the context of category partition: Each Choice,
Pair-Wise, Base Choice and All Combinations.

Some authors have suggested other criteria [1, 8] in the CT
domain:

 Uniform Strength Interaction or t-wise: This criterion
requires that any combination of values belonging to t
parameters should be combined at least once in the test
suite. Here all the parameters are supposed to be
uniformly integrated with a constant value t [42]. The
Pair wise criterion previously mentioned corresponds to
a uniform strength of 2.

 Variable strength Interaction or mixed strength
interaction: This is an extension to the t-wise criterion
that requires t-wise interaction among a subset of
parameters and q-wise interaction among the remaining
parameters [43].

 Input output based interaction: Instead of exercising
interactions of the complete set of parameters, this
criterion is to split the set of parameters into (possibly
overlapping) subsets that each contain the parameters
that impact the value of one output parameter [44]; a
selection criterion like the ones previously discussed (the
authors use the all combinations criterion but another
criterion could be used) can then be used on each subset
of parameters and results need to be combined to obtain
complete test cases.

 Distance based criterion: the goal of the criterion is to
select combinations of parameter values, i.e., test cases,
that are as diverse as possible, diversity being measured
as the distance between those test cases, for instance
using the Hamming distance [3].

 Random input criterion: This criterion selects a randomly
chosen number of test cases and each test case is a
randomly selection of parameter values.

 Although reporting on experimental work involving those
criteria is not the purpose of this paper, we nevertheless would
like to mention a few results. Grindal et al [45] observed that
the Each Choice criterion supplied unpredictable results so
much so that they were not very useful to the testers. Because
of their nature, base choice and input output based interaction
were able to detect different types of faults as compared to
other criteria. Base Choice was observed to give better fault
detection results when there were a limited number of choices
per category that could be considered base choices; when this
was not the case Pair-Wise gave better results. Othman et al.
[46] showed that Input output based parameter interaction
gave better results in terms of cost (i.e., number of test cases)
and ability to find faults than uniform and variable strength
interaction. Others have found that the presence of constraints
between choices heavily impacts the use of those criteria,
including Base choice which, in some cases, does not exercise
every single choice [47]. All these authors unanimously argue
that it is difficult to generalize those results as they largely
depend on the system under test.

D. Coverage Strength Support

Strength support is an important characteristic for the
comparison of tools or algorithms producing CAs. The
intuition, confirmed experimentally, is that the faults are
detected when parameters interact. Studies [7] have shown
that 100% fault detection can be achieved by a maximum of 4-
wise to 6-wise interaction. Other studies found that pair-wise
performs better than higher strength values are is therefore
more cost-effective. Identifying the strength of a
tool/algorithm is therefore important.

E. Constraint Support

Constraints are limiting the construction of a CA by
forbidding some combinations. One can distinguish between
environment constraints and system constraints [7].
Environment constraints are related to the configurations of
the system, e.g., Linux OS can never be combined with
Internet Explorer. System constraints on the other hand are
constraints on the system, e.g., one user cannot select a value
less than 10. System constraints can also be used to test the
robustness of the system, e.g., behaviour of the system if the
user selects invalid options.

Constraints can be represented either as forbidden tuples,
allowed tuples or formally specified with the help of
prepositional formulas or logical expressions using Boolean,
relational or arithmetic operators [36] [48]. A forbidden tuple
is a combination of parameter-values which can not appear in
the final test suite. A single constraint can give rise to any
number of forbidden tuples [11]. In a typical situation,
constraints are formally specified, not necessarily explicitly,
by the test engineer. Tools/algorithms which accept formally
specified constraints are therefore more usable than those that
do not since in the latter case, the test engineer needs to
remodel the constraint input to transform the formal
specification into a list of forbidden or allowed tuples [11].

We recognized four mechanisms for handling constraints
by the tools/algorithms. The first mechanism is handling
constraint before executing a specific test generation

algorithm. This mechanism can be adopted when only allowed
tuples are given as input and can prevent changing the test
generation algorithm. The second mechanism is to replace the
invalid test cases with valid ones once the test suite has been
generated using a specific technique [49]. The third
mechanism is to integrate constraint handling into the CA
generation algorithm with an ad-hoc procedure. The last
mechanism is to integrate the selection of valid tuples,
according to constraints, to the algorithm generating
combinatorial the test suite by integrating a SAT solver.

F. Support for Mixed Covering Arrays

A typical software system will have a large number of
parameters and each parameter will not necessarily have the
same number of values. So a tool/algorithm should be able to
support mixed covering arrays to cater the need of such a
software system.

V. RESULTS

In this section we will answer the research questions
individually (sections V.A to V.F). Some of those results are
combined in section VI. The complete list of 75
algorithms/tools we selected by following our selection
protocol, along with their raw classification using our
comparison framework can be found in Appendix Section IX.

A. RQ1: What are the available tools/algorithms for
generating combinatorial tests?

The objective of this research question is to know the
available tools in the realm of combinatorial testing using our
search protocol and categorizing them and show their year of
introduction in Fig. 1 over four years intervals from 1991 (the
earliest year we found) to 2014. The total number of
tools/algorithms obtained using our search protocol is 75
(TABLE III. and TABLE IV.). Among the first tools for
generating tests were T-Gen [50], introduced in 1991, and
based on the category partition method [6]. In the next four
years no tool was proposed and then from 1999 onwards there
has been a constant rise in the number of tools/algorithms for
generating covering arrays for combinatorial suiting. This
clearly marks the importance of functional testing and a need
to have an optimal test suite. 69% of the tools/algorithms have
been proposed in the last eight years.

Fig. 1. Number of tools/algorithms identified over years, presented over four

year intervals

While searching for specific tools/algorithms we observed
that authors suggested improvements to their own technology
over the years while proving experimentally that their new
algorithm was doing better than before. In our study an
algorithm with multiple references corresponds to the
improvements the algorithm went through, along the way, and
we considered the results of the latest upgrade.

B. RQ2: Which techniques are used for generating

covering arrays for combinatorial testing?

1) Greedy vs. Meta-heuristic vs …
We identified five different types of techniques used for

the generation of combinatorial test suites: Greedy
Techniques, Meta-Heuristic Techniques, Adaptive random /
Adhoc techniques, Hybrid Techniques and Algebraic
techniques. We are going to classify all the algorithms and
tools, obtained from our search, into these five categories.

A Greedy Technique generates tests by uncovering a
locally optimal solution and ensures that each new test uses
the maximum possible uncovered combinations. They are
usually faster than the Meta Heuristic techniques but do not
always produce the smallest test suites. These algorithms
return a local optimum rather than a global optimum.
Tools/algorithms based on backtracking algorithms, branch
and bound techniques, exhaustive search, AETG type
algorithm [32], IPO based algorithms [40] etc all fall in this
category. A Greedy algorithm is typically used when a
problem does not have a known best polynomial time
algorithm [18].

The generation of a combinatorial test suite is an
optimization problem and Meta-heuristic techniques are also
used to solve it. These techniques can be evolutionary
algorithms e.g. Genetic Algorithms or naturally inspired
algorithms e.g. Particle Swarm Optimization or any other
standard known optimization algorithms. Such an algorithm
searches the neighbourhood of a solution and finds the best fit.
The algorithm starts from a pre existing test called a seed and,
after performing a series of transformations, achieves a test
suite that has a minimum number of tests and maximum
uncovered tuples. A heuristic search such as Simulated
Annealing produces smaller sets than a greedy algorithm but
takes more time to execute [51]. The various Meta-heuristic
techniques we identified and are used for generating covering
arrays are Hill Climbing, Simulated Annealing, Tabu Search,
Genetic Algorithm, Ant Colony Optimization, Partial Swarm
Algorithm, Harmony Search, Extremal optimization and Great
Flood.

The category of Adaptive random or ad-hoc techniques
contains two types of techniques. Adaptive random uses an
algorithm that relies on a measure of distance between the
parameter values, e.g., using the Hamming distance, to
generate the test suite that are maximally apart from one
another (e.g., [52] [30]). The set of ad-hoc techniques contains
those which are not using any of the other techniques. An ad-
hoc approach typically selects the test cases randomly or on
the basis of some input distribution (e.g., [53] [54]).

Hybrid approaches were also proposed by researchers to
achieve better and optimal results. The objective behind

combining techniques is to reduce the size and generation time
of the CA and increase the coverage and hence the fault
detection. For instance, Bryce et al. [39] combine a greedy
algorithm with a heuristic search, Cohen et al. [55] combined
a mathematical approach with Simulated Annealing.

Algebraic Techniques create covering arrays by either
directly computing a mathematical function or by using
defined rules. Some algebraic constructions also use recursion
to obtaining larger covering arrays from smaller building
blocks [41]. The applicability of algebraic approach is limited
because they impose restrictions on the system configurations
which they can accept. This approach is usually an extension
to the algorithms of orthogonal array [7].

Fig. 2 shows that, out of these 75 algorithms we found, 40
(53%) used a greedy approach for the generation of the
combinatorial test suite, 13 (17%) tools/algorithms used Meta
heuristic techniques, 5 (6%) tools/algorithms belonged to the
category of Adaptive random and adhoc. We found 6 (8%)
tools/algorithms which used a hybrid approach, either
combining a greedy technique and a metaheuristic technique,
or a greedy technique and an algebraic technique. There were
4 (5%) tools/algorithms which supported algebraic techniques.
We attribute this small number to the fact that algebraic
techniques are not as versatile as other techniques (e.g., to
support many different strength values, to support constraints).
Most of the research in algebraic methods is focusing on
generating smaller covering arrays, which can then be used as
a seed for other techniques. In our search we also found 7
(9%) tools which were not accompanied by a detailed
technical documentation which could help us classify them
according to this criterion.

Fig. 2. Categorization of the tools/algorithms on the basis of techniques and
generation strategy.

The advantage of greedy and meta-heuristic technique is
they can be applied to any size of system configurations, i.e.
there is no restriction on the number of parameters or the
number of values each parameter can take. The downside is
that they take more time to create a CA [7]. On the other hand,
Algebraic Techniques are extremely fast and lightweight but
only on a subset of system configurations. They cannot, as
well, deal efficiently with constraints [20].

2) Test based vs parameter based
Further tools/algorithms can be classified according to

their generation strategy (test based vs. parameter based). We

observed that out of the 68 tools/algorithms, whose technical
details are known to us, 75% of the tools (51 out of 68)
followed a test based generation strategy and 25% (17 out of
68) followed a parameter based generation strategy. Out of the
40 tools/algorithms which generated test suites using a greedy
approach 30 followed a test based generation and 10 followed
a parameter based generation. Fig. 2 summarizes those results.

3) Meta-heuristic techniques
Fig. 3 shows the number of tools using a specific

metaheuristic technique for the generation of covering arrays.
The tool/algorithms which use meta-heuristic techniques
either belong to the category of meta-heuristic or to the
category of hybrid (Fig. 2). Three meta-heuristic techniques
namely Particle Swarm, Genetic algorithm and Simulated
Annealing are more widely used than others.

Fig. 3. Number of tools/algorithms using different Meta-Heuristic algorithms
for the generation of Covering Arrays

C. RQ3: Which selection criteria does each tool/algorithm

support?

We identified seven different selection criteria supported
by the 75 tools/algorithms: base choice, each choice,
input/output, distance, uniform strength, variable strength and
random.

The base choice criterion requires the identification of a
based choice for each category, that is a choice that is
considered the most important of the choices of a category.
Since identifying the base choice of a category can be
implicitly done by assigning weights to the category’s choices
and selecting the best (max or min, depending) weighted
choice as base choice, we classified all the tools/algorithms
which support the assignment of weights to parameter values
in the base choice criterion category.

We also made a difference between the each choice
criterion and the uniform strength criterion. Uniform strength
typically means a strength t of at least two (t>=2) where as
each choice corresponds to uniform strength of strength one
(t=1). A tool supporting uniform strength of at least two would
support uniform strength of one. In our analysis we put the
tools/algorithms which explicitly mention their support for the
each choice criterion (uniform strength one) in a separate each
choice criterion category. During our research we also found a
few tools that support variable strength CAs without
specifically mentioning support for uniform strength.
However since the former implies the latter, we classified
those tools as variable strength and include the variable

strength category into the uniform strength category
graphically (Fig. 4).

Obtained results are shown in TABLE V. and are
summarized graphically in Fig. 4: 72 (96%) tools support
uniform strength, 24 (32%) tools support variable strength
(and therefore uniform strength). Nine tools support three
criteria: input output, variable strength and uniform strength.
Another three tools ACTS [33], PICT [56] and IBM Focus
[48] support uniform strength, variable strength and base
choice criteria. Out of these tools IBM focus and PICT
support assigning weights to values. Tcases [57] supports four
criteria, which is the maximum we found: uniform strength,
variable strength, random and each choice. Two tools support
distance based: [52] and [30]; the latter also supports random
and uniform strength whereas the former support uniform
strength, in addition to distance based.

Fig. 4. Support of the tools for the selection criteria

D. RQ4: What is the maximum coverage strength

supported by each tool/algorithm?

Maximum strength has been studied collectively for
uniform strength and variable strength tools/algorithms
(TABLE VI. . For a tool/algorithm which only supports
uniform strength, the highest strength is obtained for a specific
test configuration. In case results were available for more than
one test configuration, we chose that configuration, from
variable strength or uniform strength, which supports the
highest strength value and mixed covering array with
maximum number of parameter values.

Fig. 5. Maximum coverage strength supported by tool/algorithm

The results of the research question are shown in Fig. 5.
This is the result of 72 tools as three tools do not support
uniform strength (Fig. 4). Out of 72 tools 26 (36%) support a
maximum strength of two, 14 (19.5%) support the strength of
three, 11 (15%) support the strength of six, three (4%) support
the strength of 12 and we found one tool (Harmony Search
Strategy [10]) which supports the coverage strength of 14.

For the selection of research papers to answer this question
we followed the following approach. The strength is obtained
from two types of sources; the strength experimented in
researcher’s own work and/or any other research work in
which a comparison has been made with that specific tool. We
have taken the higher strength of the two and included it in our
analysis. There were certain tools/algorithms for which the
results were not shown or detailed information was not
available but the authors claimed that their algorithm
supported a certain strength. We used values reported by
authors but flagged the papers in TABLE VI. Further, ATD
[58] did not have experimental results but the authors claim to
support t-wise coverage, for this tool we assumed the most
common value of t=2.

Even though AETG Web Service [31] is based on Cohen
et al. technique [32], which supports uniform strength, random
inputs and all combinations as the selection criteria, the AETG
Web Service only explicitly supports the first criterion of
those three. On the basis of our paper selection criteria
(section III.D), we only consider the AETG Web Service and
only consider its support for uniform strength.

E. RQ5: Which tools support constraints and how do they

represent and handle them?

Out of the total tools/algorithms in our research work we
found 32 (44%) tools/algorithms which support constraints
(TABLE VII.). The two important aspects of constraint
support we are focusing on are representation and handling
mechanism.

Fig. 6 summarizes the results. Tools supporting constraints
require an input under the form of forbidden tuples (12, i.e.,
37.5%), allowed tuples (2 i.e., 6%) or formal specification (13,
i.e., 40%). For five tools, available documentation indicates
support for constraints but fails to provide further details so
we can classify.

Fig. 6. No of tools/algorithms supporting a specific constraint representation

Fig. 7 summarizes the mechanisms to handle constraints
during CA construction. 59% (13+6) of the tools have a
mechanism embedded in the CA construction algorithm to
handle constraints: 40% use an ad-hoc algorithm, 19% use a
SAT solver. None of the tools have been found to use the

mechanism of replacing invalid test cases once the test suite
has been generated. Certain tools did not have enough
information in the technical documents, in order to help us
make decisions.

In our study we found three tools which supported
robustness testing, i.e., test for the invalid values, without
requiring that specific out-of-bound choices be specified as
input: PICT [56], PictMaster[59] and IBM Focus [48].

Fig. 7. No of tools/algorithms supporting a specific constraint handling
mechanism

F. RQ6: Which tools support mixed covering arrays?

Fig. 8 shows the tools/algorithms which support mixed
covering arrays as compared to the tools/algorithms which
supported only traditional covering arrays, the detail can be
seen in TABLE VIII. We found that 76% of the tools support
mixed covering arrays i.e. the parameters given as input can
have varying numbers of values whereas 5% of the
tools/algorithms assume all parameters have the same number
of values. The figure also shows that we were not able to
collect that information for 14 tools.

Fig. 8. Support for mixed covering arrays

VI. DISCUSSION

In this section we combine research questions to get a
more complete picture of algorithms/tools’ capabilities.

A. Combining RQ1, RQ2 and RQ3

The objective of this combination is to analyse the
technique and the selection criteria that technique mainly
supports: TABLE I. We observe that base choice is only
supported by greedy algorithms. Similarly, the input output
based criterion is only supported by greedy algorithms (11
algorithms). 66% of the algorithms (16 out of 24) which
support variable strength are using a greedy technique. On the
other hand only 25% (6 of 24) of the tools which support
variable strength used heuristic techniques. A similar trend is

observed in case of algorithms which support the uniform
strength criterion. Recall that 38 algorithms out of 72 (52%)
used greedy technique, 13 algorithms out of 72 (18%) used
heuristic techniques, 6 out of 72 (8%) used Hybrid techniques
where as 4 (5%) and 5 (7%) algorithms respectively used
algebraic and adaptive random techniques. It is important to
note here that algebraic techniques contributes to the
generation of covering arrays using only the uniform selection
criterion and do not support any other criterion. Similarly,
hybrid techniques only support uniform strength. The support
for distance based and random criteria is only provided by
adaptive random and adhoc techniques. None of the tool
supports all combinations.

From this analysis it can be concluded that greedy
techniques largely support the generation of covering arrays
using multiple selection criteria, i.e., base choice, variable
strength, uniform strength and I/O based, where as heuristic
techniques support only variable strength and uniform
strength.

TABLE I. NUMBER OF TOOLS/ALGORITHMS ON THE BASIS OF

TECHNIQUES AND SELECTION CRITERIA

G
reed

y

(P
aram

eter)

G
reed

y
 (T

est)

M
eta

-H
eu

ristic

(P
aram

eter)

M
eta

-H
eu

ristic

(T
est)

A
lg

eb
raic

(P
aram

eter)

A
d

ap
tiv

e

R
an

d
o

m

an
d

ad
h

o
c (T

est)

H
y

b
rid

(P
aram

eter)

H
y

b
rid

 (T
est)

D
o

n
’t K

n
o

w

Each Choice 2

Base Choice 1 3

Variable

Strength 3 13 6 2

Uniform

Strength 10 28 1 12 4 5 2 4 6

I/O Based

criteria 1 10

Distance Based

criteria 2

Random

criteria 1 1

A. Combining RQ1, RQ2, RQ4

The objective of this combination is to identify which
technique supports which coverage strengths. TABLE II.
shows the results of this combination. We observe that Greedy
techniques support a range of strengths varying from 2 to 12.
The higher strengths in greedy techniques are supported by
test based generation: GTWay [60], GVS [61] and ITTDG
[62]. The test configuration for these algorithms used 12
parameters, with a maximum number of values of 10 for two
parameters. It is important to mention here that two of these
algorithms, i.e., GVS and ITTDG, support three selection
criteria (variable strength, uniform and input output based
criteria), which clearly shows that greedy techniques have
outperformed other techniques on the basis of support of
selection criteria and higher strength values. The highest
strength in our survey was however supported by an algorithm
named Harmony Search Strategy (HSS) [10] with a strength
of 14. HSS uses a meta-heuristic technique and test based
generation for generating covering arrays. The HSS algorithm
supports variable strength and uniform strength and the
strength of 14 is obtained with a test configuration of 14
parameters each having three different possible values.

We also observe from TABLE II. that Algebraic
techniques support a maximum strength of four whereas IPOD
[34], which is a hybrid of algebraic technique and greedy
parameter based technique, supports a strength of 6. Similarly,
the hybrid of meta-heuristic with greedy techniques has also
elevated the strength support of meta-heuristic techniques to 4
with an exception of Tabu search. Selecting one technique
over another should also consider other factors such as the size
of the CA generated or the time it takes to generate it. This is
beyond the scope of the present work.

TABLE II. NO. OF TOOLS/ALGORITHMS ON THE BASIS OF

TECHNIQUES AND COVERAGE STRENGTH

S
electio

n

criteria

G
reed

y

(P
aram

eter)

G
reed

y
(T

est)

M
eta

-H
eu

ristic

(P
aram

eter)

M
eta

-H
eu

ristic

(T
est)

A
lg

eb
raic

(P
aram

eter)

A
d

ap
tiv

e

R
an

d
o

m
 an

d

ad
h

o
c (T

est)

H
y

b
rid

(P
aram

eter)

H
y

b
rid

(T
est)

D
o

n
’t K

n
o

w

2-wise 2 10 1 4 2 3 4

3-wise 1 7 4 1 1

4-wise 1 2 2 1 4

5-wise 3 1

6-wise 2 5 2 1 1

7-wise 1

8-wise 1

11-wise 1

12-wise 3

14-wise 1

B. Combining RQ1, RQ2, RQ5

The objective of this combination is to know which
technique supports constraints: Fig. 9. 53% of the
algorithms/tools (17 of 32) which support constraints use a
Greedy Technique. These algorithms/tools either implement
the constraint handling algorithm or use a SAT solver for
handling the constraints. This is followed by 13% of the
algorithms which use Meta heuristic techniques (e.g.,
simulated annealing). A meagre number of tools based on
algebraic, adaptive random and hybrid techniques support
constraints. It can be concluded from this observation that a
greedy technique is more flexible to the implementation of
constraints as compared to other techniques.

Fig. 9. No. of tools algorithms on the basis of techniques and constraint
support

VII. THREATS TO VALIDITY

We believe that the list of tools/algorithms we have
identified (see complete list in TABLE III. and TABLE IV.)
is the most extensive one to date, and definitely more
extensive than the literature we surveyed. We cannot however
ignore the possibility of missing a tool or algorithm. One
threat which we foresee in our work is that if a specific

tool/algorithm is not compared, referred to or mentioned in a
surveyed work, thesis or website there are chances that we
have missed it. We however believe the risk is small since we
captured publications by the main actors in the field.

While assigning a suitable category to a technique used by
the algorithm for generating a combinatorial test suite, we
encountered situations when the algorithms were not
mentioned in detail or not mentioned at all. For the tools we
could not find the algorithms we have categorized them as
“information not available”, and for some research papers
which lacked proper explanations we made the nearest
possible guess for the type of algorithm. Data may therefore
not be entirely accurate. We however show there are a very
few number of those occurrence and therefore the threat to our
general observations and conclusions is small.

While looking for the maximum strength a tool supports
we have considered two types of research work; work in
which that tool/algorithm is proposed and the work in which
that specific tool is used for comparison. Whichever strength
is greater has been included in our analysis. We are aware of
the fact that even while making an extensive search we might
have missed some research work which would have given us a
yet higher strength for a specific algorithm/tool. That can be a
threat to the validity of our work. In addition to that the tools
algorithms proposed after March 2014 have not been included.

Last, we detailed our measurement framework and we
believe our characterizations are robust enough to be reliable,
thus leading to trustworthy results.

VIII. CONCLUSION

Functional testing from a plain English specification, for
instance following the category partition method, requires that
one identifies parameters, categories, choices and then
combine those choices according to some selection criteria,
while accounting for constraints on choices, to eventually
generate test cases. Covering arrays have been used for a long
time to generate such combinations. Covering arrays come in
various forms and have various capabilities and it is difficult
to identify which covering array generation technology is the
most suitable to the problem of generating test cases for the
category partition method. When faced with this problem we
searched for a solution and did not find enough data to make
an enlightened one. We therefore decided to perform a
systematic survey of technologies supporting covering array
generation. We report in this paper on the procedure we
followed in this systematic survey and on the procedure we
followed to characterize the covering array technologies we
have found.

We eventually identified 75 covering array generation
technologies. Our comparison framework allowed us to make
a number of observations.

We observe that different covering array construction
technologies support different sets and numbers of selection
criteria in different amounts: 43% of the greedy technique
support up to three criteria; 46% of the meta-heuristic
techniques support two criteria; 40% of the algorithms based
on adaptive random techniques support up to three criteria.

We believe these differences are not intrinsic to the
construction technologies: for instance, there is no reason to
believe that meta-heuristic techniques (or hybrid ones) could
not support the complete list of criteria we have listed
previously in the paper, or higher strength values (at the
expense perhaps of longer execution times); we conjecture
greedy algorithms have been so far popular due to their
simplicity. Some technologies support very high strength
values (up to 14), and 70% of the tools do not support a
strength greater than four. The cost-benefit of such values is,
as far as we know, yet to be confirmed experimentally. We
found that only 44% of the 75 tools support constraints, and
that constraints are provided mostly either as forbidden tuples
of formal specifications. Constraints are mostly handled by
greedy construction techniques; however, again, there is no
reason to believe other techniques could not equally handle
constraints.

We observe that although metaheuristic, adaptive
random/adhoc and algebraic techniques form a smaller part of
the tool supporting covering array construction, they are
equally focused on advance features for creating covering
arrays as greedy based technologies. On the other hand
tools/algorithms based on Greedy techniques are plenty in
number which can be attributed to the fact that they are
flexible to implement. They support large system
configurations including constraints, selection criteria, mixed
covering arrays and higher strengths, which is essentially a
requirement for software testing.

Going back to our problem on identifying CA construction
technology to support the category-partition testing method,
whereby one needs that technology to handle constraints,
variable numbers of choices per category (i.e., values of
parameters), and selection criteria including at least pair-wise,
we can conclude the following: a greedy algorithm is likely
the best choice to date as this kind of technology supports
selection criteria, various strength and constraints; in case
there are few or simple constraints, a user may be able to spell
out forbidden tuples and use a greedy algorithm that accepts
such input (e.g., [63-65]); in case of complex or numerous
constraints, manually constructing forbidden tuples may not
be practical so a greedy algorithm that uses an adhoc
algorithm for constraints (e.g., [48, 56]) or that incorporates a
SAT solver (e.g., [33, 66, 67]) may be the ideal choice.

REFERENCES

[1] Ammann P. and Offutt J., Introduction to Software Testing, Cambridge
University Press, 2008.

[2] Grochtmann M. and Grimm K., “Classification trees for Partition

Testing,” JSTVR, 3 (2), pp. 63-82, 1993.

[3] Malaiya Y. K., “Antirandom Testing: Getting the most out of black box
testing,” Proc. ISSRE’95, pp. 86-95, 1995.

[4] Chen T. Y., Tang S.-F., Poon P.-L. and Tse T., “Identification of

Categories and Choices in Activity Diagrams.,” Proc. QSIC, pp. 55-63,
2005.

[5] Myers G. J., The Art of Software Testing, John Wiley & Sons, 1979.

[6] Ostrand T. J. and Balcer M. J., “The category-partition method for

specifying and generating fuctional tests,” 31(6), pp. 676-686, 1988.

[7] Kuhn D. R., Lei Y. and Kacker R. N., Introduction to Combinatorial

testing, CRC Press, 2013.

[8] Grindal M., Offutt J. and Andler S. F., “Combination testing strategies:

A survey,” JSTVR, 15, pp. 167-199, 2005.

[9] Yilmaz C., Fouché S., Cohen M. B., Porter A., Demiroz G. and Koc U.,
“Moving Forward with Combinatorial Interaction Testing,” 47(2), pp.

37-45, 2014.

[10] Alsewari A. R. A. and Zamli K. Z., “Design and implementation of a
harmony-search-based variable-strength t-way testing strategy with

constraints support,” IST, 54 (6), pp. 553-568, 2012.

[11] Cohen M. B., Dwyer M. B. and Shi J., “Interaction Testing of Highly-
Configurable Systems in the Presence of Constraints,” ISSTA, pp. 129-

139, 2007.

[12] Kuhn D. R., James M. H., James F. L., Raghu N. K. and Yu L.,

“Combinatorial Methods for Event Sequence Testing,” Proc. ICST pp.
601-609, 2012.

[13] Martinez C., Moura L., Panario D. and Stevens B., “Locating errors

using ELAs, Covering arrays and adaptive testing algorithms,” JDS, 23
(4), pp. 1776-1799, 2009.

[14] Yilmaz C., “Test Case-Aware Combinatorial Interaction Testing,” TSE,

39 (5), pp. 684-706, 2013.

[15] Demiroz G. and Yilmaz C., “Cost aware combinatorial interaction
testing,” Proc. VALID, pp. 9-16, 2012.

[16] Sandro F., Myra B. C. and Adam P., “Incremental covering array

failure characterization in large configuration spaces,” Proc. ISSTA,
pp. 177-188, 2009.

[17] Turban R. C., Algorithms for covering arrays, Thesis, Arizona State

University, 2006

[18] Kuliamin V. V. and Petukhov A. A., “A survey of methods for

constructing Covering Arrays,” PCS, 37 (3), pp. 121-146, 2011.

[19] Kuliamin V. and Petukhov A., “Covering array Generation Method
Survey,” Proc. ISoLA, 6416, pp. 382-396, 2010.

[20] Nie C. and Leung H., “A survey of combinatorial testing,” ACM, 43

(2), pp. 1-29, 2011.

[21] Ahmed B. S. and Zamli K. Z., “A Review of Covering arrays and their
applications to Software Testing,” JCS, 7 (9), pp. 1375-1385, 2011.

[22] Rahman A., Al-Sewari A. and Zamli K. Z., “An Orchestrated Survey

on T-Way Test Case Generation Strategies Based on Optimization
Algorithms,” Proc. ROVISP, 291, pp. 255-263, 2014.

[23] Anand S., Burke E. K., Chen T. Y., Clark J., Cohen M. B., Grieskamp

W., Harman M., Harrold M. J. and Mcminn P., “An orchestrated survey
of methodologies for Automated Software Test Case Generation,” JSS,

86 (8), pp. 1978-2001, 2013.

[24] Kitchenham B. and Charters S., “Guidelines for performing systematic

literature reviews in software engineering. ,” Keele University, 2007.

[25] Arksey H. and O'Malley L., “Scoping Studies: Towards a
methodological framework,” IJSRM, 8 (2), pp. 19-32, 2005.

[26] Cohen M. B., Designing Test Suites for Software Interaction Testing,

Thesis, New Zealand, Computer Science, 2004

[27] Al-Khiro M. I. Y., MIPOG: A Parallel T-Way Minimization strategy
for combinatorial testing, Thesis, School of Electrical and Electronic

Engineering, 2010

[28] Yu L., Advanced Combinatorial testing algorithms and applications,
Thesis, The University of Texas at Arlington, 2013

[29] Kuhn D. R., Kacker R. N. and Lei Y., “Practical Combinatorial

Testing,” National Institute of Standards and Technology, NIST
Special Publication 800-142, 2010.

[30] Bryce R. C., Colbourn C. J. and Kuhn D. R., “Finding Interaction
Faults using distance based strategies,” Proc. ECBS, pp. 4-13, 2011.

[31] Sciences A. C., "The AETG Web Service ",

http://aetgweb.argreenhouse.com/ (Last accessed May, 2014)

[32] Cohen D. M., Dalal S. R., Fredman M. L. and Patton G. C., “The
AETG System: An approach to testing based on combinatorial design,”

TSE, 23 (7), pp. 437-444, 1997.

[33] Yu L., Lei Y., Kacker R. N. and Kuhn D. R., “ACTS: A Combinatorial
Test Generation Tool,” Proc. ICST, pp. 370-375, 2013.

http://aetgweb.argreenhouse.com/

[34] Lei Y., Kacker R., Kuhn D. R., Okun V. and Lawrence J.,

“IPOG/IPOG-D: efficient test generation for multi-way combinatorial
testing,” JSTVR, 18 (3), pp. 125-148, 2008.

[35] Forbes M., Lawrence J., Lei Y., Kacker R. N. and Kuhn D. R.,

“Refining the In-Parameter-Order Strategy for Constructing Covering
Arrays,” JRNIST, 113, pp. 287-297, 2008.

[36] Yu L., Lei Y., Nourozborazjany M., Kacker R. N. and Kuhn D. R., “An

Efficient Algorithm for Constraint Handling in Combinatorial Test
Generation,” Proc. ICST, pp. 242-251, 2013.

[37] Tai K.-C. and Lei Y., “A test generation strategy for pairwise testing,”

TSE, 28 (1), pp. 109-111, 2002.

[38] Ahmed B. S. and Zamli K. Z., “A variable strength interaction test

suites generation strategy using Particle Swarm Optimization,” JSS, 84
(12), pp. 2171-2185, 2011.

[39] Bryce R. C. and Colbourn C. J., “One-test-at-a-time heuristic search for

interaction test suites,” Proc. GECCO pp. 1082-1089, 2007.

[40] Lei Y. and Tai K. C., “In-parameter-order: A test generation strategy
for pairwise testing,” Proc. HASE, pp. 254-261, 1998.

[41] Williams A. W., “Determination of Test Configurations for Pair-Wise

Interaction Coverage,” Proc. TestCom, 2000.

[42] Williams A. W. and Probert R. L., “A measure for component
interaction test coverage.,” Proc. AICCSA 2001, 2001.

[43] Cohen M. B., Gibbons P. B., W.B M. and Colburn C. J., “Constructing

test cases for interaction testing,” Proc. ICSE’03, pp. 38-48, 2003.

[44] Schroeder P. J. and Korel B., “Black-Box Test Reduction Using Input-

Output Analysis,” Proc. ISSTA, pp. 173-177, 2000.

[45] Grindal M., Lindström B., Offutt J. and Andler S. F., “An Evaluation of
Combination Strategies for Test Case Selection,” JESE, 11 (4), pp.

583-611, 2006.

[46] Othman R. R. and Zamli K. Z., “T-Way Strategies and Its Applications
for Combinatorial Testing ” IJNCAA, 1 (2), pp. 459-473, 2011.

[47] Labiche Y. and Sadeghi F. R., “Experimenting with Category

Partition's 1-way and 2-way test selection criteria,” Proc. ICST, pp.
301-310, 2013.

[48] Segall I., Tzoref-Brill R. and Farchi E., “Using Binary Decision

Diagrams for Combinatorial Test Design,” Proc. ISSTA’11, pp. 254-
264, 2011.

[49] Grindal M., Offutt J. and Mellin J., “Handling Constraints in the Input

Space when Using Combination Strategies for Software Testing,”
School of Humanities and Informatics, University of Sk¨ovde, 2006.

[50] Toczki J., Kocsis F., Gyimothy T., Danyi G. and Kokoi G., “SYS/3- A
software Development tool,” LNCS, 477, pp. 193-207, 1991.

[51] Garvin B. J., Cohen M. B. and Dwyer M. B., “Evaluating

improvements to a meta-heuristic search for constrained interaction
testing,” JESE, 16 (1), pp. 61-102, 2011.

[52] Huang R., Xie X., Chen T. Y. and Lu Y., “Adaptive Random Test Case

Generation for Combinatorial Testing,” Proc. COMPSAC, pp. 52-61,
2012.

[53] Khatun S., Rabbi K. F., Yaakub C. Y. and Klaib M. F. J., “A Random

Search Based Effective Algorithm for Pairwise Test Data Generation,”
Proc. INECCE, pp. 293-297, 2011.

[54] Bach J., "Allpairs Test Case Generation Tool," 1.2.1,

http://www.satisfice.com/tools.shtml (Last accessed Feb, 2014)

[55] Cohen M. B., Colbourn C. J. and Ling A. C. H., “Augmenting
Simulated Annealing to Build Interaction Test Suites,” Proc. ISSRE,

pp. 394, 2003.

[56] Czerwonka J., “Pairwise testing in real world,” Proc. PNSQC, pp. 419-

430, 2006.

[57] Project M., "Tcases- A model driven test case generator," 1.1.0,
https://code.google.com/p/tcases/ (Last accessed March, 2014)

[58] Atyoursideconsullting, "ATD,"

http://www.atyoursideconsulting.com/products/atd/atd_funcfeatures_tc
g.html (Last accessed Feb,2014)

[59] Ltd I. S. a. S. C., "PictMaster," 5.7.3,

http://en.sourceforge.jp/projects/pictmaster/ (Last accessed)

[60] Zamli K. Z., Klaib M. F. J., Younis M. I., Isa N. A. M. and Abdullah

R., “Design and implementation of a t-way test data generation strategy
with automated execution tool support,” JIS, 181 (9), pp. 1741-1758,

2011.

[61] Othman R. R., Zamli K. Z. and Nugroho L. E., “General variable
strength t-way strategy supporting flexible interactions,” MIJST, 6 (3),

pp. 415-429, 2012.

[62] Othman R. R. and Zamli K. Z., “ITTDG: Integrated T-way test data
generation strategy for interaction testing ” SRE, 6 (17), pp. 3638-3648,

2011.

[63] Jenkins B., "Jenny," http://www.burtleburtle.net/bob/math/jenny.html
(Last accessed April, 2014)

[64] Calvagna A. and Gargantini A., “T-wise combinatorial interaction test
suites construction based on coverage inheritance,” JSTVR, 22 (7), pp.

507-526, 2012.

[65] Li L., Cui Y. and Yang Y., “Combinatorial Test Cases with Constraints
in Software Systems ” Proc. CSCWD, pp. 195-199, 2012.

[66] Calvagna A. and Gargantini A., “A Logic-based approach to

combinatorial testing with constraints,” LNCS, 4966, pp. 66-83, 2008.

[67] Zhao Y., Zhang Z., Yan J. and Zhang J., “Cascade: A Test Generation
Tool for Combinatorial Testing,” Proc. ICST, pp. 267-270, 2013.

[68] Tung Y.-W. and Aldiwan W. S., “Automating Test Case Generation for

the New Generation Mission Software System,” Proc. AeroConf, 1, pp.
431-437, 2000.

[69] Cohen M. B., Dwyer M. B. and Shi J., “Construction Interaction Test

Suites for Highly Configurable Systems in the Presence of Constraints:
A greedy Approach,” TSE, 34 (5), pp. 633-650, 2008.

[70] Ltd I. S. a. S. C., "PICTMaster," 5.7.3,
http://en.sourceforge.jp/projects/pictmaster/ (Last accessed March,

2014)

[71] Hartman A., "IBM Intelligent test case handler," 1.0,
http://www.alphaworks.ibm.com/tech/whitch (Last accessed Dec 2013)

[72] Schroeder P. J., Arshem J., Kim A. E. and Bolaki P., “Combining

Behavior and Data Modeling in Automated Test Case Generation,”
Proc. QSIC, pp. 247-254, 2003.

[73] Arshem, "TVG," http://sourceforge.net/projects/tvg (Last accessed

April 2014)

[74] Schroeder P. J., Faherty P. and Korel B., “Generating Expected Results
for Automated Black-Box Testing,” Proc. ASE, pp. 139-148, 2002.

[75] Wang Z., Xu B. and Nie C., “Greedy Heuristic Algorithms to Generate

Variable Strength Combinatorial Test Suite ” Proc. QSIC, pp. 155-160,
2008.

[76] Wang Z., Nie C. and Xu B., “Generating Combinatorial Test Suite for
Interaction Relationship ” Proc. SOQUA, pp. 55-61, 2007.

[77] Sherwood G. B., “Effective Testing of Factor Combinations,” Proc.

STAR, 1994.

[78] Colbourn C., Cohen M. and Turban R. C., “A Deterministic Density
Algorithm for Pairwise Interaction Coverage,” Proc. ICSE, pp. 245-

252, 2004.

[79] Bryce R. C. and Colbourn C. J., “A Density-Based Greedy Algorithm
for Higher Strength Covering Arrays,” JSTVR, 19 (1), pp. 37-53, 2009.

[80] Wang Z. and He H., “Generating Variable Strength Covering Array for

Combinatorial Software Testing with Greedy Strategy ” JS, 8 (12), pp.
3173-3181, 2013.

[81] Ong H. Y. and Zamli K. Z., “Development of interaction test suite

generation strategy with input-output mapping supports ” SRE, 6 (16),
pp. 3418-3430, 2011.

[82] Kuhn D. R., Kacker R. N. and Lei Y., “Practical combinatorial testing,”
2010.

[83] McCaffrey J., “Pairwise Testing with QICT,” 24(9), pp., 2009.

[84] Zhao Y., Zhang Z., Yan J. and Zhang J., “Cascade: A Test Generation

Tool for Combinatorial testing,” Proc. Cascade: A Test Generation
Tool for Combinatorial testing, pp. 267-270, 2013.

[85] Raaphorst S., Variable strength Covering arrays, Thesis, University of

Ottawa, 2013

http://www.satisfice.com/tools.shtml
http://www.atyoursideconsulting.com/products/atd/atd_funcfeatures_tcg.html
http://www.atyoursideconsulting.com/products/atd/atd_funcfeatures_tcg.html
http://en.sourceforge.jp/projects/pictmaster/
http://www.burtleburtle.net/bob/math/jenny.html
http://en.sourceforge.jp/projects/pictmaster/
http://www.alphaworks.ibm.com/tech/whitch
http://sourceforge.net/projects/tvg

[86] Klaib M. F. J., Zamli K. Z., Isa N. A. M., Younis M. I. and Abdullah

R., “G2Way - A Backtracking Strategy for Pairwise Test Data
Generation ” Proc. APSEC, pp. 463-470, 2008.

[87] Rabbi K. F., Beg A. H. and Herawan T., “MT2Way: A Novel Strategy

for Pair-Wise Test Data Generation,” ISICA 2012, CCIS, pp. 180-191,
2012.

[88] Rabbi K. F., Khatun S., Yaakub C. Y. and Klaib M. F. J., “EPS2Way:

An Efficient Pairwise Test Data Generation Strategy ” IJNCAA, 1 (4),
pp. 1099-1109, 2011.

[89] Chen X., Gu Q., Qi J. and Chen D., “Applying Particle Swarm

Optimization to Pairwise Testing,” Proc. COMPSAC, pp. 107-116,
2010.

[90] Yuan J., Jiang C. and Jiang Z., “Improved Extremal Optimization for
Constrained Pairwise Testing,” Proc. ICRCCS, pp. 108-111, 2009.

[91] Garvin B. J., Cohen M. B. and Dwyer M. B., “An Improved Meta-

heuristic Search for Constrained Interaction Testing,” Proc. SSBSE, pp.
13-22, 2009.

[92] McCaffrey J. D., “Generation of Pairwise Test Sets Using a Genetic

Algorithm,” Proc. COMPSAC, pp. 626-631, 2009.

[93] Shiba T., Tsuchiya T. and Kikuno T., “Using Artificial Life Techniques
to Generate Test Cases for Combinatorial Testing,” Proc.

COMPSAC’04, pp. 72-77, 2004.

[94] Stardom J., Metaheuristics and the Search for Covering and Packing
Arrays., PhD Thesis Thesis, Simon Fraser University, 2001

[95] Flores P. and Cheon Y., “PWiseGen: Generating Test Cases for

Pairwise Testing Using Genetic Algorithms ” Proc. CSAE, pp. 747-
752, 2011.

[96] Chen X., Gu Q., Li A. and Chen D., “Variable Strength Interaction
Testing with an Ant Colony System Approach,” Proc. APSEC, pp. 160-

167, 2009.

[97] LI J., Xing D. and Zhao Y., “Combinatorial Test Suite Generation of
Variable Strength Based on Harmony Search ” JNIS, 4 (2), pp. 177-

188, 2013.

[98] Gonzalez-Hernandez L., Rangel-Valdez N. and Torres-Jimenez J.,
“Construction of Mixed Covering Arrays of Variable Strength Using a

Tabu Search Approach,” Proc. COCOA, 6508, pp. 51-64, 2010.

[99] Younis M. I., Zamli K. Z. and Isa N. A. M., “IRPS – An Efficient Test
Data Generation Strategy for Pairwise Testing,” Proc. KES, pp. 493-

500, 2008.

[100] Younis M. I. and Zamli K. Z., “MIPOG - An Efficient t-Way
Minimization Strategy for Combinatorial Testing ” IJCTE, 3 (3), pp.

388-397, 2011.

[101] VpTag, "Visual Pairwise Test Array Generator,"
http://vptag.sourceforge.net/ (Last accessed May, 2014)

[102] Williams A. W., Software Component Interaction Testing: Covergae
Measurement and Generation of Configurations, Thesis, University of

Ottawa, School of Information Technology and Engineering, 2002

[103] Yan J. and Zhang J., “Backtracking algorithms and search heuristics to

generate test suites for combinatorial testing,” Proc. COMPSAC, pp.
385-394, 2006.

[104] Yan J. and Zhang J., “A backtracking search tool for constructing

combinatorial test suites,” JSS, 81 (10), pp. 1681-1693, 2008.

[105] Bracho-Rios J., Torres-Jimenez J. and Rodriguez-Tello E., “A New
Backtracking Algorithm for Constructing Binary Covering Arrays of

Variable Strength,” Proc. MICAI, pp. 397-407, 2009.

[106] Hartman A. and Raskin L. P., “Problems and algorithms for covering
arrays,” JDM, 284 (1-3), pp. 149-156, 2004.

[107] Sherwood G., "TestCover," http://testcover.com/pub/constex.php (Last
accessed Feb, 2014)

[108] Kobayashi N., suchiya T. and Kikuno T., “A new method for

constructing pair-wise covering designs for software testing,” IPL, 81
(2), pp. 85-91, 2002.

[109] Hunter J. Hexawise tool. Available: https://hexawise.com/ (Last

accessed)

[110] SigmaZone, "Pro-Test," http://www.sigmazone.com/protest.htm (Last
accessed Feb, 2014)

[111] Lewis W. E., "SmartTest," http://www.smartwaretechnologies.com/

(Last accessed Feb, 2014)

[112] INC. B., "BenderRBT," 8.0,
http://www.benderrbt.com/bendersoftware.htm (Last accessed Feb

2014)

[113] Project C., "Tcases," https://code.google.com/p/tcases/ (Last accessed

19th May 2014)

http://vptag.sourceforge.net/
http://testcover.com/pub/constex.php
http://www.sigmazone.com/protest.htm
http://www.smartwaretechnologies.com/
http://www.benderrbt.com/bendersoftware.htm

IX. APPENDIX

TABLE III. LIST OF TOOLS/ALGORITHMS FOR GENERATING TEST SUITES USING COMBINATORIAL TESTING CATEGORIZED ON THE BASIS OF TECHNIQUES

Generati

on

Strategy

Greedy Techniques Meta heuristic

Techniques

Adaptive

Random and

Adhoc

Techniques

Hybrid Techniques Algebraic

Techniques

Test
Based

Generatio

n

AETG Web Service [26,
31, 32]

Test Case Generator [68]

mAETG_SAT [11, 69]

ATGT[66]

PICT [56]

PictMaster[70]

Exhaustive search-

Intelligent Test case

handler (WHITCH)[71]

Jenny [63]

Test Vector Generator

(TVG) [72, 73]

GVS [61]

Union [44]

Greedy [74]

Density [75]

ReqOrder in [76]

CATS [77]

Deterministic density

algorithm [78]

Density Based Greedy [79]

DA-RO[80]

DA-FO [80]

ITTDG [62]

AURA [81]

Particle Swarm
Based Algorithm

(OTAT)[89]

Extremal

optimization based

algorithm [90]

CASA [11, 51, 91]

Genetic

Algorithms–GAPTS

[92]

Genetic Algorithm

Based

 [93, 94]

GA based -

PWiseGen[95]

Ant Colony

algorithms[93]

 Ant Colony

System(ACS) [96]

Harmony search

strategy [10]

Particle Swarm Test

Generator VS-

PSTG [38]

HSTCG [97]

Tabu Search [98]

IRPS [99]

R2Way [53]

ART-CT [52]

Distance Based

Technique [30]

AllPairs [54]

Greedy Algorithm with
Hill Climbing [39]

Greedy Algorithm with

Simulated annealing

[39]

Greedy Algorithm with

Great Flood [39]

Greedy Algorithm with

Tabu Search [39]

Sequence Covering Array

Generator [82]

QICT [83]

Cascade [84]

IBM Focus [48]

VarDens [85]

G2way [86]

GTWay [60]

MT2Way [87]

EPS2way [88]

Parameter

based

generatio

n

PairTest [37].

ParaOrder [75]

ACTS [33]

tTuples [64]

CTWC [65]

MIPOG [100]

VpTag[101]

TConfig (IPO based) [102]

EXACT [103, 104]

Branch and Bound [105]

Particle Swarm

Based

Algorithm(OPAT)

[89]

 IPOD (IPOG and

Algebraic

Technique)[34]

Augmented Annealing-
combines Simulated

Annealing and Algebraic

Technique[26, 55]

Tconfig [41]

Combinatorial Test

Services (CTS) [106]

Test Cover [107]

Algebraic method

[108]

TABLE IV. TOOLS/ALGORITHM FOUND WITH NO DETAILED TECHNICAL INFORMATION

S.no Name of Tool Algorithm

1 T-Gen -SYS/3 - a Software Development Tool [50]

2 Hexawise [109]

3 ProTest [110]

4 SmartTest SmartTest [111]

5 ATD [58]

6 BenderRBT BenderRBT [112]

7 Tcases [113]

TABLE V. SELECTION CRITERIA SUPPORTED BY THE TOOL/ALGORITHM

S.

No

Algorithm/tool Each

Choic

e

Base Choice Variable

Strength

Uniform

strength

Input

output

based

Distanc

e based

Rand

om

Input

All

Combinati

ons

1 AETG Web Service [26, 31, 32] Yes

2 PairTest [37]. Yes

3 mAETG_SAT [11, 69] Yes

4 ATGT[66] Yes

5 ACTS [33] Yes Yes Yes

6 tTuples [64] Yes

7 Particle Swarm Based Algorithm(OTAT)

[89]

 Yes

8 Extremal optimization based algorithm

[90]

 Yes

9 CASA [11, 51, 91] Yes Yes

10 Particle Swarm Based Algorithm
(OPAT) [89]

 Yes

11 CTWC [65] Yes

12 PICT [56] Yes (weights

)

Yes Yes

13 MT2Way [87] Yes

14 EPS2way [88] Yes

15 IRPS [99] Yes

16 G2way [86] Yes

17 GTWay[60] Yes

18 Intelligent Test case handler

(WHITCH)[71]

 Yes Yes

19 Jenny [63] yes

20 Test Vector Generator (TVG) [72] [73] Yes Yes Yes

21 Tconfig [41] Yes

22 TConfig (IPO based) [102] Yes

23 GVS [61] Yes Yes Yes

24 Union [44] Yes

25 Greedy [74] Yes Yes Yes

26 ReqOrder in [76] Yes

27 Density [75] Yes Yes Yes

28 ParaOrder [75] Yes Yes Yes

29 Genetic Algorithms [93, 94] Yes

30 Ant Colony algorithms[93] Yes

31 Genetic Algorithm - GAPTS [92] Yes

32 Ant Colony System(ACS) [96] Yes Yes

33 Greedy Algorithm with Hill Climbing

[39]

 Yes

34 Greedy Algorithm with Simulated

annealing [39]

 Yes

35 Greedy Algorithm with Great Flood [39] Yes

36 Greedy Algorithm with Tabu Search

[39]

 Yes

37 Combinatorial Test Services (CTS) [106] Yes

38 Augmented Annealing-combines

Simulated Annealing and Algebraic

Technique[55]

 yes

39 IPOD (IPOG and Algebraic

Technique)[34].

 Yes

40 CATS [77] Yes

41 Test Cover [107] Yes

42 Algebraic method [108] yes

43 Deterministic density algorithm [78] Yes

44 Density Based Greedy [79] Yes

45 DA-RO[80] Yes Yes Yes

46 DA-FO [80] Yes Yes Yes

47 Test Case Generator [68], Yes

48 R2Way [53] Yes

49 ART-CT [52] Yes Yes

50 MIPOG [100] Yes

51 ITTDG [62] Yes Yes Yes

52 AURA [81] Yes Yes Yes

53 Harmony search strategy [10] Yes Yes *

54 Particle Swarm Test Generator VS-PSTG

[38]

 yes Yes*

55 HSTCG [97] Yes Yes*

56 EXACT [103, 104] Yes

57 Branch and Bound [105] Yes* Yes

58 Tabu Search [98] Yes* Yes

59 Distance Based Technique [30] Yes Yes Yes

60 T-Gen SYS/3 - a Software Development

Tool [50]

Yes

61 Sequence Covering Array Generator [82] Yes

62 Hexawise [109] Yes Yes

63 QICT [83] Yes

64 Cascade [84] Yes Yes

65 AllPairs [54] Yes

66 ProTest[110] Yes

67 VpTag[101] Yes

68 PictMaster[70]

 Yes

(weights)

 Yes

69 SmartTest [111] Yes

70 ATD [58] Yes

71 BenderRBT [112] Yes

72 IBM Focus [48] Yes

(weights)

Yes Yes

73 PWiseGen[95] Yes

74 VarDens [85] Yes* Yes

75 Tcases [113] Yes Yes Yes Yes

 * Information Not Available

TABLE VI. MAXIMUM COVERAGE STRENGTH SUPPORT

S.N

o

Algorithm/tool Maximum

Strength

support (t)

Number of parameters and values

1 AETG Web Service [26, 31, 32] 2 MCA(N, t, 41,339, 235)

2 PairTest [37] 2 MCA(N, t, 41, 339, 235)

3 mAETG_SAT [11, 69] 3 CCA(N, t, 2158, 38, 44, 51, 61, F)

4 ATGT[66] 2 MCA(N, t, 41,339, 235)

5 ACTS [33] 6 MCA(N, t, 102, 41, 32, 27)

6 tTuples [64] 6 MCA(N, t, 45, 213)

7 Particle Swarm Based Algorithm(OTAT) [89] 2 MCA(N, t, 41, 339, 235)

8 Extremal optimization based algorithm [90] 2 CCA(N, t, 2158, 38, 44, 51, 61, t)

9 CASA [11, 51, 91] 3 CCA(N, t, 31, 24,F)

10 Particle Swarm Based Algorithm (OPAT) [89] 2 MCA(N, t, 41, 339, 235)

11 CTWC [65] 5* Information Not Available

12 PICT [56] 6 VSCA(N,3,315{CA(6,39)})

13 MT2Way [87] 2 CA(N, t, 34)

14 EPS2way [88] 2 CA(N, t, 34)

15 IRPS [99] 2 MCA(N, t, 51, 38, 22)

16 G2way [86] 2 MCA(N, t, 51, 38, 22)

17 GTWay(OTAT iterative) [60] <=12 MCA(N, t, 102, 41, 32, 27)

18 Intelligent Test case handler (WHITCH)[71] 6 VSCA(N, 2, 101, 91, 81, 71, 61, 51, 41, 31 , 21,

{MCA(6, 71, 61, 51, 41, 31, 21)})

19 Jenny [63] <=8) MCA(N, t, 102, 41, 32, 27)

20 Test Vector Generator (TVG) [72] [73] 6 VSCA(N, 2, 101, 91, 81, 71, 61, 51, 41, 31 , 21,

{MCA(6, 71, 61, 51, 41, 31, 21)})

21 Tconfig [41] 2 MCA(N, t, 41, 339, 235)

22 TConfig (IPO based) [102] <=4 MCA(N, t, 102, 41, 32, 27)

23 GVS [61] <=12 MCA(N, t, 102, 41, 32, 27)

24 Greedy [74] 3 MCA(N, t, 101, 62,43,31)

25 Density [75] 3 MCA(N, t, 101, 62,43,31)

26 ParaOrder [75] 3 MCA(N, t, 101, 62,43,31)

27 Genetic Algorithms- GAPTS [92] 2 MCA(N, t, 34, 313, 2100, 1020)

28 Ant Colony algorithms(ACA) [93] 3 MCA(N, t, 101, 62,43,31)

29 Genetic algorithm based algorithm [93, 94] 3 MCA(N, t, 101, 62,43,31)

30 Ant Colony System(ACS) [96] 3 VSCA(N,2,320,102, {MCA(3,320,102)})

31 Greedy Algorithm with Hill Climbing [39] 4 MCA(N, t, 210,33,42,51)

32 Greedy Algorithm with Simulated annealing [39] 4 MCA(N, t, 210,33,42,51)

33 Greedy Algorithm with Great Flood [39] 4 MCA(N, t, 210,33,42,51)

34 Greedy Algorithm with Tabu Search [39] 4 MCA(N, t, 210,33,42,51)

35 Combinatorial Test Services (CTS) [106] 4 CA(N, t, 108)

36 Augmented Annealing-combines Simulated

Annealing and Algebraic Technique[55]

3 CA(N, t, 1414)

37 IPOD (IPOG and Algebraic Technique)[34]. 6 CA(N, t, 415)

38 CATS [77] 3 CA(N, t, 64)

39 Test Cover [107] 4* Information Not Available

40 Algebraic method [108] 2 MCA(N, t, 4, 339, 235)

41 Deterministic density algorithm [78] 2 MCA(N, t, 41, 339, 235)

42 Density Based Greedy [79] 6 CA(N, t, 510)

43 DA-RO[80] 3 MCA(N, t, 101, 62, 43, 31)

44 DA-FO [80] 3 MCA(N, t, 101, 62, 43, 31)

45 Test Case Generator [68] 2 , t-wise* MCA(N, t, 51, 38, 22)

46 R2Way [53] 2 CA(N, t, 34)

47 ART-CT [52] 4 MCA(N, t, 25, 35)

48 MIPOG [100] 11 MCA(N, t, 57, 24)

49 ITTDG [62] 12 MCA(N, t, 102, 41, 32, 27)

50 AURA [81] 3 MCA(N, t, 101,61,43,31)

51 Harmony search strategy [10] 14 VSCA(N,3,315,{CA(14,314)})

52 Particle Swarm Test Generator VS-PSTG [38] 6 VSCA(N,2,315,{CA(6,71,61,51,41,31,21)})

53 HSTCG [97] 7 VSCA(N,2,43, 53, 62, {CA(7, 43, 53, 62)})

54 EXACT [103, 104] 5 CA(N, t, 26)

55 Tabu Search [98] 6 MCA(N, t, 22,32,42,52)

56 Branch and Bound [105] 5 CA(N, t, 26)

57 Distance Based Technique [30] 5* Information Not available

58 Sequence Covering Array Generator [82] 4 80 events

59 Hexawise [109] 6 Information obtained via chat with tool support

60 QICT [83] 2 MCA(N, t, 34, 313, 2100, 1020)

61 Cascade [84] 2* Information not available

62 AllPairs [54] 2, N-Wise* MCA(N, t, 51, 38, 22)

63 ProTest [110] 2* Information Not Available

64 VpTag[101] 2* Information Not Available

65 PictMaster[70] 6* Information Not Available

66 SmartTest [111] 2* Information Not Available

67 ATD [58] 2 *N-wise* Information Not Available

68 BenderRBT [112] 2* Information Not Available

69 IBM Focus [48] 2 MCA(N, t, 41,339,235)

70 PWiseGen[95] 2 MCA(N, t, 41,339,235)

71 Tcases [113] 3* Information Not Available

72 VarDens [85] 4 CA(N, t, 510)

*Information Not Available

TABLE VII. CONSTRAINT HANDLING SUPPORT

S.N

o

Algorithm/tool Representation of the

constraint (Forbidden tuples,

allowed tuples or full constraint

(logical expression)

Constraint handling Mechanism

1.Constraints handled before executing test

generation algorithm

2. Replacing the invalid test cases

3. Constraints handled by implementing an

algorithm

4. Constraints handled using SAT Solvers

1 AETG Web Service [26, 31, 32] Forbidden Tuples using if else

expressions

Constraints handled by implementing algorithm

2 mAETG_SAT [11, 69] Forbidden tuples converted into

Boolean Formula

zChaff or MiniSAT SAT solver integrated into

AETG algorithm. Solvers compute the

constraints and AETG generates the test suites.

3 ATGT[66] Full constraint support using

prepositional logic

The combinatorial testing is represented as

propositional logic problem including constraints

(forbidden tuples) and SAL Constraint Solver is
used to handle constraints and generate the test

suite

4 ACTS [33] (IPOG-C [36] Full constraint support using

Boolean, relational and

arithmetic operators based

expressions

CHOCO Constraint Solver is integrated with the

algorithm and is frequently called to handle

constraints

5 tTuples [64] Forbidden Tuples as Logical

constraints

Greedy algorithm modified to handle constraints

6 Extremal optimization based

algorithm [90]

Not enough information available MiniSat Solver integrated with the Extremal

Optimization algorithm

7 CASA [11, 51, 91] Forbidden tuples converted into

Boolean Formula

zChaff SAT Solver is integrated with the

Simulated annealing algorithm

8 CTWC [65] Forbidden tuples Constraint handled by implementing an

algorithm

9 PICT [56] Full constraint support using

Logical Expressions are used to

define constraints

Forbidden tuples are obtained from logical

expressions and then algorithm is implemented

for handling constraints

10 Intelligent Test case handler
(WHITCH) [71]

Forbidden tuples [11] Information Not available

11 Jenny [63] Forbidden tuples expressed as

string of numbers and characters

Constraint handled by implementing an

algorithm

12 Test Vector Generator (TVG) [72,

73]

Full Constraint support with

Logical Expressions using

Constraint handled by implementing an

algorithm

relational operators

13 Combinatorial Test Services (CTS)

[106]

Forbidden Tuples Constraints handled by implementing an

algorithm.

14 CATS [77] Allowed Tuples Constraints handled before executing test

generation algorithm

15 Test Cover [107] Allowed Tuples No description but it can be assumed that

constraints are handled before giving to

algorithm

16 Test Case Generator [68] Full Constraint support as

Logical Expressions

Constraints handled by implementing an

algorithm

17 Harmony search strategy [10] Information not available * Constraints handled by implementing an

algorithm

18 HSTCG [97] Full constraint support. Paper

discusses that the approach

supports complex constraints

with no further discussion

Constraints handled by implementing an

algorithm

19 Distance Based Technique [30] Forbidden tuples Constraints handled by implementing an

algorithm

20 T-Gen SYS/3 - a Software
Development Tool [50]

Information not available * No information available *

21 Sequence Covering Array Generator

[82]

Forbidden tuples (excluded

sequences)

No information available *

22 Hexawise [109] Forbidden tuples No information available *

23 Cascade [84] Full constraint support using

Boolean, relational and

arithmetic operators based

expressions

A pseudo-Boolean optimization (PBO) solver

called clasp is used to handle constraints and

optimize coverage. Constraint solving and

optimization is integrated

24 ProTest [110] Information not available* Information not available*

25 VpTag[101]

Full constraint support. Paper

discusses that the approach

supports complex constraints

with no further discussion

Information not available*

26 PictMaster[70]

Full constraint support using

Logical Expressions are used to

define constraints

Forbidden tuples are obtained from logical

expressions and then algorithm is implemented

for handling constraints

27 SmartTest [111] Full constraint support using

Logical Expressions are used to
define constraints

Information not available*

28 BenderRBT [112] Full constraint support using

Logical Expressions are used to

define constraints

Information not available*

29 IBM Focus [48] Full constraint support using

Boolean Expressions in Java

Syntax

Constraints handled by implementing an

algorithm

30 Tcases [113] Full constraint support.

Properties are assigned to values

and conditions are defined which

are finally converted to Boolean

expressions

Information not available*

31 AllPairs [54] Information Not Available * Information not available *

32 Augmented Annealing [26, 55] Forbidden tuples Constraints are handled before giving input to

algorithms (as disjoint rows in the form of seeds)

 *Information Not Available

TABLE VIII. MIXED COVERING ARRAY SUPPORT

S.N

o

Algorithm/tool Mixed Covering Array

Support

1 AETG Web Service [26, 31, 32] Yes

2 PairTest [37] Yes

3 mAETG_SAT [11, 69] Yes

4 ATGT[66] Yes

5 ACTS [33] Yes

6 tTuples [64] Yes

7 Particle Swarm Based Algorithm(OTAT) [89] Yes

8 Extremal optimization based algorithm [90] Yes

9 CASA [11, 51, 91] Yes

10 Particle Swarm Based Algorithm (OPAT) [89] Yes

11 CTWC [65] Information Not Available *

12 PICT [56] Yes

13 MT2Way [87] Yes

14 EPS2way [88] Yes

15 IRPS [99] Yes

16 G2way [86] Yes

17 GTWay(OTAT iterative) [60] Yes

18 Intelligent Test case handler (WHITCH)[71] Yes

19 Jenny [63] Yes

20 Test Vector Generator (TVG) [72, 73] Yes

21 Tconfig [41] Yes

22 TConfig (IPO based) [102] Yes

23 GVS [61] Yes

24 Union [44] Yes

25 Greedy [74] Yes

26 ReqOrder in [76] Yes

27 Density [75] Yes

28 ParaOrder [75] Yes

29 Genetic Algorithms- GAPTS [92] Yes

30 Ant Colony algorithms(ACA) [93] Yes

31 Genetic algorithm based algorithm [93, 94] Yes

32 Ant Colony System(ACS) [96] Yes

33 Greedy Algorithm with Hill Climbing [39] Yes

34 Greedy Algorithm with Simulated annealing [39] Yes

35 Greedy Algorithm with Great Flood [39] Yes

36 Greedy Algorithm with Tabu Search [39] Yes

37 Combinatorial Test Services (CTS) [106] Yes

38 Augmented Annealing-combines Simulated Annealing and

Algebraic Technique[55]

No

39 IPOD (IPOG and Algebraic Technique)[34]. Yes

40 CATS [77] No

41 Test Cover [107] Information Not Available *

42 Algebraic method [108] Yes

43 Deterministic density algorithm [78] Yes

44 Density Based Greedy [79] Yes

45 DA-RO[80] Yes

46 DA-FO [80] Yes

47 Test Case Generator [68] Yes

48 R2Way [53] Yes

49 ART-CT [52] Yes

50 MIPOG [100] Yes

51 ITTDG [62] Yes

52 AURA [81] Yes

53 Harmony search strategy [10] Yes

54 Particle Swarm Test Generator VS-PSTG [38] Yes

55 HSTCG [97] Yes

56 EXACT [103, 104] Yes

57 Tabu Search [98] Yes

58 Branch and Bound [105] No

59 Distance Based Technique [30] Information Not available

60 T-Gen SYS/3 - a Software Development Tool [50] Information Not available

61 Sequence Covering Array Generator [82] Information Not Available

62 Hexawise [109] Information Not Available

63 QICT [83] Yes

64 Cascade [84] Information not available

65 AllPairs [54] Yes

66 ProTest[110] Information Not Available

67 VpTag[101] Information Not Available

68 PictMaster[70] Information Not Available

69 SmartTest [111] Information Not Available

70 ATD [58] Information Not Available

71 BenderRBT [112] Information Not Available

72 IBM Focus [48] Yes

73 PWiseGen[95] Yes

74 Tcases [113] Information Not Available

75 VarDens [85] No

