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Abstract—Spatial errors (e.g., buffer overflows) continue to
be one of the dominant threats to software reliability and
security in C/C++ programs. Presently, the software industry
typically enforces spatial memory safety by instrumentation. Due
to high overheads incurred in bounds checking at runtime, many
program inputs cannot be exercised, causing some input-specific
spatial errors to go undetected in today’s commercial software.

This paper introduces a new compile-time optimisation for
reducing bounds checking overheads based on the notion of
Weakest Precondition (WP). The basic idea is to guard a bounds
check at a pointer dereference inside a loop, where the WP-
based guard is hoisted outside the loop, so that its falsehood
implies the absence of out-of-bounds errors at the dereference,
thereby avoiding the corresponding bounds check inside the loop.
This WP-based optimisation is applicable to any spatial-error
detection approach (in software or hardware or both).

To evaluate the effectiveness of our optimisation, we take
SOFTBOUND, a compile-time tool with an open-source implemen-
tation in LLVM, as our baseline. SOFTBOUND adopts a pointer-
based checking approach with disjoint metadata, making it a
state-of-the-art tool in providing compatible and complete spatial
safety for C. Our new tool, called WPBOUND, is a refined version
of SOFTBOUND, also implemented in LLVM, by incorporating
our WP-based optimisation. For a set of 12 SPEC C benchmarks
evaluated, WPBOUND reduces the average runtime overhead of
SOFTBOUND from 71% to 45% (by a reduction of 37%), with
small code size increases.

I. INTRODUCTION

C, together with its OO incarnation C++, is the de facto
standard for implementing systems software (e.g., operating
systems and language runtimes), embedded software as well
as server and client applications. Due to the low-level control
provided over memory allocation and layout, software written
in such languages makes up the majority of performance-
critical code running on most platforms. Unfortunately, these
unsafe language features often lead to memory corruption
errors, including spatial errors (e.g., buffer overflows) and
temporal errors (e.g., use-after-free), causing program crashes
and security vulnerabilities in today’s commercial software.

This paper focuses on eliminating spatial errors, which
directly result in out-of-bounds memory accesses of all sort
and buffer overflow vulnerabilities, for C. As a long-standing
problem, buffer overflows remain to be one of the highly
ranked vulnerabilities, as revealed in Figure 1, with the data
taken from the NVD database [37]. In addition, a recent study
shows that buffer overflows are the commonest vulnerability in
the last quarter century [61]. Furthermore, spatial errors persist
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Fig. 1: Reported buffer overflow vulnerabilities in the past
decade, listed as CWE-119 in the NVD database [37].

today, as demonstrated by a recently reported Heartbleed
vulnerability in OpenSSL (CVE-2014-0160).

Several approaches exist for detecting and eliminating spa-
tial errors for C/C++ programs at runtime: guard zone-based
[22], [23], [39], [45], [60], object-based (by maintaining per-
object bounds metadata) [1], [8], [10], [13], [25], [44], pointer-
based (by maintaining per-pointer metadata) either inline [2],
[24], [38], [41], [57] or in a disjoint shadow space [9], [18],
[33], [35]. These approaches can be implemented in software
via instrumentation, at source-level as in [13], [35], [45], or
binary-level as in [23], [39], accelerated in hardware [9], [33]
or by a combination of both [18], [34]. As no suggested hard-
ware support is available yet, the software industry typically
employs software-only approaches to enforce spatial safety.

Detecting spatial errors at runtime via instrumentation is
conceptually simple but can be computationally costly. A
program is instrumented with shadow code, which records
and propagates bounds metadata and performs out-of-bounds
checking whenever a pointer is used to access memory, i.e.,
dereferenced at a load · · · = ⇤p or a store ⇤p = · · · . Such
bounds checking can be a major source of runtime overheads,
particularly if it is done inside loops or recursive functions.

Performing bounds checking efficiently is significant as
it helps improve code coverage of a spatial-error detection
tool. By being able to test against a larger set of program
inputs (due to reduced runtime overheads), more input-specific
spatial errors can be detected and eliminated. To this end,



both software- and hardware-based optimisations have been
discussed before. For example, a simple dominator-based
redundant check elimination [35] enables the compiler to avoid
the redundant checks at any dominated memory accesses. As
described in [34] and also in the recently announced MPX ISA
extensions from Intel [7], new instructions are proposed to be
added for accelerating bounds checking (and propagation).

In this paper, we present a new compile-time optimisation
that not only complements prior bounds checking optimiza-
tions but also applies to any afore-mentioned spatial-error
detection approach (in software or hardware or both). Based
on the notion of Weakest Precondition (WP), its novelty lies in
guarding a bounds check at a pointer dereference inside a loop,
where the WP-based guard is hoisted outside the loop, so that
its falsehood implies the absence of out-of-bounds errors at the
dereference, thereby avoiding the corresponding bounds check
inside the loop. In addition, a simple value-range analysis
allows multiple memory accesses to share a common guard,
reducing further the associated bounds checking overheads.
Finally, we apply loop unswitching to a loop to trade code
size for performance so that some bounds checking operations
in some versions of the loop are completely eliminated.

We demonstrate the effectiveness of our WP-based opti-
misation by taking SOFTBOUND [35] as the baseline. SOFT-
BOUND, with an open-source implementation available in
LLVM, represents a state-of-the-art compile-time tool for
detecting spatial errors. By adopting a pointer-based check-
ing approach with disjoint metadata, SOFTBOUND provides
source compatibility and completeness when enforcing spatial
safety for C. By performing instrumentation at source-level
instead of binary-level as in MemCheck [39], SOFTBOUND
can reduce MemCheck’s overheads significantly as both the
original and instrumentation code can be optimised together by
the compiler. However, SOFTBOUND can still be costly, with
performance slowdowns exceeding 2X for some programs.

To boost the performance of SOFTBOUND, we have devel-
oped a new tool, called WPBOUND, which is a refined version
of SOFTBOUND, also in LLVM, by incorporating our WP-
based optimisation. WPBOUND supports separate compilation
since its analysis and transformation phases are intrapro-
cedural. Our evaluation shows that WPBOUND is effective
in reducing SOFTBOUND’s instrumentation overheads while
incurring some small code size increases.

In summary, the contributions of this paper are:
• a WP-based optimisation for reducing bounds checking

overheads for C programs;
• a WP-based source-level instrumentation tool, WP-

BOUND, for enforcing spatial safety for C programs;
• an implementation of WPBOUND in LLVM; and
• an evaluation on a set of 12 C programs, showing

that WPBOUND reduces SOFTBOUND’s average runtime
overhead from 71% to 45% (by a reduction of 37%), with
small code size increases.

The rest of this paper is organized as follows. Section II pro-
vides the background for this work. Section III motivates and
describes our WP-based instrumentation approach. Section IV

evaluates and analyses our approach. Section V discusses
additional related work and Section VI concludes.

II. BACKGROUND

We review briefly how SOFTBOUND [35] works as a
pointer-based approach. Section V discusses additional related
work on guard zone- and object-based approaches in detail.

Figure 2 illustrates the pointer-based metadata initialisation,
propagation and checking abstractly in SOFTBOUND with
the instrumentation code highlighted in orange. Instead of
maintaining the per-pointer metadata (i.e., base and bound)
inline [2], [24], [38], [41], [57], SOFTBOUND uses a disjoint
metadata space to achieve source compatibility.

int a;

int

*

p = &a;

char

*

p_bs = p,

*

p_bd = (char

*

)(p + 1);

float

*

q = malloc(n);

char

*

q_bs = q;

char

*

q_bd = (q == 0) ? 0 : (char

*

)q + n;

(a) Memory allocation

int

*

p,

*

q;

char

*

p_bs = 0,

*

p_bd = 0;

char

*

q_bs = 0,

*

q_bd = 0;

...

p = q; // p = q + i or p = &q[i]

p_bs = q_bs;

p_bd = q_bd;

(b) Copying and pointer arithmetic

float

*

p;

char

*

p_bs = 0,

*

p_bd = 0;

...

sChk(p, p_bs, p_bd, sizeof(float));

... =

*

p; //

*

p = ...

(c) Scalar loads and stores

int

**

p,

*

q;

char

*

p_bs = 0,

*

p_bd = 0;

char

*

q_bs = 0,

*

q_bd = 0;

...

sChk(p, p_bs, p_bd, sizeof(int

*

));

q =

*

p; //

*

p = q;

q_bs = GM[p]->bs; // GM[p]->bs = q_bs

q_bd = GM[p]->bd; // GM[p]->bd = q_bd

(d) Pointer loads and Stores

inline void sChk(char

*

p, char

*

p_bs,

char

*

p_bd, size_t size) {
if (p < p_bs || p + size > p_bd) {

... // issue an error message

abort();

}
}

(e) Spatial checks

Fig. 2: Pointer-based instrumentation with disjoint metadata.

The bounds metadata are associated with a pointer whenever
a pointer is created (Figure 2(a)). The types of base and bound
are typically as char

*

so that spatial errors can be detected



at the granularity of bytes. These metadata are propagated on
pointer-manipulating operations such as copying and pointer
arithmetic (Figure 2(b)).

When pointers are used to access memory, i.e., dereferenced
at loads or stores, spatial checks are performed (Figures 2(c)
and (d)) by invoking the sChk function shown in Figures 2(e).
The base and bound of a pointer is available in a disjoint
shadow space and can be looked up in a global map GM.
GM can be implemented in various ways, including a hash
table or a trie. For each spatial check, five x86 instructions,
cmp, br, lea, cmp and br, are executed on x86, incurring a
large amount of runtime overheads, which will be significantly
reduced in our WPBOUND framework.

To detect and prevent out-of-bounds errors at a load · · · =
⇤p or a store ⇤p = · · · , two cases are distinguished depending
on whether ⇤p is a scalar pointer (Figure 2(c)) or a non-scalar
pointer (Figure 2(d)). In the latter case, the metadata for the
pointer ⇤p (i.e., the pointer pointed by p) in GM is retrieved
for a load · · · = ⇤p and updated for a store ⇤p = · · · .

III. METHODOLOGY

WPBOUND, which is implemented in the LLVM compiler
infrastructure, consists of one analysis and three transforma-
tion phases (as shown in Figure 3). Their functionalities are
briefly described below, illustrated by an example in Sec-
tion III-A, and further explained in Sections III-C and III-D.
As its four phases are intraprocedural, WPBOUND provides
transparent support for separate compilation.

Value Range Analysis

Loop-Directed WP Abstraction

WP Consolidation

LLVM Scalar EvolutionLLVM Scalar Evolution

WP-Driven Loop Unswitching

Clang Front-EndClang Front-End

Code GenerationCode Generation

W
P
B
o
u
n
d

Source

Bitcode

Instrumented Bitcode

Binary

Fig. 3: Overview of the WPBOUND framework.

Value Range Analysis This analysis phase computes conser-
vatively the value ranges of pointers dereferenced at loads
and stores, leveraging LLVM’s scalar evolution pass. The
value range information is used for the WP computations

in the following three transformation phases, where the
instrumentation code is generated.

Loop-Directed WP Abstraction This phase inserts spatial
checks for memory accesses (at loads and stores). For
each access in a loop, we reduce its bounds checking
overhead by exploiting but not actually computing exactly
the WP that verifies the assertion that an out-of-bounds
error definitely occurs at the access during some program
execution. As value-range analysis is imprecise, a WP
is estimated conservatively, i.e., weakened. For conve-
nience, such WP estimates are still referred to as WPs.
For each access in a loop, its bounds check is guarded
by its WP, with its evaluation hoisted outside the loop,
so that its falsehood implies the absence of out-of-bounds
errors at the access, causing its check to be avoided.

WP Consolidation As an optimisation, this phase consoli-
dates the WPs for multiple accesses, which are always
made to the same object, into a single one.

WP-Driven Loop Unswitching As another optimisation that
trades code size for performance, loop unswitching is
applied to a loop so that the instrumentation in its
frequently executed versions is effectively eliminated.

A. A Motivating Example
We explain how WPBOUND works with a program in C

(rather than in its LLVM low-level code) given in Figure 4.
In the program shown in Figure 4(a), there are a total of
five memory accesses, four loads (lines 11, 14, 18, and 21)
and one store (line 23), with the last three contained in a
for loop. With the unoptimized instrumentation (as obtained
by SOFTBOUND), each memory access triggers a spatial
check (highlighted in orange). To avoid cluttering, we do not
show the medadata initialisation and propagation, which are
irrelevant to our WP-based optimisation.
Value Range Analysis We compute conservatively the value

ranges of all pointers dereferenced for memory accesses
in the program, by using LLVM’s scalar evolution pass.
For the five dereferenced pointers, we have:

&p[k] : [p+ k⇥ SP, p+ k⇥ SP]

&p[k+1] : [p+ (k+ 1) ⇥ SP, p+ (k+ 1) ⇥ SP]

&a[i-1] : [a, a+ (L� 1) ⇥ S]

&b[i] : [b+ S, b+ L⇥ S]

&a[i] : [a+ S, a+ L⇥ S]

where the two constants, S and SP, are defined at the
beginning of the program in Figure 4(a), and L is the
upper bound of the for loop in the program.

Loop-Directed WP Abstraction According to the value
ranges computed above, the WPs for all memory accesses
at loads and stores are computed (weakened if necessary).
The WPs for the three memory accesses in the for

loop are found conservatively and hoisted outside the
loop to perform a WP check by calling wpChk given in
Figure 4(b), as shown in Figure 4(c). The three spatial
check calls to sChk at a[i-1], b[i] and a[i]

that are previously unconditional (in SOFTBOUND) are



1 #define S sizeof(int)

2 #define SP sizeof(int

*

)

3 ...

4 int i, k, L;

5 int t1, t2;

6 int

*

a,

*

b;

7 int

**

p;

8 ...

9 if(...) {
10 sChk(p+k, p_bs, p_bd, SP);

11 a = p[k];

12 }
13 sChk(p+k+1, p_bs, p_bd, SP);

14 b = p[k+1];

15 ...

16 for(i = 1; i <= L; i++) {
17 sChk(a+i-1, a_bs, a_bd, S);

18 t1 = a[i-1];

19 if(t < ...) {
20 sChk(b+i, b_bs, b_bd, S);

21 t2 = b[i];

22 sChk(a+i, a_bs, a_bd, S);

23 a[i] += t1 + t2;

24 }
25 }

(a) Unoptimized instrumentation

1 inline bool wpChk(

2 char

*

p_lb, char

*

p_ub,

3 char

*

p_bs, char

*

p_bd)

4 {
5 return p_lb < p_bs

6 || p_ub > p_bd;

7 }

(b) WP checks

1 ...

2 wp_a1 = wpChk(a, a+L, a_bs, a_bd);

3 wp_a2 = wpChk(a+1, a+L+1, a_bs, a_bd);

4 wp_b = wpChk(b+1, b+L+1, b_bs, b_bd);

5 for(i = 1; i <= L; i++) {
6 if(wp_a1) sChk(a+i-1, a_bs, a_bd, S);

7 t = a[i-1];

8 if(t < ...) {
9 if(wp_b) sChk(b+i, b_bs, b_bd, S);

10 t2 = b[i];

11 if(wp_a2) sChk(a+i, a_bs, a_bd, S);

12 a[i] += t1 + t2;

13 }
14 }

(c) Loop-directed WP abstraction

1 ...

2 cwp_p = wpChk(p+k, p+k+2, p_bs, p_bd);

3 if(...) {
4 if(cwp_p) sChk(p+k, p_bs, p_bd, SP);

5 a = p[k];

6 }
7 if(cwp_p) sChk(p+k+1, p_bs, p_bd, SP);

8 b = p[k+1];

9 ...

10 cwp_a = wpChk(a, a+L+1, a_bs, a_bd);

11 wp_b = wpChk(b+1, b+L+1, b_bs, b_bd);

12 for(i = 1; i <= L; i++) {
13 if(cwp_a) sChk(a+i-1, a_bs, a_bd, S);

14 t = a[i-1];

15 if(t < ...) {
16 if(wp_b) sChk(b+i, b_bs, b_bd, S);

17 t2 = b[i];

18 if(cwp_a) sChk(a+i, a_bs, a_bd, S);

19 a[i] += t1 + t2;

20 }
21 }

(d) WP consolidation

1 ...

2 cwp_p = wpChk(p+k, p+k+2, p_bs, p_bd);

3 if(...) {
4 if(cwp_p) sChk(p+k, p_bs, p_bd, SP);

5 a = p[k];

6 }
7 if(cwp_p) sChk(p+k+1, p_bs, p_bd, SP);

8 b = p[k+1];

9 ...

10 cwp_a = wpChk(a, a+L+1, a_bs, a_bd);

11 wp_b = wpChk(b+1, b+L+1, b_bs, b_bd);

12
// Merging the two WPs in the loop.

13 wp_loop = cwp_a || wp_b;

14
// Unswitched loop without checks.

15 if (!wp_loop) {
16 for(i = 1; i <= L; i++) {
17 t = a[i-1];

18 if(t < ...) {
19 t2 = b[i];

20 a[i] += t1 + t2;

21 }
22 }
23 }
24

// Unswitched loop with checks.

25 else {
26 for(i = 1; i <= L; i++) {
27 sChk(a+i-1, a_bs, a_bd, S);

28 t = a[i-1];

29 if(t < ...) {
30 sChk(b+i, b_bs, b_bd, S);

31 t2 = b[i];

32 sChk(a+i, a_bs, a_bd, S);

33 a[i] += t1 + t2;

34 }
35 }
36 }

(e) WP-Driven Loop unswitching

Fig. 4: A motivating example.

now guarded by their WPs, wp_a1, wp_b and wp_a2,
respectively.
Note that wp_a1 is exact since its guarded access
a[i-1] will be out-of-bounds when wp_a1 holds.
However, wp_b and wp_a2 are not since their guarded
accesses b[i] and a[i] will never be executed if
expression t < . . . in line 19 always evaluates to false.
In general, a WP for an access is constructed so that its
falsehood implies the absence of out-of-bounds errors at
the access, thereby causing its spatial check to be elided.
The WPs for the other two accesses p[k] and p[k+1]

are computed similarly but omitted in Figure 4(c).
WP Consolidation In this phase, the WPs for accesses to

the same object are considered for consolidation. The
code in Figure 4(c) is further optimised into the one in
Figure 4(d), where the two WPs for p[k] and p[k+1]

are merged as cwp_p and the two WPs for a[i-1] and
a[i] as cwp_a. Thus, the number of wpChk calls has
dropped from 5 to 3 (lines 2, 10, and 11).

WP-Driven Loop Unswitching This phase generates the fi-
nal code in Figure 4(e). The two WPs in the loop,
cwp_a and wp_b, are merged as wp_loop, enabling
the loop to be unswitched. The if branch at lines 16 –
22 is instrumentation-free. The else branch at lines 26
– 35 proceeds as before with the usual spatial checks
performed. The key insight for trading code size for
performance this way is that the instrumentation-free loop
version is often executed more frequently at runtime than
its instrumented counterpart in real programs.

B. The LLVM IR

WPBOUND, as shown in Figure 3, works directly on
the LLVM-IR, LLVM’s intermediate representation (IR). As
illustrated in Figure 5, all program variables are partitioned
into a set of top-level variables (e.g., a, x and y) that
are not referenced by pointers, and a set of address-taken
variables (e.g., b and c) that can be referenced by pointers.
In particular, top-level variables are maintained in SSA (Static



int

**

a,

*

b;

int c, i;

a = &b;

b = &c;

c = 10;

i = c;

a = &b;

x = &c;

*

a = x;

y = 10;

*

x = y;

i =

*

x;

(a) C (b) LLVM-IR (in pseudocode)

Fig. 5: The LLVM-IR (in pseudocode) for a C program (where
x and y are top-level temporaries introduced).

Single Assignment form) so that each variable use has a unique
definition, but address-taken variables are not in SSA.

All address-taken variables are kept in memory and can
only be accessed (indirectly) via loads (q = ⇤p in pseudocode)
and stores (⇤p = q in pseudocode), which take only top-level
pointer variables as arguments. Furthermore, an address-taken
variable can only appear in a statement where its address is
taken. All the other variables referred to are top-level.

In the rest of this paper, we will focus on memory accesses
made at the pointer dereferences ⇤p via loads · · · = ⇤p and
stores ⇤p = · · · , where pointers p are always top-level pointers
in the IR. These are the points where the spatial checks are
performed as illustrated in Figures 2(c) and (d).

Given a pointer p (top-level or address-taken), its bounds
metadata, base (lower bound) and bound (upper bound), are
denoted by pbs and pbd, respectively, as shown in Figure 2.

C. Value Range Analysis

We describe this analysis phase for estimating conserva-
tively the range of values accessed at a pointer dereference,
where a spatial check is performed. We conduct our analysis
based on LLVM’s scalar evolution pass (Figure 3), which
calculates closed-form expressions for all top-level scalar
integer variables (including top-level pointers) in the way
described in [52]. This pass, inspired by the concept of chains
of recurrences [4], is capable of handling any value taken by
an induction variable at any iteration of its enclosing loops.

A scalar integer expression in the program can be repre-
sented as a SCEV (SCalar EVolution expression):

e := c | v | O | e1 + e2 | e1 ⇥ e2 | <e1,+, e2>`

Therefore, a SCEV can be a constant c, a variable v that
cannot be represented by other SCEVs, or a binary operation
(involving + and ⇥ as considered in this paper). In addition,
when loop induction variables are involved, an add recurrence
<e1,+, e2>` is used, where e1 and e2 represent, respectively,
the initial value (i.e. the value for the first iteration) and the
stride per iteration for the containing loop `. For example,
in Figure 4(a), the SCEV for the pointer &a[i] contained in
the for loop in line 16 is <

a,+,sizeof(int)>16. Finally,
the notation O is used to represent any value that is neither
expressible nor computable in the SCEV framework.

[Termi]
e + [e, e] (e = c | v | O)

e1 + [el1, e
u
1 ] e2 + [el2, e

u
2 ][Add]

e1 + e2 + [el1 + el2, e
u
1 + eu2 ]

e1 + [el1, e
u
1 ] e2 + [el2, e

u
2 ]

V = {el1 ⇥ el2, e
l
1 ⇥ eu2 , e

u
1 ⇥ el2, e

u
1 ⇥ eu2}

[Mul]
e1 ⇥ e2 + [min(V ), max(V )]

e1 + [el1, e
u
1 ] e2 + [el2, e

u
2 ] tc(`) + [ , `u]

V ={el1, eu1 + el2⇥(`u�1), eu1 + eu2 ⇥(`u�1)}
[AddRec]

<e1,+, e2>` + [min(V ), max(V )]

Fig. 6: Range analysis rules.

The range of every scalar variable will be expressed in the
form of an interval [e1, e2]. We handle unsigned and signed
values differently due to possible integer overflows. According
to the C standard, unsigned integer overflow wraps around
but signed integer overflow leads to undefined behaviour. To
avoid potential overflows, we consider conservatively the range
of an unsigned integer variable as [O,O]. For operations
on signed integers, we assume that overflow never occurs.
This assumption is common in compiler optimizations. For
example, the following function (with x being a signed int):

bool foo(int x) { return x + 1 < x; }
is optimised by LLVM, GCC and ICC to return false.

The rules used for computing the value ranges of signed
integer and pointer variables are given in Figure 6. [TERMI]
suggests that both the lower and upper bounds of a SCEV,
which is c, v or O, are the SCEV itself. [ADD] asserts that
the lower (upper) bound of an addition SCEV e1+e2 is simply
the lower (upper) bounds of its two operands added together.
When it comes to a multiplication SCEV, the usual min and
max functions are called for, as indicated in [MUL]. If min(V )

and max(V ) cannot be solved statically at compile time, then
[O,O] is assumed. For example, [i, i+10]⇥[2, 2] + [2i, 2i+20]

but [i, 10] ⇥ [j, 10] + [O,O], where i and j are scalar
variables. In the latter case, the compiler cannot statically
resolve min(V ) and max(V ), where V = {10i, 10j, ij, 100}.

For an add recurrence, the LLVM scalar evolution pass
computes the trip count of its containing loop `, which is also
represented as a SCEV tc(`). A trip count can be O since
it may neither be expressible nor computable in the SCEV
formulation. In the case of a loop with multiple exits, the
worst-case trip count is picked. Here, we assume that a trip
count is always positive. However, this will not affect the cor-
rectness of our overall approach, since the possibly incorrect
range information is never used inside a non-executed loop.

In addition to some simple scenarios demonstrated in our
motivating example, our value range analysis is capable of
handling more complex ones, as long as LLVM’s scalar



evolution is. Consider the following double loop:

for (int i = 0; i < N; ++i) // L1
for (int j = 0; j <= i; ++j) // L2

a[2

*

i+j] = ...; // a declared as int

*

The SCEV of &a[2

*

i+j], i.e., a+2

*

i+j is given
as <<

a,+, 2 ⇥ sizeof(int)

>L1,+,sizeof(int)>L2

by scalar evolution, and tc(L1) and tc(L2) are N and
<
0,+, 1>L1 + 1, (i.e., i+1), respectively. The value range

of &a[2
*

i+j] is then deducted via the rules in Figure 6 as:

[a, a+ 3 ⇥ (N� 1) ⇥ sizeof(int)]

D. WP-Based Instrumentation

We describe how WPBOUND generates the instrumen-
tation code for a program during its three transformation
phases, based on the results of value range analysis. We only
discuss how bounds checking operations are inserted since
WPBOUND handles metadata initialization and propagation
exactly as in SOFTBOUND, as illustrated in Figure 2.

1) Loop-Directed WP Abstraction: This phase computes
the WPs for all dereferenced pointers and inserts guarded or
unguarded spatial checks for them. As shown in our motivating
example, we do so by reasoning about the WP for a pointer p
at a load · · · = ⇤p or a store ⇤p = · · · . Based on the results of
value range analysis, we estimate the WP for p according to
its Memory Access Region (MAR), denoted [pmar

lb , pmar
ub ). Let

the value range of p be [pl, pu]. There are two cases:
• pl 6= O^pu 6= O: [pmar

lb , pmar
ub ) = [pl, pu+sizeof(⇤p)).

As a result, its WP is estimated to be:

pmar
lb < pbs _ pmar

ub > pbd

where pbs and pbd are the base and bound of p
(Section III-B). The result of evaluating this WP,
called a WP check, can be obtained by a call to
wpChk(pmar

lb , pmar
ub , pbs, pbd) in Figure 4(b).

• pl = O _ pu = O: The MAR of p is [pmar
lb , pmar

ub ) =

[O,O) conservatively. The WP is set as true.
In general, the WP thus constructed for p is not the weakest

one, i.e., the one ensuring that if it holds during program
execution, then some accesses via ⇤p must be out-of-bounds.
There are two reasons for being conservative. First, value range
analysis is imprecise. Second, all branch conditions (e.g., the
one in line 19 in Figure 4) affecting the execution of ⇤p are
ignored during this analysis, as explained in Section III-A.

However, by construction, the falsehood of the WP for p
always implies the absence of out-of-bounds errors at ⇤p, in
which case the spatial check at ⇤p can be elided. However, the
converse may not hold, implying that some bounds checking
operations performed when the WP holds are redundant.

After the WPs for all dereferenced pointers in a program
are available, INSTRUMENT(F ) in Algorithm 1 is called for
each function F in the program to guard the spatial check
at each pointer dereference ⇤p by its WP when its MAR
is neither [O,O) (in which case, its WP is true) nor loop-
variant. In this case (lines 4 – 6), the guard for p, which is

Algorithm 1 Loop-Directed WP Abstraction

Procedure INSTRUMENT(F )

begin
1 foreach pointer dereference ⇤p in function F do
2 Let SIZE be sizeof(⇤p);
3 s POSITIONINGWP(p);
4 if [p

mar
lb , p

mar
ub ] 6= [O,O) ^ s 6= p then

5 Insert a wpChk call for ⇤p at point s:
wpp = wpChk(p

mar
lb , p

mar
ub , pbs, pbd);

6 Insert a guarded spatial check before ⇤p:
if (wpp) sChk(p, pbs, pbd, SIZE);

else
7 Insert an unguarded spatial check before ⇤p:

sChk(p, pbs, pbd, SIZE);

Procedure POSITIONINGWP(p)
begin

8 s p; // denoting the point where ⇤p is

9 while s is inside a loop do
10 Let ` be the innermost loop containing s;
11 if pmar

lb and p

mar
ub are invariants in ` then

12 s the point just before `;

13 else break;

14 return s;

loop-invariant at point s, is hoisted to the point identified by
POSITIONINGWP(), where it is evaluated. The spatial check at
the pointer dereference ⇤p becomes conditional on the guard.
Otherwise (line 7), the spatial check at the dereference ⇤p is
unconditional as is the case in SOFTBOUND.

Note that an access ⇤p may appear in a set of nested loops.
POSITIONINGWP returns the point just before the loop at the
highest depth for which the WP for p is loop-invariant and p
(representing the point where ⇤p occurs) otherwise.

Let us return to Figure 4(c). The MAR of b[i] in line 10
is [b+SZ,b+(L+1)⇥SZ), whose lower and upper bounds
are invariants of the for loop in line 5. With the WP check,
wp_b, evaluated in line 4, the spatial check for b[i] inserted
in line 9 is performed only when wp_b is true.

Compared to SOFTBOUND that produces the unguarded
instrumentation code as explained in Section II, our WP-based
instrumentation may increase code size slightly. However,
many WPs are expected to be true in real programs. Instead
of the five instructions, cmp, br, lea, cmp and br, required
for performing a spatial check, sChk, two instructions, cmp
and br, are usually executed to test its guard only.

2) WP Consolidation: This phase conducts an intraproce-
dural analysis to combine the WPs corresponding to a set of
memory accesses to the same object (e.g., the same array)
into a single one to be shared (e.g., cwp_p and cwp_a in
Figure 4(d)). If a pointer dereference is not in a loop, its spatial
check is not guarded according to Algorithm 1 (since s = p in
line 3). By combining its WP with others, we will also make



Algorithm 2 WP Consolidation

Procedure CONSOLIDATEWP(F )

begin
1 W  set of pointers dereferenced in function F ;
2 while W 6= ? do
3 p a pointer from W ;
4 G {p};
5 sp  POSITIONINGWP(p);
6 foreach q 2W such that q 6= p do
7 sq  POSITIONINGWP(q);
8 p

0
lb  min({pmar

lb , q

mar
lb });

9 p

0
ub  max({pmar

ub , q

mar
ub });

10 s

0
p  DOMINATOR(F, sp, sq, p

0
lb, p

0
ub);

11 if s0p 6= ✏ then
12 G G [ {q};
13 p

mar
lb  p

0
lb;

14 p

mar
ub  p

0
ub;

15 sp  s

0
p;

16 if G 6= {p} then
17 Insert a wpChk call for ⇤p at point sp:

cwpG = wpChk(p

mar
lb , p

mar
ub , pbs, pbd);

18 foreach q 2 G do
19 Let SIZE be sizeof(⇤q);
20 Replace the spatial check for ⇤q by:

if (cwpG) sChk(q, qbs, qbd, SIZE);

21 W  W �G;

Procedure DOMINATOR(F, s1, s2, pl, pu)
begin

22 if pl = O _ pu = O then return ✏;
23 V  {v | variable v occurs in SCEV pl or SCEV pu};
24 S  set of (program) points in the CFG of F ;
25 if 9 s 2 S : (s dominates s1 and s2 in F ’s CFG) ^

(8 v 2 V : the def of v dominates s in F ’s CFG) then
26 return s;

else
27 return ✏;

such a check guarded as well (e.g., cwp_p in Figure 4(d)).
Algorithm 2 is simple. Given a function F , where W

initially contains all pointers dereferenced at loads and stores
in F (line 1), we start with G = {p} (line 4). We then add
iteratively all other pointers q1, . . . , qn in F (lines 6 – 15) to
G = {p, q1, . . . , qn}, so that the following properties hold:

Prop. 1 All these pointers point to the same object. If q
selected in line 6 does not point to the same object as
p, p0lb or p0ub will be O, causing s0p = ✏ (due to line 22).
In this case, q will not be added to G (line 11).

Prop. 2 The WPs for these pointers are invariants with respect
to point sp found at the end of the foreach loop in line 6
(due to lines 23 – 27). As all variables in V (line 23) are
in SSA, the definition of v in line 25 is unique.

When |G| > 1 (line 16), we can combine the WPs in G into

a single one, cwpG (line 17), where [pmar
lb , pmar

ub ) is constructed
to be the union of the MARs of all the pointers in G. Note that
wpChk is called only once since 8q 2 G : qbs = pbs ^ qbd =

pbd by construction. In lines 18 – 20, the spatial checks for
all pointers in G are modified to use cwpG instead.

Consider Figure 4(d) again. The MARs for a[i-1] in
line 14 and a[i] in line 19 are [a, a + L ⇥ SZ) and
[a + SZ, a + (L + 1) ⇥ SZ), respectively. The consolidated
MAR is [a, a+(L+1)⇥SZ), yielding a WP cwp_a weaker
than the WPs, wp_a1 and wp_a2, for a[i-1] and a[i],
respectively. The WP check cwp_a is inserted in line 10,
which dominates a[i-1] and a[i] in the CFG. The spatial
checks for a[i-1] and a[i] are now guarded by cwp_a.

3) WP-Driven Loop Unswitching: In this last intraproce-
dural phase, we apply loop unswitching, a standard loop
transformation, to a loop, as illustrated in Figure 4(e), to
unswitch some guarded spatial checks, so that its guards are
hoisted outside the loop, resulting in their repeated tests inside
the loop being effectively removed in some versions of the
loop. However, unswitching all branches in a loop may lead
to code growth exponential in its number of branches.

To avoid code explosion, we apply Algorithm 3 to a function
F to process its loops inside out. For a loop ` (line 2), we first
partition a set S of its guarding WPs selected in line 3 into a
few groups (discussed below in more detail) (line 5). We then
insert a disjunction wp⇡ built from the WPs in each group ⇡
just before ` (line 7). As wp⇡ is weaker than each constituent
wp, we can replace each wp by wp⇡ at the expense of more
spatial checks (lines 8 – 9). Finally, we unswitch loop ` so
that each spatial check guarded by wp⇡ is either performed
unconditionally (in its true version) or removed (in its false
version). As these “unswitched” checks will not be considered
again (line 3), our algorithm will eventually terminate.

Let us discuss the three conditions used in determining a
set S of guarding WPs to unswitch in line 3. Condition (1)
instructs us to consider only guarded special checks. Condi-

Algorithm 3 WP-Driven Loop Unswitching

Procedure LOOPUNSWITCHING(F )

begin
1 L a loop nest forest obtained in function F ;
2 foreach loop ` in reverse topological order in L do
3 S {wp | (1) “if (wp) sChk(...)” is inside `

^ (2)wp is an invariant in ` ^ (3) (@ `

0 2 L :

`

0
contains ` ^ wp is an invariant in `

0
)};

4 if S = ? then continue;
5 ⇧ a partition of S into groups;
6 foreach group ⇡ 2 ⇧ do
7 Insert wp⇡  W

wp2⇡
wp just outside `;

8 foreach wp 2 ⇡ do
9 Replace each wp inside ` by wp⇡;

10 Unswitch ` for every wp⇡ , where ⇡ 2 ⇧;



tion (2) avoids any guarding WP that is loop-variant since it
may be introduced by Algorithm 2. Condition (3) allows us to
exploit a sweet-spot to make a tradeoff between code size and
performance for real code. Without (3), S tends to be larger,
leading to weaker wp⇡’s than otherwise. As a result, we tend
to generate fewer loop versions, by trading performance for
code size. With (3), the opposite tradeoff is made.

In line 5, there can be a number of ways to partition S. In
general, a fine-grained partitioning eliminates more redundant
bounds checks than a coarse-grained partitioning, but results
in more code versions representing different combinations of
instrumented and un-instrumented memory accesses. Note that
the space complexity (i.e., code expansion) of loop unswitch-
ing is exponential to |⇧|, i.e., the number of partitions.

To keep code sizes manageable in our implementation of
this algorithm, we have adopted a simple partitioning strategy
by setting ⇧ = {S}. Together with Conditions (1) – (3) in
line 3, this partitioning strategy is effective in practice.

Let us apply our algorithm to Figure 4(d) to unswitch the
for loop, which contains two WP guards, cwp_a and wp_b.
Replacing them with a weaker one, wp_loop = cwp_a ||

wp_b and then unswitching the loop yields the final code in
Figure 4(e). The instrumentation-free version appears in lines
16 – 22 and the instrumented one in lines 26 – 35.

IV. EVALUATION

The goal of this evaluation is to demonstrate that our WP-
based tool, WPBOUND, can significantly reduce the runtime
overhead of SOFTBOUND, a state-of-the-art instrumentation
tool for enforcing spatial memory safety of C programs.

A. Implementation Considerations
Based on the open-source code of SOFTBOUND, we have

implemented WPBOUND also in LLVM (version 3.3). In
both cases, the bounds metadata are maintained in a separate
shadow space. Like SOFTBOUND, WPBOUND handles a num-
ber of issues identically as follows. Array indexing (also for
multiple-dimensional arrays) is handled equivalently as pointer
arithmetic. The metadata for global pointers are initialized,
by using the same hooks that C++ uses for constructing
global objects. For external function uses in un-instrumented
libraries, we resort to SOFTBOUND’s library function wrappers
(Figure 7), which enforce the spatial safety and summarize
the side effects on the metadata. For a function pointer, its
bound equals to its base, describing a zero-sized object that is
not used by data objects. This prevents data pointers or non-
pointer data from being interpreted as function pointers. For
pointer type conversions via either explicit casts or implicit
unions, the bounds information simply propagates across due
to the disjoint metadata space used. Finally, we do not yet
enforce the spatial safety for variable argument functions.

B. Experimental Setup
All experiments are conducted on a machine equipped with

a 3.00GHz quad-core Intel Core2 Extreme X9650 CPU and
8GB DDR2 RAM, running on a 64-bit Ubuntu 10.10. The
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Fig. 7: Compilation workflow.

SOFTBOUND tool is taken from the SoftBoundCETS open-
source project (version 1.3) [35], [36], configurated to enforce
spatial memory safety only.

Table I lists a set of 12 SPEC benchmarks used. These
benchmarks are often used in the literature [1], [22], [34],
[35], [45]. We have selected eight from the 12 C benchmarks
in the SPEC2006 suite, by excluding gcc and perlbench

since both cannot be processed correctly under SOFTBOUND
(as described in its README) and gobmk and sjeng since
these two game applications are not loop-oriented. In addition
to SPEC2006, we have included four loop-oriented SPEC2000
benchmarks, ammp, art, gzip and twolf, in our evaluation.

C. Methodology
Figure 7 shows the compilation workflow for both SOFT-

BOUND and WPBOUND in our experiments. All source files of
a program are compiled under the “-O2” flag and then merged
into one bitcode file using llvm-link. The instrumentation code
is inserted into the merged bitcode file by a SOFTBOUND or
WPBOUND pass. Then the bitcode file with instrumentation
code is linked to the SOFTBOUND runtime library to generate
binary code, with the link-time optimization flag “-O2” used
to further optimize the instrumentation code inserted.

To analyse the runtime overheads introduced by both tools,
the native (instrumentation-free) code is also generated under
the “-O2” together with link-time optimization.

D. Instrumentation Results
Let us first discuss the instrumentation results of the 12

benchmarks according to the statistics given in Table I.
In Column 6, we see that SOFTBOUND inserts an average of

5035 spatial checks for each benchmark. Note that the number
of spatial checks inserted is always smaller than the number of
loads and stores added together. This is because SOFTBOUND
has eliminated some unnecessary spatial checks by applying
some simple optimisations including its dominator-based re-
dundant check elimination [35]. This set of optimisations is
also performed by WPBOUND as well.

In Columns 7 – 11, we can observe some results col-
lected for WPBOUND. According to Column 7, there are



Benchmark #Functions #Loads #Stores #Loops #SCSB
WP-Based Instrumentation

#wpa �wpc #wpl |wpl| max|wpl|

ammp 180 3,705 1,187 650 3,962 516 2,673 150 4.2 54
art 27 471 182 158 461 84 34 46 2.0 6

gzip 72 936 711 257 1,096 83 118 56 1.5 7
twolf 188 9,781 3,304 1,253 9,328 532 2,683 195 2.8 32
bzip2 68 2,570 1,680 545 2,414 324 1,114 116 3.2 59

h264ref 517 20,984 8,277 2,698 25,626 3,820 10,668 743 5.9 235
hmmer 472 8,345 3,608 1,667 8,644 1,586 3,434 502 3.7 48

lbm 18 244 114 32 319 278 282 10 27.8 76
libquantum 96 604 317 144 572 140 358 34 4.1 35

mcf 26 347 224 76 472 37 216 13 2.6 9
milc 236 3,443 1,094 544 3,266 571 1,556 97 7.7 49

sphinx3 320 4,628 1,359 1,240 4,260 654 1,735 343 2.2 41
ArithMean 185 4,672 1,838 772 5,035 719 2,073 192 5.6 54.3

TABLE I: Benchmark statistics. #SCSB denotes the number of spatial checks inserted by SOFTBOUND. #wpa is the number
of wpChk calls inserted (i.e. the number of wpp in line 5 of Algorithm 1). �wpc represents the number of unconditional
checks reduced by WP consolidation. #wpl is the number of merged WPs by loop unswitching (i.e., the number of non-empty
S at line 3 of Algorithm 3). |wpl| and max|wpl|, respectively, stand for the average and maximum numbers of the WPs used
to build a disjunction (i.e., the average and maximum sizes of non-empty S at line 3 of Algorithm 3).

an average of 719 wpChk calls inserted in each bench-
mark by Algorithm 1 (for WP-based instrumentation), causing
⇠1/7 of the spatial checks inserted by SOFTBOUND to be
guarded. According to Column 8, Algorithm 2 (for WP
consolidation) has made an average of 2073 unconditional
checks guarded (a reduction of 41%) for each benchmark.
According to Column 9, Algorithm 3 (for loop unswitching)
has succeeded in merging an average of 192 WPs at loop
entries for each benchmark. Overall, the average number
of the WPs combined to yield one disjunctive WP is 5.6
(Column 10), peaking at 235 constituent WPs in one disjunc-
tive WP in the Mode_Decision_for_4x4IntraBlocks
function in h264ref (Column 11).

Finally, as compared in Figure 8, WPBOUND results in
slightly larger code sizes than SOFTBOUND due to (1) the
wpChk calls introduced, (2) the guards added to some spatial
checks, and (3) code duplication caused by loop unswitch-
ing. Compared to un-instrumented native code, the geometric
means of code size increases for SOFTBOUND and WP-
BOUND are 1.72X and 2.12X, respectively. This implies that
WPBOUND has made an instrumented program about 23%
larger than SOFTBOUND on average. In general, the code
explosion problem is well contained due to the partitioning
heuristics used in our WP-based loop unswitching as discussed
in Section III-D3.

E. Performance Results

To understand the effects of our WP-based approach on
performance, we compare WPBOUND and SOFTBOUND in
terms of their overheads and the number of checks performed.
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1) Runtime Overheads: Figure 9 compares WPBOUND and
SOFTBOUND in terms of their runtime slowdowns over the
native code (as the un-instrumented baseline). The average
overhead of a tool is measured as the geometric mean of
overhead of all benchmarks analyzed by the tool.

SOFTBOUND exhibits an average overhead of 71%, reach-
ing 180% at h264ref. In the case of our WP-based in-
strumentation, WPBOUND has reduced SOFTBOUND’s aver-
age overhead from 71% to 45%, with significant reductions
achieved at hmmer (73%), libquantum (91%) and milc

(57%). For lbm, which is the best case for both tools, SOFT-
BOUND and WPBOUND suffer from only 3.7% and 0.9%
overheads, respectively. In this benchmark, the pointer load
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and store operations that are costly for in-memory metadata
propagations (as shown in in Figure 2(e)) are relatively scarce.
In addition, SOFTBOUND’s simple dominator-based redundant
check elimination identifies 60% of the checks as unnecessary.

2) Dynamic Check Count Reduction: Figure 10 shows the
ratios of the dynamic number of checks, i.e., calls to wpChk

and sChk executed under WPBOUND over the dynamic num-
ber of checks, i.e., calls to sChk executed under SOFTBOUND
(in percentage terms). On average, WPBOUND performs only
36.0% of SOFTBOUND’s checks, comprising 5.2% wpChk

calls and 30.8% sChk calls. For every benchmark considered,
the number of checks performed by WPBOUND is always
lower than that performed by SOFTBOUND. This confirms that
the WPs constructed by WPBOUND for real code typically
evaluate to true, causing their guarded checks to be avoided.

3) Correlation: By comparing Figures 9 and 10, we can ob-
serve that WPBOUND is usually effective in reducing bounds
checking overheads in programs where it is also effective
in reducing the dynamic number of checks performed by
SOFTBOUND. This has been the case for benchmarks such
as hmmer, lbm, libquantum and milc. As for bzip2,
WPBOUND still preserves 85% of SOFTBOUND’s checks,
thereby reducing its overhead from 78% to 74% only.

We also observe that a certain percentage reduction in the
dynamic number of checks achieved by WPBOUND does not
translate into execution time benefits at the same magnitude.
On average, WPBOUND has reduced SOFTBOUND’s dynamic
check count by 64.0% but its overhead by 37% only. There are
two reasons behind. First, a wpChk call is more expensive than
an sChk call since the first two arguments in the former case
specifying a MAR can involve complex expressions. Second,
WPBOUND is not designed to improve metadata propagation,
which can be another major source of overheads.

V. RELATED WORK

In addition to the pointer-based approaches described in
Section II, we now review guard zone-based and object-based
approaches for enforcing spatial safety and discuss some other
related work on bounds check elimination and static analysis.

A. Guard Zone-based Spatial Safety
Guard zone-based approaches [22], [23], [39], [45], [60]

enforce spatial safety by placing a guard zone of invalid mem-
ory between memory objects. Continuous overflows caused by
walking across a memory object’s boundary in small strides
will hit a guard zone, resulting in an out-of-bounds error. In the
case of overflows with a large stride that jumps over a guard
zone and falls into another memory object, an out-of-bounds
error will be missed. As a result, these approaches provide
neither source compatibility nor complete spatial safety.



B. Object-based Spatial Safety
In object-based approaches [1], [8], [10], [13], [25], [44],

the bounds information is maintained per object (rather than
per-pointer as in pointer-based approaches). In addition, the
bounds information of an object is associated with the location
of the object in memory. As a result, all pointers to an object
share the same bounds information. On every pointer-related
operation, a spatial check is performed to ensure that the
memory access is within the bounds of the same object.

Compared to pointer-based approaches, object-based
approaches usually have better compatibility with un-
instrumented libraries. The metadata associated with heap
objects are properly updated by interpreting malloc and
free function calls, even if the objects are allocated or
de-allocated by un-instrumented code. Unlike pointer-based
approaches, however, object-based approaches do not provide
complete spatial safety, since sub-object overflows (e.g.,
overflows of accesses to arrays inside structs) are missed.

Note that our WP-based optimisation can be applied to
guard zone- and object-based approaches, although we have
demonstrated its effectiveness in the context of a pointer-based
approach, which has recently been embraced by Intel in a
recently released commercial software product [17].

C. Bounds Check Elimination
Bounds check elimination, which reduces the runtime over-

head incurred in checking out-of-bounds array accesses for
Java, has been extensively studied in the literature [5], [14],
[15], [32], [40], [42], [54], [55]. One common approach
relies on solving a set of constraints formulated based on the
program code [5], [15], [40], [42]. Another is to speculatively
assume that some checks are unnecessary and generate check-
free specialized code, with execution reverted to unoptimized
code when the assumption fails [14], [54], [55].

Loops in the program are also a target for bounds check
elimination [32]. Some simple patterns can be identified,
where unnecessary bound checks can be safely removed.

SOFTBOUND [35] applies simple compile-time optimisa-
tions including a dominator-based redundant check elimination
to eliminate unnecessary checks dominated by other checks.

Our WP-based optimisation complements prior work by
making certain spatial checks guarded so that a large number
of spatial checks are avoided conditionally.

D. Static Analysis
A significant body of work exists on statically detecting

and diagnosing buffer overflows [3], [6], [11], [12], [16], [19],
[20], [27], [28], [31], [43], [53], [56]. Due to its approximation
nature, static analysis alone finds it rather difficult to maintain
both precision and efficiency, and generally has either false
positives or false negatives. However, its precision can be im-
proved by using modern pointer analysis [21], [26], [46], [47],
[48], [59], [62] and value-flow analysis [29], [30], [49], [50],
[51] techniques. Recently, static value-flow analysis has been
combined with dynamic analysis to reduce instrumentation
overheads in detecting uninitialised variables [58]. So existing

static analysis techniques can be exploited to compute WPs
more precisely for our WP-based instrumentation.

In addition, the efficiency of static analysis techniques
can be improved if they are tailored to specific clients.
Dillig et al. [11] have recently proposed a static analysis to
compute the preconditions for dictating spatial memory safety
conservatively. Rather than analysing the entire program, their
static analysis works in a demand-driven manner, where the
programmer first specifies a code snippet as a query and then
the proposed static analysis infers a guard to ensure spatial
memory safety for the code snippet. Such analysis uses logical
abduction and is thus capable of computing the weakest and
simplest guards. In contrast, our work is based on the symbolic
analysis of LLVM’s scalar evolution and thus more lightweight
as an optimisation for whole-program spatial-error detection.

VI. CONCLUSION

In this paper, we introduce a new WP-based compile-time
optimisation to enforce spatial memory safety for C. Our opti-
misation complements existing bounds checking optimisations
and can be applied to any spatial-error detection approaches (in
software or hardware). Implemented on top of SOFTBOUND,
a state-of-the-art tool for detecting spatial errors, our WP-
based instrumentation tool, WPBOUND, provides compatible
and comprehensive spatial safety (by maintaining disjoint per-
pointer metadata as in SOFTBOUND) and supports separate
compilation (since all its four phases are intraprocedural).
For a set of 12 SPEC C benchmarks evaluated, WPBOUND,
can substantially reduce the runtime overheads incurred by
SOFTBOUND with small code size increases.
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