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Abstract—Applications are generally written assuming a pre-
dictable and well-behaved OS. In practice, they experience
unpredictable misbehavior at the OS level and across OSes:
different OSes can handle network events differently, APIs can
behave differently across OSes, and OSes may be compromised
or buggy. This unpredictability is challenging because its sources
typically manifest during deployment and are hard to reproduce.
This paper introduces Bear, a framework for statistical analysis
of application sensitivity to OS unpredictability that can help
developers build more resilient software, discover challenging
bugs and identify the scenarios that most need validation. Bear
analyzes a program with a set of perturbation strategies on a
set of commonly used system calls in order to discover the most
sensitive system calls for each application, the most impactful
strategies, and how they predict abnormal program outcome.
We evaluated Bear with 113 CPU and IO-bound programs, and
our results show that null memory dereferencing and erroneous
buffer operations are the most impactful strategies for predicting
abnormal program execution and that their impacts increase ten-
fold with workload increase (e.g. number of network requests
from 10 to 1000). Generic system calls are more sensitive than
specialized system calls—for example, write and sendto can
both be used to send data through a socket, but the sensitivity
of write is twice that of sendto. System calls with an array
parameter (e.g. read) are more sensitive to perturbations than
those having a struct parameter with a buffer (e.g readv).
Moreover, the fewer parameters a system call has, the more
sensitive it is.

I. INTRODUCTION

Applications are generally written with the assumption that
the OSes on all deployed systems will behave predictably and
identically to the testing environment. Recent research [1]–
[3], however, has shown that unpredictability and misbehavior
at the OS level are more common than once thought. Un-
predictability in OS behavior can cause bugs and security
vulnerabilities in applications. These bugs or vulnerabilities
can arise from: (i) different ways OSes handle network events
and protocols [1], and (ii) subtle and undocumented differences
in the behavior of common APIs across different platforms [2]
and from OS changes over time. Further, the OS can be buggy
or malicious, which breaks the predictability assumption. For
example, in Iago attacks [3], a malicious kernel induces a
protected process to act against its interests by manipulating
system call return values. These application bugs and vulnera-
bilities are hard to reproduce in a testing environment, and thus
are difficult to detect and prevent. Although recent technology
trends such as Intel SGX are attempting to introduce mutual
distrust between the OS and its applications [4]–[7], such as by

protecting the application’s memory from the OS, a significant
burden still falls to the application developer to reason about
the semantic impact of return values from the OS on their
applications. In reality, developers are simply not equipped to
write robust applications in the face of unpredictable or even
adversarial OSes.

Developers need techniques to understand the impact of OS
unpredictability and misbehavior on program execution. With a
better understanding of this sensitivity, application developers
can (i) discover bugs that would only appear after program
deployment and would be hard to reproduce, (ii) efficiently
target end-to-end checks as well as time-consuming testing
and verification procedures, and (iii) design and implement
applications that can withstand an OS’s malicious or buggy
misbehavior [3]. This understanding can also improve OS
design, allowing designers to introduce diversity into software
without affecting application execution, thereby alleviating
the security shortcomings of today’s software monoculture.
OS developers currently fear any variability short of bug-
for-bug compatibility, lest the OS harm benign programs;
with an understanding of which behaviors programs were
sensitive or insensitive to, OSes could diversify behavior and
implementation.

This paper introduces Bear, a Linux-based framework for
fine-grained statistical analysis of application sensitivity to OS
unpredictability. Bear statistically analyzes a program using a
set of unpredictability strategies on a set of commonly used
system calls in order to discover the most sensitive system calls
for each application, the most impactful strategies, and how
they predict abnormal program outcome (crash, segmentation
fault, etc.). Rigorously understanding application sensitivity
to OS misbehavior can help developers discover challenging
bugs and edge cases, as well as identify the scenarios that
most need end-to-end checks, targeted testing and verification
procedures. Bear performs a correlation and regression analysis
on the program outcome after the program is run for a
number of times and for every selected combination of system
call, perturbation strategy, and perturbation threshold. The
correlation analysis informs whether or not, for a particular
program, there is a relationship between a program execution
outcome and a system call, strategy, or threshold. If there
is a correlation, regression analysis predicts the likelihood
of an abnormal program outcome for different system calls,
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strategies and thresholds. This analysis allows a developer to
have insights on the following questions: (i) which system calls
are the most sensitive to OS unpredictability and by what
degree? (ii) which strategies cause the most impact in program
execution and by what degree? and (iii) do program type and
execution workloads affect the strategy impact or system call
sensitivity?

Our results showed that for CPU-bound applications, the
four most sensitive system calls are mmap, write, munmap
and rt_sigprocmask. While for I/O-bound applications,
the four most sensitive system calls are mremap, write,
read and munmap. For all applications, null dereferenc-
ing and buffer overflow are the two most severe events in
predicting an abnormal program outcome. For CPU-specific
applications, signal-related errors are also very impactful. On
the other hand, network-related system calls such as sendto
and recvfrom have not shown high significance on abnormal
execution, which may be the result of robust end-to-end check-
ings and retry mechanisms over network layer. The two least
impactful strategies are naked notify in method and privilege
degradation. The rest of the strategies are of similar impact.

Generic system calls are more sensitive than specialized
system calls, for example, write and sendto can both be
used to send data through a socket, but the sensitivity of
write is twice as of sendto. System calls with an array
parameter (e.g. read) are more sensitive to perturbations than
those having a struct parameter with a buffer (e.g readv).
Moreover, the fewer parameters a system call has, the more
sensitive it is.

When the program workload is heavy, the impact of
buffer overflows and wrong parameter types in file-related
system calls on abnormal program execution sharply increased
compared with the medium workload and far exceeded the
impact of null dereferencing errors. The perturbation strategy
impact and the system call sensitivity to perturbation were not
affected when we changed the program workloads from light
to medium.

Programmers should be very careful when handling system
calls with a buffer parameter, considering how commonly
used read and write system calls are, especially when
application workload is heavy. Null dereferencing is a severe
problem as well and almost the hardest to debug when a seg-
mentation fault occurs. Therefore, failure-oblivious computing
can be a promising way for saving developers and testers
from memory bugs. In a resource-constrained development
environment (time, human resources, performance constraints),
developers should prioritize testing and the inclusion of end-
to-end checks for system calls that are specialized, having few
parameters and having a struct parameter that includes a vector.

This work makes the following contributions:

• It represents the first statistical analysis of the impact of
OS unpredictability on program execution, to the best of
our knowledge.

• It provides a framework for developers to find weak
spots in their code that are sensitive to OS misbehavior,
facilitating more resilient and secure software.

• It can provide a new way to introduce diversity into
OS execution (thus improving security) by leveraging
combinations of system calls and strategies that cause
unpredictability in system execution, but at the same time
do not harm the software.

The paper is organized as follows. Section II describes
Bear’s design, while Section III details its implementation.
Section IV gives an overview of the statistical methods used
in this work. Section V summarizes our experimental evalu-
ation. Section VI describes related work in the area of fuzzy
testing, fault-tolerance, and program diversity, and Section VII
concludes the paper.

II. DESIGN

In this section we discuss Bear’s design, whose goal is
to allow a developer to analyze a target program against
various types of OS unpredictability. We chose to design and
implement Bear in Linux because of the Linux’s open source.
This design can be ported to other modern OSes. Bear is
comprised of several modules residing both in user space and
in the OS kernel. In summary, a testing harness component
(Manager) loads a module (Perturbation Module) in the kernel
that implements a set of perturbation strategies on a set of
system calls (Perturbation Set). The Manager also runs the
target program and invokes a statistical module for analysis.

Figure 1 illustrates Bear’s general architecture. More
specifically, Bear runs the application inside of a testing
harness, called the Manager. The manager is responsible for
receiving user input and invoking all other components. The
user (typically an application developer) inputs the target
program, a test case, the set of system calls to be perturbed,
the set of perturbation strategies to be used, a perturbation
threshold, and a timeout for hung programs.

Fig. 1: Bear’s architecture.

The user can select to perturb all system calls or can specify
a system call category for perturbation—for example, file
management, signal control, process scheduling, and network

2



communication. She can also specify that all perturbation
strategies should be used during the analysis, or she can select
a particular strategy. For example, consider a developer running
Bear and passing Chrome as the target program, “All” as the
set of system calls, and 10% as the perturbation threshold. Bear
will perform a series of program runs with the test case, where
in each run it applies one of the strategies to a system call in
the selected set with 10% probability. In the Chrome example,
during the analysis of sys_read approximately 10% of its
invocations will be perturbed with a certain strategy. Each
run represents a combination {sys read, strategyi}, where
i represents each strategy that can be applied on sys_read.

Bear runs each combination {sys read, strategy} a num-
ber of times for statistical significance. The next component in
Bear’s architecture is the Perturbation Module residing at the
OS level. This module is loaded by the Manager (Step 1 in
Figure 1) and is responsible for implementing all perturbation
strategies. Table I lists part of the system calls that can be
perturbed (the Perturbation Set), their categories, and the
perturbation strategies that can be applied to them (strategies
are discussed further in this section). During initialization
the Perturbation Module replaces the original versions of
the system calls in the perturbation set with new versions
implementing the perturbation strategies (Step 2).

The target program is then run by the Manager with
strace. During the program runs (Step 3), the modified
versions of the perturbed system calls and strace will record
relevant information about the run, respectively in the system
logger and in the strace logger (Step 4). After the program
runs finish, the Manager captures these logs (Step 5) and
formats them for input to the Statistical Module (Step 6).

The Statistical Module then performs a correlation analysis
to discover (i) whether there is a relationship or a correlation
between a system call, strategy, and the program outcome
(normal or abnormal), and (ii) the strength of this relationship.
Next, the Statistical Module performs a regression analysis to
predict the likelihood of an abnormal program outcome (an
erroneous exit) for each system call and strategy analyzed.
Finally, it writes the results of the analysis in a report for the
developer (Step 7). The statistical tests used in this analysis
are detailed in Section IV.

A. Perturbation Strategies

The Perturbation Module applies error patterns to the
Perturbation Set. For this work, we chose common OS system
calls from various categories: memory management, signal
control, file operation, network communication and process
scheduling.

The perturbation set (Table I) targets major system mis-
behavior that will cause common software bugs and security
flaws [9], such as memory leak, synchronization error, values
outside domain, buffer overflow, etc. For this work, we intro-
duced a set of perturbation strategies to cover the following
scenarios of OS misbehavior:

• Fail to deallocate a system call (failMem): This
misbehavior strategy simulates a memory leak when a
program’s allocated memory is not freed subsequently,
which can cause the program to substantially increase its
memory usage and crash. We implement this strategy by
returning -1 when sys_unmap() is invoked.

• Empty buffer in memory system call (nullMem): This
strategy simulates a missing initialization, which can lead
to a NULL reference error. This strategy is implemented
by changing the buffer parameter to null for memory-
related system calls, such as sys_mmap().

• Fail of lock related system call (failLock): This strategy
simulates synchronization errors (deadlocks, race condi-
tions and live lock) in the control of the execution of
multi-threads programs with shared data. We implement
this strategy by returning -1 when lock-related system
calls are invoked, such as sys_mlock().

• Failure to signal control system call (failSig): This
strategy simulates signal delivery error and returns -1
when a signal control system call is invoked, such as
sys_rt_sigaction.

• Different data type to parameter (diffType): This
strategy simulates an incorrect input passed, such as
passing an integer parameter, where the expected type
is a character. We implement this strategy by changing
char * parameter to int when a system call such as
sys_write() is invoked.

• Injection of bytes to system call with buffer (bufOf):
This strategy simulates a buffer overflow error and is
implemented by injecting random bytes to a buffer pa-
rameter in a network or file-related system call such as
sys_write() or sys_sendto().

• Failure to access system call (failAcc): This strategy
simulates the failure of checking access for global volatile
objects that are going to be shared between several
threads, such as a library. We implement this strategy by
returning -1 for the sys_access() system call.

• Reduction of buffer size/length parameter (redLen):
This strategy simulates the scenario of an incorrect return
value check that can cause byte loss, if only part of a
buffer passed as a system call parameter is read or written.
We implement the strategy by reducing the buffer length
for network and file-related system calls.

• Fail to notify system call (failNoti): This strategy
simulates a failed call of sys_mq_notify(), which
can cause shared object states to be modified without
knowledge. The strategy is implemented by returning -
1 to sys_mq_notify().

• Fail to change user id (chUid): This strategy simulates
a failure to change privileges, such as failing to change
the user id to root when sys_setuid is invoked.

III. IMPLEMENTATION DETAILS

Bear’s Manager executes at the user-level and automates
analysis by (i) loading the Perturbation module with the
input parameters passed by the developer; (ii) executing the

3



Category System Call
Example Strategies Common Related Bugs

Memory Management sys unmap Fail to deallocate system call (failMem) Memory leak
sys mmap Empty buffer in memory system call (nullMem) Null dereferencing

Signal Control sys mlock Failure to lock related system call (failLock) Synchronization error
sys kill Failure to signal control system call (failSig) Signal delivery error

File Operation

Network Communication

sys read Different data type to buffer parameter (diffType) Value outside domain
sys write Injection of bytes to system call with a buffer(bufOf) Buffer overflow
sys access Failure to access system call (failAcc) Dealing with volatile objects
sys sendto Reduction of buffer size/length parameter (redLen) Buffer return not checked

Process Scheduling sys mq notify Fail to notify system call (failNoti) Naked notify in method
sys setuid Fail to change user id (chUid) Privilege degradation

TABLE I: Applicable strategies and examples of system calls in the perturbation set. The full set of system calls can be found in [8]. In later
analysis we use syscall rather than sys_syscall for short.

target program for each combination of system call, strategy,
and threshold enough times for statistically significant results;
(iii) capturing the results of each run from the syslog and
strace logs; (iv) parsing the results of each run into a format
required by the open-source statistical module R [10]; and (v)
invoking R for analysis. The user inputs into Manager the
target program pathname, the category of system calls to be
perturbed (all, file, process, signal, or network), a perturbation
threshold, a test case, and a timeout, in case a process hangs.
Figure 3 illustrates the format of Bear’s input and output.

Upon initialization, the Perturbation module replaces the
system call table pointers for the system calls in the pertur-
bation set with new versions implementing the strategies. 1

In newer versions of Linux, the system call table is read-
only; we remap the table read-write. The Perturbation module
introduces four new variables: (i) target, the pathname for
the target program being analyzed; (ii) sys_category, the
category of system calls being analyzed (all, file, net, process,
signal, or mem); (iii) strategy_set, the strategy(ies) to
be used in the analysis (see Section II for details); and (iv)
threshold, a number in [0, 1], which represents the probability
of perturbation for each system call that is part of the analysis.

Algorithm 1 shows how the OS applies perturbation strate-
gies to sys_write. The system call performs three checks
that all must be true before a strategy is applied: (i) the current
program must be target, (ii) the current system call to be
analyzed is sys_write, and (iii) a randomly selected number
in [0, 1] should be smaller than the threshold. If all conditions
are true the selected strategy is applied on the system call.

The Manager checks every check_frequency (also
a configurable parameter) for whether the target program is
still running by searching the program in the list of running
programs. If the program exits normally, it will invoke system
call exit_group with exit code 0. Otherwise, if the exit code
is non-zero, the program ended abnormally. The exit code is
recorded in the strace log.

IV. STATISTICAL METHODS

This section explains the statistical methods underlying
Bear. In our study, the independent variables are system

1We decided not to implement the strategies with strace because it has
limitations on changing the parameters.

Algorithm 1: Perturbing sys_write()

Function long my sys write(fd, buf, size)
if (current == target and syscall == sys write and
(random(0.0, 1.0) < threshold)) then

switch strategy do
case diffType

/* Pass different data type */
intNum = getRandomInt();
return orig sys write(fd, intNum, size);

end
case redLen

/* Reduce buffer length */
newsize = random(0, size);
orig sys write(fd, buf, newsize);
return size;

end
case bufOf

/* Inject buffer bytes */
newsize = random(0, 4);
append newsize bytes in buf ;
orig sys write(fd, buf, newsize);
return size;

end
endsw

else
return orig sys write(fd, buf, size);

end

call, perturbation strategy, program type (CPU-bound or I/O-
bound), and perturbation threshold. The dependent variable is
the program outcome, which can be normal or abnormal. The
user of Bear manipulates one or more of these independent
variables and measures the change in the dependent variable.

Our statistical analysis uses standard hypothesis testing
[11]. In our context, the null hypothesis (H0) is that the exe-
cution of a particular system call or a perturbation strategy is
unassociated with the program outcome, i.e., that misbehavior
of the system call will not be associated with nor will it predict
abnormal program outcome. A statistical test produces a p-
value based on the results under analysis. The p-value is the
probability of the test making a Type I error [11]: rejecting
the null-hypothesis when it is actually true. When the p-value
is very low (0.05 or 0.01), the experimenter will only observe
this error 5% or 1% of the time.
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Fig. 2: Statistical tests used in this study.

Before applying the appropriate statistical test,2, the ex-
perimenter selects an appropriate significance level called α,
which is also a very low probability (0.10, 0.05, or 0.01). α is
the experimenter’s threshold for statistical significance: the test
is statistically significant if the produced p-value ≤ α. Figure
2 summarizes the statistical analyses used in Bear’s evaluation.
We performed a correlation analysis, to discover and measure
the strength of the association between the variables, and a
regression analysis to discover the cause and effect of the
variables’ relationship. The next subsections detail each one
of these tests.

A. Correlation Analysis

Correlation analysis is a statistical technique used to mea-
sure and describe the relationship between two variables. The
chi-squared test [11] is a test of independence and is used for
correlation of non-numerical data, such as those we have in
this study: system calls (e.g., sys_read), strategy types (e.g.,
failMem), and program outcome (normal or abnormal). This
test can determine whether there is a relationship between two
variables.

The chi-squared test uses the frequency data from a sample
to evaluate the relationship between two variables (e.g., per-
turbed system call and program outcome). Each individual in
the sample (e.g. program run) is classified on both of the two
variables (e.g. which system call was perturbed and program
outcome), creating a two-dimensional frequency-distribution
matrix: the chi-squared matrix [11].

In our case we have two matrices: one for system call
and program outcome, and another for strategy and program
outcome. The observed frequency fo is the number of program
runs that are classified in a particular category. The next step
is to find the expected frequencies (fe values) for the test. The
expected frequencies define an ideal hypothetical distribution
in agreement with the null hypothesis and are predicted from
the proportions in the null hypothesis and the sample size (n).

2The type of statistical test depends on the goals of the experimenter, the
type of the study design—single group, between groups, repeated measures,
etc.—and the type of data—continuous, discrete, categorical, ordinal, etc.

The value of fe in each cell is obtained as fe = (fc × fr)/n,
where fc is the frequency total for the column (column total),
fr is the frequency total for the row (row total), and n is the
sample size [11].

After expected frequencies are obtained, we compute a chi-
squared statistic (χ2) to determine how well the data (observed
frequencies) fit the null hypothesis (expected frequencies) as
χ2 =

∑
(fo − fe)2/fe. The formula measures the discrepancy

between the data (fo values) and the hypothesis (fe values); the
goal is to see how close to the expected values our observed
values are. The larger the discrepancy, the larger the value
for χ2 is and the stronger the evidence is against the null
hypothesis.

We can think of the chi-squared test as a binary test:
it only tells us whether two variables are independent or
not. As we were also interested in measuring the strength
of the variables’ correlation, we continued the analysis with
the Cramer’s V test [11]. This test builds upon the chi-
squared test (it uses the matrices generated by chi-squared) and
measures the strength of the variables’ correlation. Cramer’s V
produces a value between [0, 1] that measures the strength of
the correlation—0.00 means no relationship and 1.00 means a
perfect relationship.

B. Regression Analysis

Bear uses regression analysis to predict the relationships
between perturbed system calls and program outcome, and
between strategies and program outcome. While correlation
analysis measures the strength of the relationship between
these variables, regression analysis predicts the odds, defined
as p/(1− p), where p is the probability.

Logistic regression is a type of regression model used when
the dependent variable is categorical, which is the case in
our analysis. Logistic regression uses the concept of the odds
ratio, which represents the constant effect of a predictor X
(independent variable), on the likelihood that one outcome will
occur (dependent variable) [12]. With odds ratio we can predict
the likelihood of a system call or strategy causing an abnormal
program outcome. For example, consider that we define system
call A as reference system call and find that the odds ratio
of system call B to cause an abnormal program outcome is
4. This means that system call B is 4 times or 300% more
likely to cause an abnormal program outcome than A. The
experimenter usually selects the most intuitive category as the
reference although the choice of reference system call does
not change the final prediction.

Logistic regression defines the dependent variable, Y
(program outcome), as the logarithm of the odds and as a
linear function of explanatory variables. The explanatory
variables, Xi, are the logged independent variables (perturbed
system call and type of strategy). The coefficient, βi, is
the independent effect of independent variable Xi on the
dependent variable Y . Together, logistic regression is in the
form:
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Y = log (odds(p/(1− p))) = β0 + β1x1 + ...+ βnxn

Regression techniques try to find the best-fitting straight
line for the data. When a simple linear regression model is
fitted to logged variables, the exponentiated slope coefficient
represents the predicted percent change in the dependent vari-
able per percent change in the independent variable, regardless
of their current levels [13]. For categorical variables like those
used in our study, we use dummy variables of the form: xi = 1
if Xi = read, and xi = 0, otherwise.

To sum up, in our analysis we use standard hypothesis
testing to understand the relationship between perturbed sys-
tem calls, perturbation strategies, and program outcomes. Our
analysis uses correlation analysis to discover whether these
variables are indeed dependent and what the strength of their
relationships are. Then our analysis employs logistic regression
to predict the effects of these variables on an abnormal program
outcome.

V. EVALUATION

This section describes the experiments we conducted to
validate Bear. We analyzed 113 applications including appli-
cations from GNU Core Utilities [14], SPEC CPU2006 [15]
and Phoronix Test Suites [16]. We selected Core Utilities
because their applications provide the most commonly used
functions in Linux. SPEC and Phoronix benchmarks allowed
our evaluation to test different workloads and provided suf-
ficient off-the-shelf test cases. Bear framework doesn’t rely
on source code for white-box testing, so test coverage doesn’t
make a difference to our result. For the CoreUtils applications,
we selected test case as their commonly used functions. The
studied applications fall into four categories—processor (70
applications), network (11 applications), disk (27 applications)
and encoding (5 applications).

Our evaluation lasted for 200 hours with approximately
100,000 runs in total. Each run is a combination of the fol-
lowing tuple: {program, syscall, strategy, threshold}. The
evaluation covered every system call and strategy in Table I
and every threshold in {10%, 50%, 90%}. Each combination
ran five times and the number of runs per combination (five)
was determined empirically based on the requirements of the
chi-squared tests [17]: the chi-square matrix’s expected counts
should be at least five counts in each cell.

We installed the Bear framework on a virtual machine
with 1GB RAM, 40GB Hard Disk, x86 64 architecture, and
single processor running Ubuntu 12.04 with kernel release
3.11. The host machine has 16GB RAM, 160GB Hard Disk,
x86 64 architecture, and 8 processors running Ubuntu 14.04
with kernel release 3.13.

Figure 3 shows an example of the input format a developer
needs to provide. By default, Bear tests all system calls with
all strategies, with 1.5 times of the estimated time to complete
as timeout in case any test hangs in the middle of a run. In
the example given in Figure 3, g++ is tested by generating
optimized code on a Solaris machine with warnings. After

Fig. 3: Format of Bear input and output.

the analysis, Bear outputs system calls and strategies ranked
by impact. The number of times each system call is invoked
(Count) is also provided.

As discussed in Section IV, for each collection of program
runs we performed a correlation and a regression analysis.
The next subsections describe each one of these analyses and
how they were evaluated. In our evaluation, we considered the
significance level α = 0.05 (see section IV). The evaluation is
organized around the following questions:

1) Which perturbation strategies are the most and least
impactful on abnormal program execution? Does it vary
based on threshold?

2) Which system calls are the most and least sensitive to
perturbation? Does it vary based on perturbation thresh-
old?

3) How does the strategy impact and system call sensitivity
vary based on the program type (processor, disk, network,
and encoding)?

4) Will the result differ when applications are executed with
different workloads?

A. Correlation Analysis

As illustrated in Figure 2, the first analysis phase in Bear
is a correlation analysis with a chi-squared test to discover
whether the program outcome is independent of applying
perturbation strategies on system calls. Table II and III illus-
trate the chi-square test results between abnormal execution
outcome and system calls/strategies. df represents the degrees
of freedom and, in our example, equals the number of strate-
gies/system calls minus one. We considered all applications
in categories processor and encoding as CPU-bound, and all
applications in categories network or disk as I/O-bound.

As discussed in section IV, the evidence to reject the null
hypothesis is a chi-square statistic value higher than that in the
chi-square distribution table [18]. For system calls (df = 20),
the chi-squared distribution table shows a value of 39.997,
which is lower than every X-squared value in Table II. For
strategies (df = 9), the chi-squared distribution table shows
a value of 18.548, which is also lower than every X-squared
value in Table III. This leads us to reject the null hypothesis of
independence and conclude that there is an association between
a program execution outcome and a perturbation system call,
and likewise on a perturbation strategy.
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X-squared value df p-value
All programs 262.39 20 <0.0001
CPU-bound 48.732 20 0.0003355
IO-bound 486.21 20 <0.0001

TABLE II: Chi-square result for system call and program execution
outcome.

X-squared value df p-value
All programs 66.428 9 <0.0001
CPU-bound 42.667 9 <0.0001
IO-bound 112.02 9 0.0017

TABLE III: Chi-square result for strategy and program execution
outcome.

To understand the strength of the association between these
variables, we did follow-up tests using the Cramer’s V method.
The tests produced association levels from 15% to 35%, which
are acceptable and even desirable based on Cramer’s V criteria
[19] (see section IV). Given these results we could proceed to
the next phase in our evaluation: logistic regression, which
allows us to better understand the influence of system call and
strategy on the program outcome.

B. Regression Analysis

This section describes the logistic regression model gener-
ated by Bear.

1) Strategy Impact on Program Outcome: Bear uses two
types of program outcomes: normal and abnormal. We initially
classified the possible program outcomes into four levels:
normal, crash, abort, and segfaults. During the analysis of
113 programs, we observed that the number of aborts and
segfaults was 1-2 orders of magnitude smaller than the number
of normal executions and crashes, which would decrease the
accuracy of the statistical model. Coupled with controversial
opinions on how to classify normal and crashes [20], this
prompted us to consider crashes, aborts, and segfault as a
single category of program outcome: abnormal. In other words,
result normal referred to a correct execution or a graceful exit
of a program and result abnormal referred to all the other
results.

Figure 4 shows the impact of perturbation strategies as
predictors on program outcome for all programs and for the
thresholds of 10%, 50% and 90%. With p<0.05, every strategy
except failNoti and chUid are statistically significant
in predicting an abnormal program outcome. Odds ratios on
the x-axis show the odds of a strategy causing an abnormal
program outcome when compared to a reference strategy. The
reference strategy doesn’t make a difference on the analysis
result. We selected nullMem as the reference strategy and
plotted how much more or less likely (odds ratio) the other
strategies are in causing an abnormal outcome compared
to nullMem, the most significant strategy in predicting an
abnormal program outcome.

For example, for the perturbation threshold of 90%, strat-
egy failAcc has an odds ratio of 0.5 (p<0.001) when compared

Fig. 4: The impact of perturbation strategies in predicting abnormal
program outcome, tested on all programs with thresholds of 10%,
50% and 90%. Reference strategy is nullMem. Odds ratio shows how
much more or less likely a strategy is to cause an abnormal program
outcome compared to the reference strategy. Absence of chUid
and failNoti means that they are not significant in predicting an
abnormal execution.

with nullMem, which means that it is 50% less likely to cause
an abnormal program outcome than nullMem for the same
threshold. Notice that the odds ratios vary depending on the
perturbation threshold. For example, diffType is more likely
to cause an abnormal program outcome for 10% and 50%
perturbation threshold than for 90%.

On threshold 50% and 90%, the impact of strategies fol-
lows a similar trend, with nullMem failAcc and failSig
as the three most impactful strategies and failLock
diffType and redLen as the three least impactful strate-
gies. The impact of strategies on threshold 10% differed by
some degree. When the threshold increases from 50% to 90%,
the overall impact of the strategies decreases compared to
reference strategy nullMem, which shows that the impact of
nullMem increases faster than that of the rest of strategies.
Also, the impact of failSig and failLock increases faster
than that of buffer and memory-related strategies such as
failAcc, failMem, bufOf, diffType and redLen.

The absence of strategies chUid and failNoti in Figure
4 does not necessarily mean that they have no impact on an
abnormal program execution. They are just not statistically
significant in predicting an abnormal result under the defined
level α = 0.05. In other words, their impact is relatively little
compared to the other strategies.

We evaluated the tested programs execution based on
whether the application was CPU or I/O-bound. We considered
all applications in categories processor and encoding as CPU-
bound, and all applications in categories network or disk as
I/O-bound.

Figures 5 and 6 show the impact of the strategies on
program outcome when we analyze I/O-bound and CPU-bound
programs separately. Figure 5 shows that only five strategies re-
lated to buffer and memory demonstrate statistical significance
in predicting an abnormal program outcome for I/O-bound pro-
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Fig. 5: Impact of perturbation strategies in predicting abnormal
program outcome, tested on I/O-bound programs. Each strategy is
compared with reference strategy nullMem.

Fig. 6: The impact of perturbation strategies in predicting abnormal
program execution, tested on CPU-bound programs. Each strategy is
compared with reference strategy nullMem.

grams. nullMem still has the strongest impact while bufOf,
redLen, and diffType show similar impacts at around
20% of nullMem. For CPU-bound programs, the result shows
some differences as displayed in Figure 6. Besides the five sta-
tistically significant strategies in I/O-bound programs, signal-
related strategies such as failLock and failSig are also
significant in CPU-bound programs. nullMem still has the
strongest impact, and the rest of the strategies are at about
50% to 70% of its impact. failAcc does not appear in
Figure 5 and 6 because of the complete separation statistical
phenomenon that occurred after we separated the data from
CPU and IO-bound programs. Complete separation occurs
when a linear combination of the predictors yields a perfect
prediction of the response, which skews the model and reduces
its overall predictive strength. In our experiment, any system
call/strategy presenting a number of normal outcomes 20 times
more than the number of abnormal outcomes is considered
affected by complete separation.

The lesson learned is that nullMem is the highest impact-
ful misbehavior for predicting an abnormal execution in both
I/O-bound (disk and network) applications and CPU-bound
(processor and encoding) applications. Buffer overflow, value
outside domain, unchecked return length, and memory leak
should be carefully considered during software development.
CPU-bound software is especially sensitive to signal-related
errors. In case of limited resource (time, performance hit limit,
man hours) for testing/verification, naked notify and privilege
degradation can be given the lowest priority as they bring the
least impact on program execution.

Fig. 7: Top nine most impactful system calls on predicting abnormal
program outcomes for all programs, compared with reference system
call mmap.

2) System Call Impact on Program Execution: At threshold
10%, every system call makes equal little impact in predicting
an abnormal program outcome. Thus in this section, we
only consider system call sensitivity with the thresholds of
50% and 90%. At these threshold levels, every system call
is statistically significant in predicting an abnormal program
outcome. Figure 7 shows the nine most impactful system calls
compared to the reference system call mmap on abnormal
program outcome. The likelihood of an abnormal program
outcome is again demonstrated by using odds ratios on the x-
axis. mmap is chosen as the reference system call since it is the
most statistically significant in predicting an abnormal program
outcome. This finding corroborates our previous finding that
failMem and nullMem are the two most impactful strategies
in causing abnormal program execution.

At threshold 50%, system call access is approximately
60% less sensitive than mmap and is the second-most sensitive
for abnormal execution. A failure in access prevents a
program from accessing a library and can abruptly cause its ter-
mination. The other system calls demonstrate a relatively equal
significance. Network-related system calls such as sendto
and recvfrom are not in the top nine most significant list,
which can be attributed to their robustness against perturbation
or the presence of robust end-to-end checks and retry mecha-
nisms over network layer. At threshold 90%, every system call
presents only 10% to 15% of mmap’s sensitivity. This happens
because the sensitivity of mmap increases faster than the other
system calls when the threshold increases.

Figures 8 and Figure 9 evaluate the I/O-bound and CPU-
bound subsets respectively. In I/O-bound programs, only five
system calls are statistically significant in predicting an abnor-
mal outcome. mmap was removed from the analysis model for
I/O-bound programs due to the complete separation problem.
Any perturbation on mmap for all thresholds almost always
caused an abnormal program outcome, and adding a variable
where the outcome is already known skews the model and
reduces its overall predictive strength.
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Fig. 8: Statistically significant system calls on predicting abnormal
program outcomes for IO-bound programs, compared with reference
system call mremap.

Fig. 9: Statistically significant system calls on predicting abnormal
program outcomes for CPU-bound programs, compared with refer-
ence system call mmap.

Thus after eliminating mmap from the model, mremap
becomes the most sensitive system call and works as the refer-
ence system call in Figure 8. Again, no network-specialized or
signal-related system calls show up in the figure, corroborating
the result in Figure 7 that no network-specialized system calls
are highly significant and the result in Figure 5 that no signal-
related strategies are highly significant.

Figure 9 listed all the system calls that are statistically
significant for an abnormal CPU-bound program outcome
compared with reference system call mmap. Generic system
calls (such as write and read), memory-related system calls
(such as munmap and mprotect) and signal-related system
calls (such as rt_sigprocmask) have more than 40% of
the sensitivity of mmap. Network-related system calls, such
as sendto recvfrom, show lower sensitivity at around
20% of mmap. System calls such as readv/write and
preadv/pwritev with a vector buffer do not appear in
Figure 9, while read/write and pread64/pwrite64
with a general buffer do, indicating that system calls with
a vector buffer are less impactful in predicting an abnormal
program execution. Notice that even though some system calls
present equal sensitivity, such as sendto and mlockall,

Fig. 10: Impactful strategies on predicting abnormal program
outcomes on three workloads, compared with reference strategy
nullMem.

the frequency at which they are called is totally different.
Developer and testers should balance their time, not only based
on how severe the impact on the system call might be, but also
on how frequently the system call is invoked.

3) Workload Impact on Program Outcome: SPEC
CPU2006 and Phoronix Test Suite provide applications
that can be configured to run under different workloads.
Twenty-six applications are selected because they can be
installed successfully on our experiment virtual machine. The
workloads contain three levels: light, medium, and heavy,
which correspond to test, train, and ref levels for SPEC
CPU2006, and first, middle-most, and last level in Phoronix
Test Suite.

Figure 10 shows the statistically significant strategies in
predicting abnormal program outcome on three workloads
compared with reference strategy nullMem. From Figure 10,
we can see that the results for light and medium workloads
follow the same trend, with nullMem and diffType highly
impactful and failSig, redLen and bufOf less impactful.
However, when workload increases from medium to heavy,
bufOf rapidly grows the impact to 10 times of the original,
and diffType and failSig double their impacts. Figure 11
demonstrates the sensitive system calls on predicting abnormal
outcome for the three different workloads. Every system call
in the figure has 10% to 20% sensitivity of mmap’s sensitivity
and presents equal impact on three workloads, indicating that
the workload does not influence the system call sensitivity on
predicting abnormal program outcome.

This tells the developers that regardless of the system call
type, buffer overflows and value outside domain bugs should
be taken seriously when heavy workloads are used.

C. Summary and Recommendations for Developers

Our results showed that for CPU-bound applications, the
four most sensitive system calls are mmap, write, munmap
and rt_sigprocmask. While for I/O-bound applications,
the four most sensitive system calls are mremap, write,
read and munmap. For both I/O-bound and CPU-bound
applications, null dereferencing and buffer overflow strategies
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Fig. 11: Statistically sensitive system calls on predicting abnormal
program outcomes on different workloads, compared with reference
system call mmap.

are the two most severe in predicting an abnormal program
outcome. For CPU-specific applications, signal-related errors
are of the equal importance. The two least impactful strategies
are naked notify in method and privilege degradation, and the
rest of the strategies are of similar impact.

Surprisingly, network-specialized system calls (read and
write excluded) didn’t show high impact on abnormal execu-
tion, taking into account their wide use in programs and APIs,
and this should be attributed to the effectiveness of a perfect
end-to-end checking and retry mechanism over network layer.

When workload is heavy, the impact of buffer overflow on
abnormal execution doubled five times than medium workload
and far exceeded the impact of null dereferencing. The same
thing happens on wrong-type buffer strategy, which doubles the
impact on heavy workload. On light and medium workload,
strategy impact and system call sensitivity remains invariant
for all applications.

When resources are limited (time, man hours, perfor-
mance), developers should focus on buffer type and return
length checking, considering how commonly used read and
write system calls are, especially when application workload
is heavy. One strategy developers should take is to use system
calls that are specialized and that use vector arrays in a struct
parameter, rather than a standard array in the parameter list.
Moreover, given a choice of more than one system call for a
particular functionality developers should choose those with a
larger parameter list. Null dereferencing is a severe problem
as well and almost the hardest to debug when a segmentation
fault occurs. Therefore, failure-oblivious computing can be a
promising way for saving developers and testers from memory
bugs.

VI. RELATED WORK

This paper intersects the areas of fuzz testing, fault-
tolerance, failure-oblivious computing, and unpredictability
and diversity in computer systems. In this section we discuss
relevant work in these areas.

Fuzz Testing: Fuzz testing is an effective way to discover
coding errors and security loopholes in software, operating
systems, and networks by testing applications against invalid,
unexpected, or random data inputs. Miller et al. [21] first
proposed fuzz testing as an inexpensive mechanism to gen-
erate additional software tests. The authors later extended the
work [22] to identify missed return code checks from crucial
calls, such as memory allocation. Many additional fuzz testing
approaches have been proposed [23]–[25]. Trinity [26], for
example, randomizes system call parameters to test the vali-
dation of file descriptors, and found real bugs [27], including
bugs in the Linux kernel [28]–[30]. White-box fuzzy testers
[31]–[34] were also proposed to increase the coverage of test
inputs by leveraging symbolic execution and dynamic test
generation. For instance, KLEE [33] uses symbolic execution
and a model of system call behaviors provided by a user to
generate high-coverage test cases. BALLISTA [20] tests the
data type robustness of the POSIX system call interface in a
scalable way, by defining 20 data types for testing 233 system
calls of the POSIX standard. Bear can also be thought as a
fuzz tester at the OS system call API and contributes statistical
techniques to understand how sensitive an application is to a
particular type of OS misbehavior.

Fault Injection: Fault injection is an important method
for generating test cases in fuzz testing. Through fault injec-
tion, researchers are able to study fault propagation [35] and
develop flexible and robust software and systems [36]–[38].
Kanawati and Abraham provide a methodology and guidelines
for the design of flexible software, based on their experience
with the fault injection tool FERRARI [36]. Fault injection
has been applied to a number of abstractions. DOCTOR
[37] for example, supports memory faults, CPU faults, and
communication faults. FINE [35] traces execution flow and
key variables through the UNIX kernel via hardware-induced
software errors and kernel software faults injection. A recent
survey on assessing dependability with software fault injection
[39] provides a comprehensive overview of the state of the
art fault injection approaches to fit the goals of researchers
and practitioners. LFI tool [40] injects errors in library-calls,
in order to identify error handling faults that arise from
misunderstanding of library APIs, and from poor portability
across different OSes. Other possible forms of fault injection
are code mutations and data interface corruptions [41].

Bear also works by injecting faults (perturbations) in the
execution of software at the system call level. Even though this
fault injection can be leveraged in fuzzy testers, Bear’s goal
is to statistically understand program sensitivity to different
types of faults on different types of system calls.

Failure-Oblivious Computing: Failure-oblivious comput-
ing allows a system or program to continue execution in
spite of errors. Rinard et al. [42] published a classic paper
in the area that introduced a C compiler to insert checks to
dynamically detect invalid memory accesses. On errors, instead
of terminating the program or throwing an exception, the
program would discard invalid writes and manufacture values
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to return for invalid reads, enabling the program to continue its
execution. ASSURE [43] introduces rescue points in software
(discovered via fuzzing) to recover it from unknown faults,
while maintaining both system integrity and availability. Bear’s
goals are complementary to failure-oblivious approaches. By
determining the most impactful types of perturbations and
the most sensitive system calls, it can help failure-oblivious
approaches to better target checks and rescue points, greatly
improving the effectiveness and the high performance overhead
of such approaches.

Unpredictability and Diversity: A major new trend in
secure systems is toward mutual distrust between applications
and operating systems [6], [7], facilitated by technologies such
as Intel SGX [4]. SGX offers features such as protecting ap-
plication memory from the OS, as well as a hardware-attested,
cryptographic hash of the launched code. OSes are commonly
compromised [44], and are often considered untrustworthy
by users—especially in cloud computing environments, where
software components may be provided by a third party. Iago
attacks [3], for example, compromise a process execution
by manipulating system call return values, illustrating the
importance of deeper analysis of how resilient an application
is to unexpected OS behavior.

Several projects mitigate buffer overflows and other mem-
ory errors by randomizing system call mappings, global li-
brary entry points, stack placement, stack direction, and heap
placement, often in conjunction with running multiple versions
in parallel to detect divergence [45], [46]. The Synthetix
project [47] specializes code dynamically using automatic
compiler analysis and programmer annotations, primarily to
improve performance; specialization has been proposed as a
mechanism to block attacks [48]. Program slicing has also
been used to bound the cost and complexity of automatic
diversification [49]. Containing unpredictability has an effect
of increasing server availability. Rinard et al. [50] demon-
strated how failure-oblivious computing can enable servers to
execute through memory errors without memory corruption.
By converting unanticipated and dangerous execution paths
into invalid inputs in the error-handling logic, the server con-
tinued on processing subsequent requests, and largely extended
the range of requests processed. Compiler diversification and
instruction randomization techniques [51] are complementary
and orthogonal to Bear, as software generated with such
techniques will be more resilient to random and adversarial
perturbations. Further, Bear can provide insights about which
functionalities are the best candidates for perturbation as a
way to create diversity in the system. For example, proposals
like those of Sun et al. [52], [53] can select approaches
for OS unpredictability that minimize the impact on benign
applications, while still generating diverse runs of the same
system.

VII. CONCLUSIONS AND FUTURE WORK

This paper introduced Bear, a framework for statistical
analysis of program sensitivity to OS unpredictability that

aids developers in writing programs that are resilient to OS
misbehavior. Bear’s evaluation produced important insights for
developers.

As expected, perturbations like null dereferencing and
buffer overflow are the two most significant strategies in
predicting abnormal program outcomes, while the two least
impactful strategies are naked notify in method and privilege
degradation. For CPU-specific applications, signal-related per-
turbations are also highly impactful. For system call sensitivity,
network-specialized system calls (read and write excluded)
did not show high impact on abnormal execution, taking
into account their wide use in programs and APIs, and this
should be attributed to the effectiveness of a perfect end-to-
end checking and retry mechanism over network layer. Generic
system calls are more sensitive than specialized system calls—
for example, socket-related system calls read/write are
twice the sensitivity of sendto/recvfrom. System calls
having a general buffer are more sensitive than those having a
vector buffer parameter (e.g. read/write is in the sensitive
list but readv/writev is not). System calls having fewer
number of parameters specified are more sensitive than those
having a larger number of parameters list (e.g. access is in
the sensitive list but faccessat is not).

Developers should be careful on handling buffer type and
return length of OS system calls, considering how commonly
used read and write system calls are, especially when
application workload is heavy. Developers and testers should
balance their time not only based on how severe the impact
of a system call or a strategy, but also on how frequently it is
invoked. If resources are limited, failure-oblivious computing
can be a promising way for saving developers and testers from
memory bugs. Given an option of more than one system calls
for the same functionality, developers should select system
calls that are specialized, taking a buffer of vector inside a
parameter struct and having the larger parameter list.

With slight changes, Bear’s framework can be applied for
all OSes because most of the system calls in the perturbation
set are portable/generic. The future work will include finer
granularity on the abnormal execution results.
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