
The original publication is available at http://doi.org/10.1109/ISSRE.2017.40
In The 28th International Symposium on Software Reliability Engineering (ISSRE 2017) c© IEEE 2017.

Formal Development of Policing Functions for
Intelligent Systems

C. Bogdiukiewicz†, M. Butler∗, T.S. Hoang∗, M. Paxton†, J. Snook∗, X. Waldron† and T. Wilkinson∗
∗Electronics and Computer Science

University of Southampton
Southampton, UK

Email: {mjb, t.s.hoang, jhs1m15, stw08r}@ecs.soton.ac.uk
†TEKEVER Ltd.
Southampton, UK

Email: {martin.paxton, xanthippe.waldron, chris.bogdiukiewicz}@tekever.com

Abstract—We present an approach for ensuring safety prop-
erties of autonomous systems. Our contribution is a system
architecture where a policing function validating system safety
properties at runtime is separated from the system’s intelligent
planning function. The policing function is developed formally
by a correct-by-construction method. The separation of concerns
enables the possibility of replacing and adapting the intelligent
planning function without changing the validation approach. We
validate our approach on the example of a multi-UAV system
managing route generation. Our prototype runtime validator has
been integrated and evaluated with an industrial UAV synthetic
environment.

Index Terms—Formal Methods; Policing Function; UAVs;
Event-B; correct-by-construction

I. INTRODUCTION

a) Motivation: Autonomous systems offer many poten-
tial advantages over their more traditional human-controlled
counterparts, however they also raise several significant chal-
lenges. One of the key challenges is demonstrating that an
autonomous system can reliably perform the tasks assigned
to it, and that it can do so without endangering the safety of
persons or property.

b) Challenge: The difficulty in ensuring the safety of
an autonomous system arises from (1) the complexity of
autonomous decision making mechanisms, and (2) vague and
ambiguous safety properties. On the one hand, autonomous
systems often employ complex planning functions to produce
their output. These intelligent functions usually deploy several
heuristic strategies and are hence often unpredictable. Fur-
thermore, they are subjected to frequent improvements and
adaptations. On the other hand, whereas safety properties for
these autonomous systems are often clear at an intuitive level,
e.g., collision avoidance, it is difficult for the system designers
to demonstrate that these safety requirements are met.

c) Approach: The approach that we take is to formally
develop a runtime policing function to validate the system
safety. The policing function is separated from the system’s
intelligent planning function and checks the system output
against safety constraints. This separation of concerns allows
us to decouple the validation of the system safety properties
from the complexity of the planning function. It would allow

the intelligent system to be modified without having to re-
verify the policing function. To address the second challenge
and to demonstrate that the policing function correctly vali-
dates the safety constraints, we use a correct-by-construction
approach: the policing function is formally constructed from
its abstract specification, through several consistent refinement
steps to derive its implementation.

d) Contribution: Our contribution therefore is a system
architecture where a formally developed policing function val-
idating system safety properties is separated from the system’s
intelligent planning function (Figure 1). The intelligent system

Intelligent
planning
function

Formally
developed
policing
function

Validated
output

Proposed
output

Validation
result

Fig. 1. System architecture for formally developed policing function

can be adapted or replaced without changing the validation
approach. Validation of additional safety constraints can be
added to the policing function independently of the intelligent
function. By formally developing the policing function, we
ensure the correctness of the policing function in validating
the system safety properties. We illustrate our approach on the
example of a multi-Unmanned Aerial Vehicle (UAV) system
managing route generation. The formalisation of our policing
function is developed using the Event-B [1] modelling method.

e) Structure: The rest of the paper is structured as
follows. Section II gives an overview of the multi-UAV system
under consideration and of the Event-B modelling method.
Section III illustrates our approach by formally developing a
C implementation of a policing function for the multi-UAV
system. The C implementation of the policing function is
integrated with the synthetic environment for the multi-UAV
system and its performance is evaluated in Section IV. We
summarise and give some conclusions in Section V.

1

http://doi.org/10.1109/ISSRE.2017.40

II. BACKGROUND

In this section, we first give an overview of the multi-UAV
system under consideration in Section II-A and give some
background information on the Event-B modelling method in
Section II-B.

A. System Overview

The system under consideration is a Ground Control Station
(GCS) which is able to produce a set of routes for a number
of UAVs. The system overview can be seen in Figure 2. The
Operators are users who interact with the human machine in-
terface of the system. They give commands to the components
of the system. The Human Machine Interface allows operators
to interact with the system by displaying relevant information
to them and taking inputs and commands. The Route Planner
is an intelligent function which generates route plans according
to goals and constraints specified by the operators and other
components of the system. The Network Comms Interface
allows for communication between the control station and
the aircraft. The Aircraft take commands and routes from the
control station. They can be tasked individually.

Operator 1

Operator 2

Operator 3

Human
Machine
Interface

Route
Planner

Network
Comms
Interface

GCS UI Software

Aircraft 1

Aircraft 2

Aircraft 3

Fig. 2. The system overview

Several use cases of the system are considered. The system
is suitable for use as a “static” tool, meaning that it can be
used before any flight begins to check the scheduled routes.
It can also be used in a “dynamic” scenario, where one or
more aircraft are already in flight and the operator wishes
to change the current state. The system also differentiates
between two types of requests: “command” and “planning”.
Commands are used to issue orders to aircraft, such that if
the validation is successful the new route will be sent to the
aircraft as an immediate update to their current plan. Planning
requests allow an operator to query the validation system with
a suggested plan, without tasking any aircraft with that plan.
The challenge in the system is to ensure that the aircraft fly
safely. For example, their current routes are not conflicted and
they are not flying into any restricted airspace.

B. Event-B

Event-B [1] is a formal method for system development.
Main features of Event-B include the use of refinement to
introduce system details gradually into the formal model. An
Event-B model contains two parts: contexts and machines.
Contexts contain carrier sets (similar to types), constants, and
axioms that constrain the carrier sets and constants. Machines

contain variables v, invariants I(v) that constrain the variables,
and events. An event comprises a guard denoting its enabling-
condition and an action describing how the variables are
modified when the event is executed. In general, an event e has
the following form, where t are the event parameters, G(t,v)
is the guard of the event, and v := E(t,v) is the action of the
event1.

e =̂ any t where G(t,v) then v := E(t,v) end

A machine in Event-B corresponds to a transition system
where variables represent the states and events specify the
transitions. Contexts can be extended by adding new carrier
sets, constants, axioms, and theorems. A machine M can be
refined by a machine N (we call M the abstract machine and
N the concrete machine). The state of M and N are related
by a gluing invariant J(v, w) where v, w are variables of M
and N, respectively. Intuitively, any “behaviour” exhibited by
N can be simulated by M, with respect to the gluing invariant
J. Refinement in Event-B is reasoned event-wise. Consider
an abstract event e and the corresponding concrete event f.
Somewhat simplifying, we say that e is refined by f if f’s
guard is stronger than that of e (i.e., if f is enabled then e is
also enabled) and f’s action can be simulated by e’s action,
taking into account the gluing invariant J. More information
about Event-B can be found in [2]. Event-B is supported
by Rodin platform (Rodin) [3], an extensible toolkit which
includes facilities for modelling, verifying the consistency of
models using theorem proving and model checking techniques,
and validating models with simulation-based approaches.

1) Theory Extension: The Theory plug-in [4] enables mod-
ellers to extend the mathematical modelling language of Event-
B with theories containing new (polymorphic) data types and
operators upon those data types. These additional modelling
concepts might be defined directly (including inductive defi-
nitions) or axiomatically.

Operators can be defined directly, inductively (on inductive
data types) or axiomatically. An operator defined without any
definition will be defined axiomatically. In this paper, we focus
on the use of operators with direct definition. For example,
assume that we have declared a type of real numbers R and
Euclidean space operator euclidean space(n) where n is the
number of dimensions. We can define a route as a list of
waypoints as follows.

1 operators
2 TIME =̂ R
3 POSITION =̂ euclidean space(3)
4 WAYPOINT =̂ POSITION × TIME
5 ROUTE =̂ {n, wp · n ∈ N1 ∧ wp ∈ 0.. n− 1 → WAYPOINT | wp}

Each waypoint is a pair of position and time, where position
is a point in a 3-dimensional Euclidean space, and time is a
real number. In the above definitions, S → T denotes the set
of total function from S to T. The summary of the Event-B
mathematical language can be found in [5].

1Actions in Event-B are, in the most general cases, non-deterministic [2].

Finally, theories can be constructed in hierarchical manner:
a theory can import one ore more other theories to define and
declare more data types, operators, and axioms.

III. DEVELOPMENT

In Section III-A, we illustrate the policing function (called
Route Validator) for our GCS and its functional requirements.
In Section III-B, we describe the formal development of the
Route Validator using Event-B.

A. The Route Validator Requirements

The functional architecture of the Route Validator can be
seen in Figure 3. The Route Validator checks each route

Fig. 3. Functional Architecture of the Route Validator

against already active routes flown by each aircraft in the
system and deems a route “valid” if there are no conflicts.
We mean to plan routes that avoid air-to-air collisions pri-
marily between our set of UAVs, but also consider the more
broad case between all aircrafs, and between our UAVs and
terrain/airspace constraints. In this paper, we focus on air-to-air
collision avoidance between aircraft (deconfliction property).
The Route Validator can be used as a planning tool, and is
also used as a checking function when a new route is sent to
an aircraft. It encompasses the Formal Deconfliction Checker.

The requirements for the Route Validator is as follows. The
validator must maintain an updatable store of existing aircraft
information (including active and inactive aircraft) and routes.
In order to ensure the safety of the flying (active) aircraft, the
validator must also maintain an awareness of which aircraft
are flying which routes. This is implemented by the Cache of
Active Routes.

• [REQ 1] The validator must maintain an updateable store
of aircraft information and routes.

• [REQ 2] The validator maintains a cache of active aircraft
and their flying routes.

The GCS sends new route commands to one or more
aircraft to update their flying routes. It is important that
the Route Validator only allows new route commands to be
issued to aircraft if there are no conflicts detected between
routes (including the current and the new flying routes). Upon
receiving a route command, an aircraft updates its flying route
and sends a confirmation message back to the Route Validator.
When the Route Validator receives a confirmation message
from an aircraft, it updates its cache to reflect the current flying
route of that aircraft.

• [REQ 3] The validator only allows consistent route com-
mands to be sent to the aircraft.

• [REQ 4] The aircraft must confirm to the Route Validator
when receiving a route command.

• [REQ 5] The Route Validator updates its cache accord-
ingly when receiving a confirmation message.

Note that due to the communication delay between Route
Validator and the aircraft, the cache information of the Route
Validator might not reflect the actual flying routes of the active
aircraft. We also do not consider communication failures at the
moment.

The most important requirement for the system is that
there must not be any air-to-air collision between aircraft.
For this purpose, the system must ensure that any active
aircraft maintains a minimum separation distance from the
other aircraft.

• [REQ 6] Any active aircraft must maintain a minimum
separation distance from other aircraft.

B. Formal development

In order to formalise the Route Validator, we first build a
set of theories for physical modelling.

1) Theories for Physical Modelling: The routes of the
aircraft are represented as continuous paths in 3-dimensional
space parameterised by time, i.e. continuous functions from
time to 3-dimensional space. This abstract representation of a
route is independent of the representation any implementation
would use to either generate routes, or communicate them to
the UAVs. To do this we need to extend the mathematical
theories of Event-B as follows.
• We need a representation of real numbers, operators for

real numbers, and basic support proof rules.
• We develop a theory of n-dimensional Euclidean spaces

and continuous paths.
Based on these theories, we develop a theory for deconfliction
which is the basic for our specification of the route validator.

a) Theory of Real Numbers: This theory underpins all
our work. This theory is developed as a collection of theories
that build upon each other. The hierarchy of the theories
for real numbers can be seen in Figure 4. Here, an arrow
signifies a dependency relationship which is transitive. The
most primitive theory is the theory FieldAxioms which defines
constants (real numbers) zero and one, and the basic opera-
tions of addition and multiplication. Then through a collection
of intermediate theories, the Real theory is extended up to the
point where the square root function can be defined. This is
required for the subsequent definition of the Euclidean metric
in space. To define square root we require the Least Upper
Bound axiom of the real numbers, and this is defined in the

CompletenessAxioms theory. Without this our theory would
not have a value for

√
2 as this is not a rational number. A

similar theory of real numbers is also developed by Babin et.
al. [6].

_FieldAxioms

_FieldTheorems_OrderAxioms

_CompletenessAxioms

_CompletenessTheorems

_OrderTheorems

_Division _Subtraction

_MaximumAndMinimum _FiniteSum

_StrictOrder

_Intervals

_Square

_SquareRoot

_AbsoluteValue

Real

Fig. 4. The hierarchy of theories for real numbers

Real

_VectorSpaceWD

_VectorSpaceTypes

_VectorSpaceAxioms

_VectorSpaceTheorems

_InnerProductSpace

_NormedVectorSpace

_MetricSpace

Euclidean

Path

Fig. 5. The hierarchy of theories for Euclidean space

b) Theories of Euclidean Space and Paths: Based on the
Real theory, we construct a theory of Euclidean space. We do
this in a general way and construct a theory of n-dimensional
Euclidean space. Once again the theory is constructed incre-
mentally (Figure 5). First we introduce vectors of real numbers
and their addition and scalar multiplication, and then build
upon that to add an inner product, the Euclidean norm (length
of a vector), and finally the Euclidean metric that gives the
distance between two points in n-dimensional space. The UAV
routes are modelled as continuous paths in Euclidean space,
and so the Path theory builds upon the Euclidean theory.

c) Theory for deconfliction: Recall the definition of a
route as a list of waypoints from Section II-B1 as follows.

1 ROUTE =̂ {n, wp · n ∈ N1 ∧ wp ∈ 0.. n− 1 → WAYPOINT | wp}

Since we consider the deconfliction of a set of routes
associated with aircraft, we define ROUTE T as the Cartesian
product of AIRCRAFT and ROUTE. We call a pair of aircraft

and route an aircraft route. For convenient, operators route id
and route returns the aircraft and route component from an
aircraft route, respectively.

1 ROUTE T =̂ AIRCRAFT × ROUTE
2 route id(rt) =̂ prj1 (rt)
3 route(rt) =̂ prj2 (rt)

We define the route pair conflicts between two aircraft
routes rt1 and rt2, given a minimum separation distance ms as
follows.

1 route pair conflicts(rt1, rt2, ms) =̂
2 {m, n, p1, p2 · m ∈ 0 .. len(rt1)− 2 ∧ n ∈ 0 .. len(rt2) − 2 ∧
3 s1 = route id(rt1) 7→ (route(rt1)(m) 7→ route(rt1)(m + 1)) ∧
4 s2 = route id(rt2) 7→ (route(rt2)(n) 7→ route(rt2)(n + 1)) ∧
5 route id(rt1) 6= route id(rt2) ∧
6 ¬ segment pair safe(s1, s2, ms)
7 | s1 7→ s2}

Here route pair conflicts(rt1, rt2, ms) is a set of segment pairs
of s1 7→ s2, where s1 is a segment (the line connecting
two consecutive waypoints) of rt1, s2 is a segment of rt2,
and s1 and s2 are not safe with respect to the minimum
separation distance ms. (The set of segments is defined as
SEGMENT T = AIRCRAFT × (WAYPOINT × WAYPOINT).)

The definition of segment pair safe is as follows based on
the notion of deconfliction between paths.

1 segment pair safe(s1, s2, ms) =̂
2 deconfliction(segment path(s1), segment path(s2), ms)

Here, the segment path(s) denotes the path (a function of time
to 3-dimensional space) corresponding to the segment s (we
omit its definition here).

The definition of deconfliction is as follows.

1 deconfliction(pth1, pth2, ms) =̂
2 ∀ t· t ∈ TIME ⇒ ms ≤ dist(3, pth1(t), pth2(t))

Two paths pth1 and pth2 are de-conflicted (with respected to a
minimum separation distance ms) if for all time t, the distance
between pth1 and pth2 at time t is at least ms. Operator dist
returns the Euclidean distance between two points in Euclidean
space. In the the definition of deconfliction, and we use dist
for 3-dimensional space distances.

We can now use the theory for deconfliction to specify
our system and develop the deconfliction checking program.
Our formal development of the Route Validator contains two
stages. At the system-level stage (Section III-B2), we model
the overall system including the cache and the communications
between the Route Validator and the aircraft. In the second
stage (Section III-B3), we extract the core functionality of the
Formal Deconfliction Checker and develop this further towards
the implementation.

2) System-Level Modelling: The formal system model2 is
developed using an initial model capturing the safety property

2The model is available from the University of Southampton repository at
http://doi.org/10.5258/SOTON/D0217.

http://doi.org/10.5258/SOTON/D0217

of the system. We subsequently refine this model by introduc-
ing the cache and finally the communications between GCS
and the aircraft.

a) The initial model: At the system level, there are two
types of entity in the system, namely aircraft and routes. They
are modelled by carrier sets in Event-B. Axiom @axm1 states
that the minimum separation distance ms is non-negative.

1 context c0
2 sets AIRCRAFT ROUTE
3 constants ms
4 axioms
5 @axm1: ”zero ≤ ms”
6 end

For convenient, we define operator consistent for a set of
aircraft routes S as follows.

1 consistent(S) =̂ ∀ rt1, rt2 · route pair conflicts(rt1, rt2, ms) = ∅

The definition states that S is consistent if there are no conflicts
between any pair of aircraft routes in S with respect to the
minimum separation distance ms.

The dynamic model of the system contains variables aircraft
and routes representing the existing aircraft and routes in the
system (REQ 1). A relationship active denotes the current
active route associated with the aircraft. It is a partial function
(see @inv3) with its domain representing the set of active
aircraft. Invariant @inv4 capture the main safety requirement
of the system (REQ 6) stating that the set of active aircraft
are always “consistent”.

1 machine m0
2 sees c0
3 variables aircraft routes active
4 invariants
5 @inv1: ”aircraft ⊆ AIRCRAFT”
6 @inv2: ”routes ⊆ ROUTE”
7 @inv3: ”active ∈ aircraft 7→ routes”
8 @inv4: ”consistent(active)”
9 events

10 INITIALISATION
11 begin
12 @act1: ”aircraft := ∅ ”
13 @act2: ”routes := ∅ ”
14 @act3: ”active := ∅ ”
15 end

Initially, all variables are assigned the empty set (no existing
aircraft or routes).

We have events CreateAircraft, RemoveAircraft,
CreateRoute, RemoveRoute for adding or removing aircraft
and routes accordingly (REQ 1). For example, events
CreateAircraft and RemoveAircraft is specified as follows.

1 CreateAircraft
2 any ac where
3 @grd1: ”ac /∈ aircraft”
4 then
5 @act1: ”aircraft := aircraft ∪ {ac}”
6 end
7

8 RemoveAircraft
9 any ac where

10 @grd1: ”ac ∈ aircraft”
11 @grd2: ”ac /∈ dom(active)”
12 then

13 @act1: ”aircraft := aircraft \ {ac}”
14 end

Notice that the guard @grd2 of event RemoveAircraft is to
ensure that it maintains invariant @inv3: an aircraft ac can
only be removed if it is no longer active.

An event namely DeactivateAircraft is used to model the
deactivation of an active aircraft ac, e.g., when it finishes flying
its route. Here S C− f removes all the mappings in f originating
from an element in S.

1 DeactivateAircraft
2 any ac where
3 @grd1: ”ac ∈ dom(active)”
4 then
5 @act1: ”active := {ac} C− active”
6 end

Finally, we have an event UpdateRoute to update the route
of an aircraft ac to fly a new route rt. The new route infor-
mation is represented by the parameter rts. Here f C− g denote
relational overriding of relation f by g. Guard @grd3 ensures
that the active aircraft remains consistent after updating the
route of ac. Later on, this abstract guard will be refined using
the route command sent from the GCS.

1 UpdateRoute
2 any ac rt where
3 @grd1: ”ac ∈ aircraft”
4 @grd2: ”rt ∈ routes”
5 @grd3: ”consistent(active C− {ac 7→ rt})”
6 then
7 @act1: ”active(ac) := rt”
8 end

b) The First Refinement: In this first refinement, we
introduce the model of the cache of the aircraft routes.
Moreover, due to the communication delays, we also model
the set of pending commands that the GCS sent to the aircraft
for updating but have not yet received any confirmation. We
focus here on @inv6 stating that the active routes must be
contained within the cache and pending routes. Intuitively, an
active aircraft at any point flies the original route, i.e., stored
in the cache or already updated to the new route as specified
in the pending commands. Invariant @inv8 ensures that the set
of cache and pending routes must be consistent.

1 variables cache pending
2 invariants
3 @inv4: ”cache ∈ aircraft 7→ routes”
4 @inv5: ”pending ∈ aircraft 7→ routes”
5 @inv6: ”active ⊆ cache ∪ pending”
6 @inv7: ”pending = ∅⇒ active = cache”
7 @inv8: ”consistent(cache ∪ pending)”
8 @inv9: ”dom(pending) C− cache ⊆ active”

We refine event UpdateRoute as follows, i.e., the aircraft
ac update its route to rt if there is a corresponding pending
command.

1 UpdateRoute
2 refines UpdateRoute
3 any ac rt where
4 @grd1: ”ac 7→ rt ∈ pending”
5 then

6 @act1: ”active(ac) := rt”
7 end

The correctness of the refinement of event UpdateRoute
is relied on invariants @inv6, @inv8 and the property of
consistent operator below, stating that consistency is preserved
with the subset, i.e., ⊆ , relation. The property of consistent
is proved from its definition based on route pair conflicts.

1 ”∀ s,c · consistent(c) ∧ s ⊆ c⇒ consistent(s)”

We add two new events, namely SetPending and
RemovePending to model how the pending commands are
modified. In SetPending, a new set of routes commands rts is
sent to the aircraft. In RemovePending, the pending command
ac 7→ rt is removed and the cache is updated, provided that
the aircraft ac has already flies the new route rt.

1 SetPending
2 any rts where
3 @grd1: ”pending = ∅ ”
4 @grd2: ”rts ∈ aircraft 7→ routes”
5 @grd3: ”cache ∪ rts ∈ consistent”
6 then
7 @act1: ”pending := rts”
8 end
9

10 RemovePending
11 any ac rt where
12 @grd1: ”ac 7→ rt ∈ pending”
13 @grd2: ”ac 7→ rt ∈ active”
14 then
15 @act1: ”pending := pending \ {ac 7→ rt}”
16 @act2: ”cache(ac) := rt”
17 end

We omit the details about refinement of the other events here.
c) The Second Refinement: In this refinement, we intro-

duce the communications between the GCS and the aircraft.
Two variables messages and confirms are added to the model
denoting the set of commands that have been sent to the
aircraft but not yet received and the set of confirmations
message from the aircraft to the GCS. Invariants @inv12
states that if an aircraft ac confirms to the GCS then it
must already fly the new route as specified by the pending
commands. Invariant @inv13 states that an aircraft is either
already confirm to fly the new route or has not yet received
the corresponding command.

1 variables
2 messages
3 confirms
4 invariants
5 @inv10: ”messages ⊆ pending”
6 @inv11: ”confirms ⊆ dom(pending)”
7 @inv12: ”∀ ac · ac ∈ confirms⇒ ac 7→ pending(ac) ∈ active”
8 @inv13: ”confirms ∩ dom(messages) = ∅ ”

We refine event SetPending by event SendCommands to
model situation where the GCS sends consistent route com-
mands to a set of aircraft (REQ 3). An additional (with respect
to the abstract SetPending event) action @act2 to update the
set of messages is added to event SendCommands.

1 SendCommands refines SetPending

2 any rts where
3 @grd1: ”pending = ∅ ”
4 @grd2: ”rts ∈ aircraft 7→ routes”
5 @grd3: ”cache ∪ rts ∈ consistent”
6 then
7 @act1: ”pending := rts”
8 @act2: ”messages := rts”
9 end

We refine event UpdateRoute further as follows. When an
aircraft ac receives a command to fly a new route rt, it update
its fly-path, sends a confirmation to the GCS (REQ 4).

1 UpdateRoute
2 any ac rt where
3 @grd1: ”ac 7→ rt ∈ messages”
4 then
5 @act1: ”active(ac) := rt”
6 @act2: ”confirms := confirms ∪ {ac}”
7 @act3: ”messages := messages \ {ac 7→ rt}”
8 end

We refine event RemovePending by event Confirms to model
the situation where the GCS receives a confirmation (REQ 5).

1 Confirms refines RemovePending
2 any ac rt where
3 @grd1: ”ac ∈ confirms”
4 @grd2: ”rt = pending(ac)”
5 then
6 @act1: ”pending := pending \ {ac 7→ rt}”
7 @act2: ”cache(ac) := rt”
8 @act3: ”confirms := confirms \ {ac}”
9 end

The correctness of event Confirms relies on @inv12. We omit
the detailed reasoning here.

3) Formal Deconfliction Checker: The most important
functionality of the route validator described in the previous
section is to check if the set of aircraft routes are consistent. In
particular, in the case where the aircraft routes are inconsistent,
the route validator must return the set of conflicts segments. In
this section, we outline our formalisation of the route validator
implementation in C. The implementation contains several C
functions. We first present our approach then highlight the
formalisation of some selective functions.

a) Approach: Our approach is to capture the function-
ality of each C function in a separate Event-B development.
The specification of the function is captured abstractly using
a state-less machine with a single event corresponding to
the function. The parameters of the function are declared as
constants, with the precondition represented as a set of axioms.
The output(s) of the function is modelled using parameter(s)
of the event with the events guard representing the function’s
post-condition. Assuming that we have a following C function.

1 /*
2 * Pre-condition: pre(p1, p2, ..., pn)
3 * Post-condition: post(out, p1, p2, ..., pn)
4 */
5 T func(T1 p1, T2 p2, ..., Tn pn);

The abstract specification of func in Event-B is as follows.

1 constants p1 p2 ... pn
2 axioms ”pre(p1, p2, ..., pn)”

3 events
4 func
5 any out where
6 ”post(out, p1, p2, ..., pn)”
7 then
8 skip
9 end

The implementation of the function is introduced using one or
more refinements, where the C local variables are introduced
as Event-B variables of the refinement. To simplify our model,
we focus on the functionality of the C function and omit details
such as memory handling, etc. Furthermore, we compress the
effect of sequential statements into parallel assignments in
Event-B. To further modularise our model, we develop nested
loops using different Event-B refinement chains. We extract
the abstract specification of the inner loop and create a separate
Event-B refinement chain (essentially, it is the same as creating
a new C function corresponding to the inner loop).

b) Function get_conflicts: We start our for-
malisation with the specification of the main function
get_conflicts. The signature of the function is as fol-
lows.

1

2 /*
3 * Get the conflicts of a set of routes.
4 *
5 * r : an array of routes
6 * len : the size of r (number of routes)
7 * min_sep : the required minimum separation distance
8 *
9 * Pre-condition:

10 * - there must be at least two routes
11 * - the minimum separation distance is positive
12 *
13 * Post-condition:
14 * The return value is a structure containing an array
15 * of conflicting route segments.
16 */
17 separation_conflicts_t *get_conflicts(route_t *r,
18 int len,
19 distance_t min_sep) {
20 assert(r != NULL);
21 assert(2 <= len);
22 assert(0.0 < min_sep);
23 ...
24 }

The Event-B abstract specification corresponding to
get conflicts function is as follows.

1 constants r len min sep
2 axioms
3 ”2 ≤ len”
4 ”r ∈ 0 .. len − 1→ ROUTE T”
5 ”zero ≤ min sep”
6 events
7 get conflicts
8 any cflts where
9 ”cflts = (

⋃
m,n · m ∈ 0 .. len − 1 ∧

10 n ∈ m+1 .. len − 1
11 | route pair conflicts(r(m), r(n), min sep))”
12 then
13 skip
14 end

The Event-B specification uses the operator
route pair conflicts declared earlier. The output cflts is
the (generalised) union (

⋃
) of all pairwise conflicts (with

respect the the minimum separation distance min sep) within
the input array of aircraft routes r. Note that we model the
type of result as a set of conflict segments, rather than as
an array. This is a valid abstraction which make the formal
model much simpler to reason about.

The implementation of the get_conflicts is a nested
loop as follows.

1 separation_conflicts_t *get_conflicts(route_t *r,
2 int len,
3 distance_t min_sep) {
4
5 separation_conflicts_t *conflicts = sc_create();
6

7 for (int i = 0; i < len; ++i)
8 {
9 for (int j = i + 1; j < len; ++j)

10 {
11 if (r[i].id == r[j].id)
12 {
13 /* An aircraft is never in conflict with itself. */
14 continue;
15 }
16

17 route_pair_conflicts(conflicts,
18 r[i],
19 r[j],
20 min_sep);
21

22 }
23 }
24 }

We first develop the outer loop as a refinement of the above
specification, abstracting from the inner loop.

1 variables i conflicts
2 invariants
3 ”i ∈ 0 .. len”
4 ”conflicts ∈ P (WAYPOINT ×WAYPOINT)”
5 ”conflicts = (

⋃
m,n · m ∈ 0 .. i − 1 ∧

6 n ∈ m+1 .. len − 1
7 | route pair conflicts(r(m),r(n),min sep))”
8 events
9 INITIALISATION

10 begin
11 ”i := 0”
12 ”conflicts := ∅ ”
13 end
14

15 get conflicts
16 refines get conflicts
17 any cflts where
18 ”¬ (i < len)”
19 ”cflts = conflicts”
20 end
21

22 progress i
23 when
24 ”i < len”
25 then
26 ”i := i + 1”
27 ”conflicts := conflicts ∪
28 (

⋃
n · n ∈ i+1 .. len − 1

29 | route pair conflicts(r(i), r(n), min sep))”
30 end
31

32 end

The correctness of the refinement of event get conflicts is
straightforward, relying on the invariants and the guard of the
concrete event.

The above events representing a looping program

1 INITIALISATION

2 do progress i od;
3 get conflicts

Here, do ... od keeps iterating as long as the guard of
progress i holds. Correctness of refinement means that the
abstract event get conflicts is refined by the intermediate
looping program above. In the next stage, progress i is refined
in a similar way leading to a program with nested loops.

Event progress i is the abstraction of the inner loop (with
counter j). We extract this specification, in particular, the
assignment to conflicts and start a new Event-B refinement
chain. In this new refinement chain, i and the current value
of conflicts becomes a constant. The context of the new
refinement chain is as follows.

1 constants i init conflicts
2 axioms
3 ”i ∈ 0 .. len”
4 ”i < len”
5 ”init conflicts ∈ P (SEPARATION CONFLICTS T)”

The specification of the inner loop progress i becomes as
follows.

1 progress i
2 any cflts where
3 @grd1: ”cflts = init conflicts ∪
4 (

⋃
n · n ∈ i+1 .. len − 1

5 | route pair conflicts(r(i),r(n),min sep))”
6 end

The refinement of the inner loop specification for progress i
is as follows.

1 variables j conflicts
2 invariants
3 ”j ∈ i+1 .. len”
4 ”conflicts ∈ P (WAYPOINT ×WAYPOINT)”
5 ”conflicts=init conflicts∪ (

⋃
n· n∈ 0 .. j − 1∧ i<n | route pair conflicts(r(i)

7→ r(n) 7→ min sep))”
6 events
7 INITIALISATION
8 begin
9 ”j := i + 1”

10 ”conflicts := init conflicts”
11 end
12

13 continue
14 when
15 ”j < len”
16 ”route id(r(i)) = route id(r(j))”
17 then
18 ”j := j + 1”
19 end
20

21 route pair conflicts
22 any rp conflicts where
23 ”j < len”
24 ”route id(r(i)) 6= route id(r(j))”
25 ”rp conflicts = route pair conflicts(r(i) 7→ r(j) 7→ min sep)”
26 then
27 ”conflicts := conflicts ∪ rp conflicts”
28 ”j := j + 1”
29 end
30

31 progress i
32 refines progress i
33 when
34 ”¬ (j < len)”
35 with
36 @cflts: ”cflts = conflicts”
37 end

38 end

c) Function route_pair_conflicts: The C imple-
mentation of route_pair_conflicts is as follows.

1 /*
2 * Finds all conflicts between line segments in route r1
3 * and line segments of route r2.
4 *
5 * Pre-condition:
6 * - a route is required to have at least 2 waypoints.
7 * - min_sep is positive
8 *
9 * The conflicts are returned in result. This is passed

into the function
10 * so we don’t need to keep recreating the

separation_conflicts_t object.
11 */
12

13 void route_pair_conflicts(
14 separation_conflicts_t *result,
15 route_t r1,
16 route_t r2,
17 distance_t min_sep)
18 {
19 assert(2 <= r1.len);
20 assert(2 <= r2.len);
21 assert(r1.wp != NULL);
22 assert(r2.wp != NULL);
23 assert(0.0 < min_sep);
24

25 for (int i = 0; i < r1.len - 1; ++i)
26 {
27 waypoint_pair_t p1 =
28 {r1.id, r1.wp[i], r1.wp[i + 1]};
29

30 for (int j = 0; j < r2.len - 1; ++j)
31 {
32 waypoint_pair_t p2 =
33 {r2.id, r2.wp[j], r2.wp[j + 1]};
34

35 if (!line_seg_pair_safe(p1, p2, min_sep)) {
36 sc_append_conflict_pair(
37 result, (conflict_pair_t){ p1, p2 });
38 }
39 }
40 }
41 }

Here, sc_append_conflict_pair appends the con-
flict pair (p1, p2) to the array result. The formalisation
in Event-B of route_pair_conflicts is similar to
get_conflicts (given that they are both implemented
using nested loops) and is omitted here.

d) Function segment_pair_safe: The function
segment_pair_safe checks if two segments are safe, i.e.,
not conflicted. Here, the segments are conflicted if there is
a point in time that the distance between the two segments
are smaller than the allowed minimum separation distance.
The Event-B formalisation and the C implementation of the
function based on the following case analysis.

C1 The line segments do not overlap in time, the two
segments are trivially safe.

C2 The line segments overlap at a single point in time t. In
this case we only need to consider the distance between
the two segments at time t.

C3 The line segments are parallel and travelled at the same
speed. In this case the distance between the agents
remains constant and we only need to consider the case
at the start of the time overlap.

C4 The two segments are always moving away from each
other. In this case the time of closest approach is at the
start of the time overlap.

C5 The two agents are segments moving towards each other.
In this case the time of closet approach is at the end of
the time overlap.

C6 The two segments initially move towards each other,
pass through a point of closest approach, and then move
away from each other. In this case the time of closet
approach is at the (necessarily) unique time t such that
the derivative (with respect to time) of the distance
between the two segments t is 0.

We omit the details of the C implementation and its Event-B
formalisation here.

IV. INTEGRATION AND EVALUATION

As mentioned earlier in Section II-A, the Route Validator
is used whenever the GCS send commands to the aircraft.
Furthermore, it is also used to validate suggested plans from
operators and reports any conflict that it found. As a result,
an important performance requirement for the route validator
is that the component should have a small computational
footprint.

In order to evaluate the performance of the Route Validator,
we integrated the C implementation of the Formal Deconflic-
tion Checker into the TEKEVER’s synthetic environment. The
implementation architecture of the Route Validator within the
synthetic environment can be seen in Figure 6. In particular,
the Route Validator is deployed as one of the standalone
application communicating with other system component via
the Command and Control Layer. Figure 7 and Figure 8 show

Fig. 6. Implementation Architecture Diagram

the Route Validator console application, with the control and
viewing options available to the user (Figure 7) and the log
of validation requests (Figure 8). We assessed the Route
Validator in large part through running simulated missions and
perform computational load tests.

A. Simulation

Several predefined scenarios have been simulated on the
GCS system with the integrated Route Validator. The use cases
include static planning of routes, commanding aircraft to start
flying new routes, dynamic planning of routes, commanding
a route change. In particular, in the case where an operator
specifies the routes manually, the operator was confidently
able to plan routes for a set of UAVs even though routes
overlapped spatially because the validator could assure them

Fig. 7. Route Validator Control

Fig. 8. Route Validator Log of validation requests

the routes were temporally de-conflicted. This is something
that was not easy to discover visually. Moreover, we were able
to swap between an operator specifying each waypoint and
task scheduling algorithms creating the plan without changing
the validation approach.

B. Computational Load Tests

To understand the computational performance of the route
validator, some performance analysis was carried out. We
randomly generated routes for the validator. The data was
recorded using a PC with 8GB RAM and a dual 2.70 GHz
Intel Core i5-6400 processor, using a program written in C#
which timed a single run of the algorithm for various route
inputs.

Firstly, the algorithm performance was measured with the
quantity of input routes as an independent variable. The chosen
length for each of these routes was 25 waypoints, representing

a route manually entered by a UAV operator. The algorithm
was then executed with 50 to 1000 input routes in steps of
50. The result of this experiment can be seen in Figure 9. The

Fig. 9. Time taken by the algorithm against number of routes (of length 25)

algorithm performed well with increase in number of routes.
Inputs of 400 routes were validated in less than 10 seconds.

Secondly, we measured the algorithm performance with
the route length as an independent variable. This time we
have 25 routes and for each generated route, the length was
altered from 50 to 1000 waypoints in steps of 50. The result
of this experiment can be seen in Figure 10. Discussions

Fig. 10. Time taken by the algorithm against route lengths (for 25 routes)

with TEKEVER’s flight team indicate that 25 waypoints is
a reasonable route length to consider for a typical flight.
Additionally, we consider 250 routes to be a conservative
upper bound: we would anticipate that a single operator
would have control of up to four aircraft, and when collecting
ADS-B data for use in background air traffic over a radius
of approximately 75km, there would typically be less than
fifteen aircraft in the area at any time. The validation process
was tested on a desktop computer with processing power
comparable to that of one of TEKEVER’s GCS computers,
indicating that performance will be similar when operating
during a mission. Because the validation process can run
in a matter of seconds, rather than minutes or hours, this
indicates that it can be used both for planning pre-mission,
and for online validation with new information. Additionally,
there are optimisations that can be made (such as simplifying
route structures, and parallelisation), which further improve
performance. Consequently, it was felt that this demonstrated
that the route validator can be operated in representative

scenarios without hindering operator workflows or delaying
processes.

V. CONCLUSION

In this paper, we demonstrated the use of formal methods
in Verification and Validation of an autonomous system in
the UAVs domain on an industrial synthetic environment. We
focused on a multi-UAV system for managing route generation
and allocation. The UAV routes are defined by a combination
of human operator and an intelligent system. Our approach
was to apply formal methods from high abstraction level to
the development of a safety policing function implemented
in C. The policing function was integrated with TEKEVER’s
synthetic environment for multi-UAV coordination and valida-
tion and performance testing was performed. The advantage of
developing a policing function is that verifying the correctness
of this function is less complex than verifying the intelligent
system. Moreover, this also enables the possibility to improve
or adapt the intelligent system without changing the validation
approach.

We have developed background formal theories for domain-
specific physical concepts and used these concepts to model
the core algorithms of our system. Formal modelling was
also used to clarify the interaction between TEKEVER’s
synthetic environment and the policing function. Our case
study illustrates that the safety of UAV movement can be
addressed in a formal way.

Our approach of formally developing a separate safety
policing function is general and also applicable to other
forms of autonomous vehicles. Here safety properties are often
about collision avoidance and space restrictions. In particular,
we ensure that our formal models are generic enough and
organised in a hierarchical manner, so that they can be adapted
to a new problem with minimal effort.

The challenge in verifying aircraft software has been iden-
tified by Rushby earlier [7]. In particular, he stated that
“methods (...) that are capable of analyzing high-level re-
quirements, or architectures that monitor safety properties at
runtime, are worthy of consideration.” In [8], Caseley proposed
generic architectures, claims and limitations for combinations
of automatic and autonomous functions for manned and un-
manned systems. Our policing function is an example of the
proposed automatic supervising safety function. More specif-
ically, Caseley identified the need for formal development
towards implementation, e.g., “for higher risk functions it may
require the confidence of formal assurance of the determinism
(e.g. proof) supported by refinement of the proof to the
implemented function ...”. In [9], Singh et. al. presented an
approach for formal modelling and verification of self-adaptive
autonomous systems based on Event-B/Rodin. They were also
intereseted in collision avoidance and illustrate their approach
on an industrial case study (called TwIRTee) involving a set
of autonomous rovers. At the architecture level, their system
also has a supervision station. The difference with our system
is that collision detection is checked during the operations of
rovers and if conflict is detected, some resolution actions will

be applied. In our system, collision dectection is carried out
in the route planning phase before conflict-free routes are sent
to the UAVs. Moreover, their formal model focused solely at
the system-level, whereas we also develop the model of the
implementation in C.

There are several future challenges for our work. In general,
for a careful design approach to handling uncertainty in the
world in online situations a validator is only part of the
solution. Our extending work is in looking at the interaction
of third party aircraft and the online monitoring / intervention
required when conflicts are detected. Firstly, the system has
to cope with uncertainties which is often omitted in the
formal models. We also aim to extend our model to consider
communication failures, time drift, etc. Another important
aspect of the system that will need to be examine is the security
of communication, in particular in safety-critical missions. At
the technical level, we have identified the need to increase
automation in formal verification, including integration of
existing tools on the market, and support for automation
of code generation from concrete Event-B models. Similar
to [6], our formalisation of real numbers required considerable
proving effort. We are investigating other frameworks [10] for
the purpose of real analysis.

In the near future, we plan to engage with organisations
such as NATS, Civil Aviation Authority (CAA), etc. to discuss
the role of formal methods in building trustworthy complex
systems, using our case study as an illustrative example. In
the longer term, we want to investigate how our approach
(in particular the policing function) could support certification
standards such as DO-178C [11]. Our experience from this
project is that deploying formal methods in a way that focuses
on safety policing is feasible and makes the most of their
strength. This suggests a promising future direction both
for deployment of existing formal methods and treatment of
current limitations.

ACKNOWLEDGMENT

The work in this paper is supported by the ASUR Pro-
gramme project 1014 C6 PH1 104.

a) Disclaimer.: This document is an overview of MOD
sponsored research and is released to inform projects that
include safety-critical or safety-related software. The infor-
mation contained in this document should not be interpreted
as representing the views of the MOD, nor should it be
assumed that it reflects any current or future MOD policy.
The information cannot supersede any statutory or contractual
requirements or liabilities and is offered without prejudice or
commitment.

REFERENCES

[1] J.-R. Abrial, Modeling in Event-B: System and Software Engineering.
Cambridge University Press, 2010.

[2] T. S. Hoang, “An introduction to the Event-B modelling method,” in
Industrial Deployment of System Engineering Methods. Springer-
Verlag, 2013, pp. 211–236.

[3] J.-R. Abrial, M. Butler, S. Hallerstede, T. S. Hoang, F. Mehta, and
L. Voisin, “Rodin: An open toolset for modelling and reasoning in Event-
B,” Software Tools for Technology Transfer, vol. 12, no. 6, pp. 447–466,
Nov. 2010.

[4] M. J. Butler and I. Maamria, “Practical theory extension in Event-B,”
in Theories of Programming and Formal Methods - Essays Dedicated
to Jifeng He on the Occasion of His 70th Birthday, ser. Lecture
Notes in Computer Science, Z. Liu, J. Woodcock, and H. Zhu,
Eds., vol. 8051. Springer, 2013, pp. 67–81. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-39698-4 5

[5] K. Robinson, “Concise summary of the Event-B mathematical toolkit,”
2014, http://wiki.event-b.org/images/EventB-Summary.pdf.

[6] G. Babin, Y. A. Ameur, N. K. Singh, and M. Pantel, “Handling
continuous functions in hybrid systems reconfigurations: A formal
Event-B development,” in Abstract State Machines, Alloy, B, TLA,
VDM, and Z - 5th International Conference, ABZ 2016, Linz, Austria,
May 23-27, 2016, Proceedings, ser. Lecture Notes in Computer
Science, M. J. Butler, K. Schewe, A. Mashkoor, and M. Biró,
Eds., vol. 9675. Springer, 2016, pp. 290–296. [Online]. Available:
http://dx.doi.org/10.1007/978-3-319-33600-8 23

[7] J. M. Rushby, “New challenges in certification for aircraft software,”
in Proceedings of the 11th International Conference on Embedded
Software, EMSOFT 2011, part of the Seventh Embedded Systems Week,
ESWeek 2011, Taipei, Taiwan, October 9-14, 2011, S. Chakraborty,
A. Jerraya, S. K. Baruah, and S. Fischmeister, Eds. ACM, 2011,
pp. 211–218. [Online]. Available: http://doi.acm.org/10.1145/2038642.
2038675

[8] P. Caseley, “Claims and architectures to rationate on automatic and
autonomous functions,” in 11th International Conference on System
Safety and Cyber-Security (SSCS 2016), 2016.

[9] N. K. Singh, Y. A. Ameur, M. Pantel, A. Dieumegard, and E. Jenn,
“Stepwise formal modeling and verification of self-adaptive systems
with Event-B. the automatic rover protection case study,” in 21st
International Conference on Engineering of Complex Computer Systems,
ICECCS 2016, Dubai, United Arab Emirates, November 6-8, 2016,
H. Wang and M. Mokhtari, Eds. IEEE Computer Society, 2016, pp.
43–52. [Online]. Available: https://doi.org/10.1109/ICECCS.2016.015

[10] S. Boldo, C. Lelay, and G. Melquiond, “Formalization of real analysis:
a survey of proof assistants and libraries,” Mathematical Structures in
Computer Science, vol. 26, no. 7, pp. 1196–1233, 2016.

[11] Requirements and Technical Concepts for Aviation (RTCA), DO-178C:
Software Considerations in Airborne Systems and Equipment Certifica-
tion, Dec. 2011.

http://dx.doi.org/10.1007/978-3-642-39698-4_5
http://wiki.event-b.org/images/EventB-Summary.pdf
http://dx.doi.org/10.1007/978-3-319-33600-8_23
http://doi.acm.org/10.1145/2038642.2038675
http://doi.acm.org/10.1145/2038642.2038675
https://doi.org/10.1109/ICECCS.2016.015

	Introduction
	Background
	System Overview
	Event-B
	Theory Extension

	Development
	The Route Validator Requirements
	Formal development
	Theories for Physical Modelling
	System-Level Modelling
	Formal Deconfliction Checker

	Integration and Evaluation
	Simulation
	Computational Load Tests

	Conclusion
	References

