
Substate Profiling for Effective Test Suite Reduction
Chadi Trad, Rawad Abou Assi, Wes Masri

Electrical and Computer Engineering Dept.

American University of Beirut

rawad84@gmail.com, {wm13, cht02}@aub.edu.lb

Abstract—Test suite reduction (TSR) aims at removing

redundant test cases from regression test suites. A typical TSR

approach ensures that structural profile elements covered by the

original test suite are also covered by the reduced test suite. It is

plausible that structural profiles might be unable to segregate

failing runs from passing runs, which diminishes the effectiveness

of TSR in regard to defect detection. This motivated us to explore

state profiles, which are based on the collective values of program

variables.

This paper presents Substate Profiling, a new form of state

profiling that enhances existing profile-based analysis techniques

such as TSR and coverage-based fault localization. Compared to

current approaches for capturing program states, Substate

Profiling is more practical and finer grained.

We evaluated our approach using thirteen multi-fault subject

programs comprising 53 defects. Our study involved greedy TSR

using Substate profiles and four structural profiles, namely, basic-

block, branch, def-use pair, and the combination of the three. For

the majority of the subjects, Substate Profiling detected

considerably more defects with a comparable level of reduction.

Also, Substate profiles were found to be complementary to

structural profiles in many cases, thus, combining both types is

beneficial.

Keywords— state profiles, structural profiles, substate profiles,

test suite reduction, test suite minimization, greedy algorithms,

software testing

I. INTRODUCTION

Test suite reduction (TSR), also referred to as test suite
minimization [31][45][56], aims at reducing the number of test
cases of a given regression test suite in a manner that does not
compromise its defect detection ability [45][46][52][53].
Naturally, there is cost incurred when performing TSR.
However, in many situations, such cost would be insignificant
compared to the cost savings yielded by the reduced test suite.
In particular, TSR is most beneficial under one or both of the
following circumstances: 1) test suite execution is highly costly,
e.g., due to manual effort or resource consumption; and 2)
manual auditing is required, i.e., the tester is required to
manually determine whether test cases pass or fail. Rothermel
et al. [47] reported of a case in industry where executing the
complete regression test suite (of a 20K LOC product) required
seven weeks. Cyber Physical Systems [39][40][41] is an
example domain where TSR might be highly beneficial. In such
domain, software closely interacts with physical processes;
therefore, test execution is typically costly, and test oracles are
likely to be absent, thus requiring manual auditing. On the other
hand, TSR might not be worthwhile in situations where test

1 An execution profile comprises recorded information meant to capture the

runtime behavior of a program during a given test run

oracles are fully automated and test suite execution is repeatable
at no major additional cost.

A widely adopted approach for test suite reduction ensures
that the test requirements [1] satisfied by the original test suite
are also satisfied by the reduced test suite [45][51][58]; in other
words, both test suites are required to cover the same program
elements. Commonly used program elements include methods,
statements, branches, and def-use pairs [21]; which are
structural in nature and relatively simple [31][38][58]. More
complex and seldom used structural program elements include
acyclic paths [4], call-stacks [42], and slice pairs [38].

It is plausible that a given failure might not be characterized
by the execution of any structural program element, be it simple
or as complex as a complete path [1]. That is, there are
situations in which structural execution profiles1 are unable to
segregate failing runs from passing runs, or from other failing
runs that are due to different defects. In such situations, test
suite reduction is likely to yield reduced test suites that are not
as effective as their respective original test suites in regard to
defect detection. This motivated us to explore alternative types
of profiles, namely, state profiles that are constructed based on
the collective values of program variables. Similar to structural
profiles, state profiles are meant to capture the execution
behavior of programs, but from a memory perspective. Thus, it
is more appropriate to define a state profile as being data
representing the memory behavior of an executing program.

Researchers have devised numerous test suite reduction
techniques of which most could be classified as greedy [9]
[29][46], heuristic-based [20][7][8], distribution-based
[29][38], or ILP-based [22][31]. This paper is not proposing a
new test suite reduction technique, but a new type of profiling
that makes existing profile-based reduction techniques more
effective. Specifically, this paper presents Substate Profiling, a
new form of state profiling that is relatively practical in addition
to being fine grained with respect to what variables to consider
and when/where to record their values. Substate Profiling is
suitable for profile-based dynamic analysis techniques such as
test suite reduction and prioritization, and coverage-based fault
localization. To assess the benefits of using Substate Profiling,
we conducted a comparative study involving greedy test suite
reduction using Substate profiles and four other structural
profiles, namely, basic-block, branch, def-use pair, and the
combination of the three (termed ALL [38]). The experiments
involved thirteen multi-fault Java programs, which included a
total of 53 defects. The results showed that, comparatively,
Substate Profiling detected considerably more defects for the
majority of the subjects, while exhibiting comparable reduction

levels in most cases. Our results also showed that in many cases
Substate profiles are complementary to structural profiles, thus,
combining them is beneficial.

Work related to Substate Profiling entails capturing and
comparing program states for various purposes. Zimmerman
and Zeller [59] modeled memory as a graph that captures
program states to assist debugging. Xie and Notkin [55]
captured the values of global variables and function parameters
in order to compare state profiles, which they termed “value
spectra”. Xie et al. [54] minimized unit test suites by capturing
the state of objects at the entry of test functions. Elbaum et al.
[15] analyzed program states in order to create tests that are
hybrid of unit and system tests. Jaygarl et al. [25] proposed
OCAT, an approach that captures, generates, and mutates
objects in order to improve Randoop. Francis [16] collected
samples of object states to enable greedy test suite reduction
and prioritization techniques.

The aforementioned body of work differs from ours
primarily in regard to the granularity at which program states
are captured. Substate Profiling is the only one aiming at
capturing/approximating the memory behavior throughout
program execution. Whereas existing techniques record states
at the start/end of tests or functions, we record state information
at every definition statement in addition to start/end of
functions. Section VI further details these differences and
presents more related work. The main contributions of this
work are as follows:

 A new state profiling approach, termed Substate
Profiling, which is fine grained and suitable for profile-
based dynamic analysis techniques such as test suite
reduction and prioritization, and coverage-based fault
localization

 Supporting tools for the Java platform
 An experimental study that contrasts the effectiveness of

using Substate profiles to that of using structural profiles
in greedy test suite reduction

 Insight of whether Substate profiles are complementary to
structural profiles

The remainder of this paper is organized as follows. Section
II describes commonly used structural profiles. Section III
walks through a motivating example. Section IV presents and
illustrates our proposed Substate Profiling approach and tools.
Section V reports on our empirical study and summarizes our
findings. Section VI discusses related work, and Section VII
presents our conclusions and future work.

II. BACKGROUND

This section presents the four structural profiles involved in
our experiments presented in Section V. We use the same
terminology adopted in [38] to describe them.

 Basic blocks (BB): For every basic block B such that B is

executed in at least one test, a BB profile indicates (via a 0 or

1 entry) whether B is executed in the current test.

 Basic-block edges (BBE) or branches: For every pair of

basic blocks B1 and B2 such that there is a branch from B1 to

2 This example is borrowed from the authors’ previous related work [34].

B2 in at least one test, a BBE profile indicates whether this

branch is taken in the current test.

 Def-use pairs (DUP): For each pair of statements s1 and s2

such that: 1) s1 defines a variable x; 2) s2 uses x; and 3) s1

dynamically reaches s2 in at least one test; a DUP profile

indicates whether s1 dynamically reaches s2 in the current test.

 All above profiles combined (ALL): Combined entries of

BB, BBE and DUP.
In order to generate the above structural profiles, we built a

tool that targets the Java platform based on the ASM Java
bytecode manipulation and analysis framework (asm.ow2.org).

III. MOTIVATING EXAMPLE

As noted earlier, there are situations in which structural
profiles fall short at characterizing defects. This section provides
an example2 that demonstrates a case where state profiling
performs better than structural profiling. Consider the Java
program shown in Table 1. Given a string representing an eight-
digit binary number, the function decimal() is meant to return its

decimal conversion. When variable i is zero, statement 8 causes

variable increment to overflow and take on the value -128 as

opposed to 128 (since the range of byte is [-128, 127]); thus

causing a failure whenever the input string has its leftmost bit
set. Table 1 also shows six test cases, two of which trigger a
failure, and their corresponding statement coverage information:
a check mark indicates that the statement at the given row was
executed at least once using the test case at the given column
(i.e., the profile count was non-zero). Note how the resulting
statement profiles for both passing and failing test cases are
identical, and thus are not helpful in techniques such as test suite
reduction or fault localization.

Table 2 and Table 3 respectively show the branch coverage
and def-use coverage information. Here also, all test cases
exhibit the same profiles, which deems them not useful.
Therefore, BB, BBE, DUP (and ALL) structural profiles fail to
differentiate between the passing and failing runs in our
example.

We now shift our focus to state profiling by zeroing in on
statement 6 where variable increment is repeatedly defined.

Figure 1 shows the values taken by increment throughout the
execution of the test cases. Clearly, the curves for the two failing
test cases t5 and t6 exhibit shapes that are considerably different
from the rest, suggesting that in our example, state profiling
would be more useful than structural profiling. It is worth noting
that profiling the values taken by variable decimal at statement

7 would also help differentiate the failing test cases from the
passing ones.

The goal of this work is to devise a profiling approach and
tool that capture anomalous state behaviors such as those
exhibited by increment and decimal.

IV. SUBSTATE PROFILING: APPROACH, TOOLS, AND

APPLICATIONS

The purpose of a profiling tool is to detect and record some
events of interest that occurred during a program execution. In
the context of structural profiling, an event is the execution of a

program element, e.g., a statement or branch. In the context of
state profiling, an event is the instantiation of a program state.
Which brings forward two critical questions:

1) What constitutes a program state, is it a value-snapshot of

all program variables?

2) When should the program state be captured, should it be

done following the execution of every definition

statement?

To achieve ultra-high accuracy, the answer should be yes for

both questions. However, this is clearly not feasible, which calls

for an approximating approach. In fact, as presented in Section

VI, we are not aware of any related work that does not involve

some form of an approximation strategy.

Our strategy for making Substate Profiling feasible must not
compromise its ability to characterize non-trivial failures. For
that purpose, our design guarantees that Substate Profiling
captures the data of interest following every event that can
potentially change the program state. Specifically, following the
execution of every definition statement (in addition to other
locations as discussed later). However, for the sake of
scalability, the captured data does not comprise a value-snapshot
of all program variables, but only the values of the variables
being assigned at the capture location. In other words, instead of
considering the overall-states exhibited by a program P,
Substate Profiling considers the collective sub-states exhibited
at capture locations in P, specifically, at definition statements,
return statements, and at the entry of functions (in order to
capture the values of formal parameters). Hereafter, we will refer
to these locations as capture points or Cp’s for short [19].

Our proposed approach comprises three main components:
the DataCollector, the FeatureExtractor, and the
ProfileGenerator. Given a program P and an associated test
suite T:

1) For each test case t in T, the DataCollector is applied in

order to capture the data at the Cp’s in P.

2) For each test case t in T, the collected raw data at each Cp

is abstracted into features using the FeatureExtractor.

Therefore, if a Cp is executed by n different test cases, it will

be associated with n sets of features.

3) At each Cp, the ProfileGenerator identifies one or more

profile elements. This is achieved by applying cluster

analysis based on the extracted features. Hence, a profile

element at a Cp would represent a substate behavior

exhibited by a subset of the n test cases that executed that Cp.

4) As a final step, the ProfileGenerator uses the complete set

of profile elements (gathered from all the Cp’s) to build a

Substate profile for each test case. This step is

straightforward since the mapping between a profile element

and the test cases that exhibited its behavior is readily

available.
Next, we provide a detailed description of the DataCollector,

the FeatureExtractor, and the ProfileGenerator. Then we
provide an illustrative example and discuss potential
applications of our profiling approach. (It might be helpful for
some readers to first skim through the illustrative example
presented in Section IV.D).

A. DataCollector

The DataCollector is applied to each test case in order to
capture the data at the Cp’s, i.e., definition statements, return
statements, and functions entries. To better match a given Cp
across test cases, we associate it with the following identifying
attributes: 1) the signature of the method it belongs to; 2) the
instruction offset within the method; and 3) the identifier of the
thread within which it executed. Therefore, in order to compare
the substates induced at a given Cp across a set of test cases, we
require the three aforementioned attributes to be identical for all
of the test cases in the set.

/*Given a string representing an 8 digit
binary number, the method decimal()
returns its decimal conversion. Due to
overflow, failure occurs whenever the input
string has its leftmost position set */
public class BinarytoDecimal {

Passing Failing

t1 t2 t3 t4 t5 t6

0
0
1
0

1
1
1

1

0
1
0
1

1
1
0

1

0
1
1
1

1
1
0

0

0
1
1
1

1
1
0

1

1
1
1
0

1
1
1

1

1
0
1
1

0
1
0

1

public static void main(String args[]) {

1 decimal(args[0]); }      
public static int decimal(String binary) {

2 int decimal = 0;      
3 for (int i = 0; i < binary.length(); i++) {      

4 byte increment = 0;
5 if (binary.charAt(i) == '1') {

     

6 increment =
 (byte)Math.pow(2.0,(double)(7-i));

     

 }
7 decimal += increment;
}

     

8 return decimal;}}      

Table 1 – Java Code and BB coverage

Figure 1 – Values taken by increment

-150

-100

-50

0

50

100

1 2 3 4 5 6 7

execution trace

t1 t2 t3

t4 t5 t6

In case of definition statements, the variables being defined
at a Cp could be local variables, formal parameters, static
variables, attributes of class instances, or array elements. When
the data at a Cp is of primitive scalar type we record its value as
is, and in case it is of java.lang.Number type we record the value
returned by doubleValue(). This scalar data can be used directly
by the FeatureExtractor, described in the next section. Whereas,
in case the data is of type java.lang.String, the captured strings
need to be first mapped to numeric measures in order to extract
meaningful features characterizing them. We opted to use three
measures to represent a given string, namely, its length, richness
[11][6], and entropy [14]. (We explored using the string’s hash
code, but realized that it is not appropriate since using it to
compute most of the features listed in Section IV.B would yield
values that do not characterize strings in any meaningful way.)

Special consideration was given to the data collected at a Cp
if it included one or more NaN or Infinity values, as described in
Section IV.C. Also, the current implementation of the
DataCollector considers an array element definition to be a
definition of the entire array; i.e., when recording data values, it
does not take into consideration the array indexes. This design
decision was made for efficiency purposes, however, we intend
to revisit it in future work.

As detailed later, the ProfileGenerator does not operate on
the raw data collected by the DataCollector, but on features
extracted from that data. Therefore, the data collected at each Cp
needs to be analyzed (for each test case) in order to extract
features that compactly characterize it. Some features could be
determined on the fly, and thus are computed within the
DataCollector as the data points are being collected; we will
refer to this set of simple features as Fsimple. Other features
require all the data points to be present a priori, for those, the
DataCollector stores the data until the end of execution in order
to compute them; we will refer to this set of features as Fcomplex.

Clearly, if we only consider the features in Fsimple then there
would not be any concerns about memory consumption
regarding the DataCollector. However, in order to consider the
features in Fcomplex, we need to take precautionary measures since
we collect every value that gets exhibited at every Cp.
Specifically, at each Cp, we opted to store the first Vlead leading,
and the Vtrail trailing captured data/value points, where Vlead and
Vtrail are configurable (in our experiments we use Vlead = Vtrail =
2000). It should be noted that we do not totally discard the
(middle) data points that were not stored since we use them in
computing the features in Fsimple.

The current implementation of the DataCollector comprises
3,168 lines of Java code; it is composed of two components: the
Instrumenter and the Profiler. The preliminary step in applying
the DataCollector is to instrument the target byte code classes
and/or jar files using the Instrumenter, which was also
implemented using the ASM framework (asm.ow2.org). The
Instrumenter inserts a number of method calls to the Profiler at
the following points of interest:

 Methods entries: to capture the values of formal parameters.

 Methods exits: to capture the return values.

 Definition statements: to capture the values assigned to local

variables, static variables, attributes of class instances, and

array elements.

 Additional points of interest (e.g., throw statements) to

enable better monitoring of the subject programs.
At runtime, the instrumented application invokes the

Profiler, passing it information that enables it to collect values
assigned at the Cp’s. It is worth noting that the DataCollector is
thread-safe, which is particularly necessary for tracking local
variables.

B. FeatureExtractor

For each test case, fourteen features are extracted from the
data collected at each Cp to be passed on to the
ProfileGenerator. These features are meant to compactly
abstract the state behavior at a given Cp. Seven of these features,
which constitute Fsimple, are computed on the fly by the
DataCollector, namely, Size, Min, Max, Mean, Decreasing,
Increasing, and longestRunOfZeros.

The remaining features, which constitute Fcomplex, are
computed at the end of each profiled test execution. They
include Median, Mode, Standard deviation, Inter-quartile
range, Skewness, Kurtosis and Gini coefficient [5]. These
features are chosen based on major types of statistical measures
used in the literature [48], specifically: central tendency (Mean,
Median, and Mode), dispersion (Standard deviation and Inter-
quartile range), inequality (Gini), and shape (Skewness and
Kurtosis). Recall that in cases when Size > Vlead + Vtrail, some
data points will not be used in the computation of the features in
Fcomplex.

For a given set of values 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑁} we define the
fourteen features as follows:

1. 𝑆𝑖𝑧𝑒(𝑋) = 𝑁

2. 𝑀𝑖𝑛(𝑋) = 𝑥𝑘𝑤ℎ𝑒𝑟𝑒 𝑥𝑘 ≤ 𝑥𝑖∀1 ≤ 𝑖 ≤ 𝑁

3. 𝑀𝑎𝑥(𝑋) = 𝑥𝑘𝑤ℎ𝑒𝑟𝑒 𝑥𝑘 ≥ 𝑥𝑖∀1 ≤ 𝑖 ≤ 𝑁

4. 𝑀𝑒𝑎𝑛(𝑋) = 𝑋̅ =
∑ 𝑥𝑖

𝑁
𝑖=1

𝑁

5. 𝑀𝑒𝑑𝑖𝑎𝑛(𝑋) = 𝑄2(𝑋) where 𝑄2(𝑋) is the second quartile of X

6. 𝑆𝑡𝑑𝐷𝑒𝑣(𝑋) = √∑ (𝑥𝑖−𝑋̅)2𝑁
𝑖=1

𝑁−1

7. 𝐼𝑄𝑅(𝑋) = 𝑄3(𝑋) − 𝑄1(𝑋) where 𝑄1(𝑋) and 𝑄3(𝑋) are the first and third

quartiles of X respectively.

8. 𝑆𝑘𝑒𝑤𝑛𝑒𝑠𝑠(𝑋) =

∑ (𝑥𝑖−𝑋̅)3𝑁
𝑖=1

𝑁

(
∑ (𝑥𝑖−𝑋̅)2𝑁

𝑖=1
𝑁−1

)

3
2

9. 𝐾𝑢𝑟𝑡𝑜𝑠𝑖𝑠(𝑋) =

∑ (𝑥𝑖−𝑋̅)4𝑁
𝑖=1

𝑁

(𝑆𝑡𝑑𝐷𝑒𝑣(𝑋))4
− 3

10. 𝐺𝑖𝑛𝑖(𝑋) =
2 ∑ 𝑖𝑥𝑖

′𝑁
𝑖=1

𝑁 ∑ 𝑥𝑖
′𝑁

𝑖=1

−
𝑁+1

𝑁
 where {𝑥1

′, 𝑥2
′, … , 𝑥𝑁

′} is a sorted version of

X.

11. 𝑀𝑜𝑑𝑒(𝑋) = 𝑎𝑟𝑔𝑚𝑎𝑥 |𝐶(𝑥𝑖)| 𝑤ℎ𝑒𝑟𝑒 1 ≤ 𝑖 ≤ 𝑁 𝑎𝑛𝑑 𝐶(𝑥𝑖) = {𝑥 ∈
𝑋 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑥 = 𝑥𝑖}

12. 𝐿𝑜𝑛𝑔𝑒𝑠𝑡𝑅𝑢𝑛𝑂𝑓𝑍𝑒𝑟𝑜𝑠(𝑋) = 𝑀𝑎𝑥(𝑞 − 𝑝 + 1) 𝑤ℎ𝑒𝑟𝑒 1 ≤ 𝑝 ≤ 𝑞 ≤
𝑁 𝑎𝑛𝑑 𝑥𝑖 = 0 ∀𝑝 ≤ 𝑖 ≤ 𝑞

13. 𝐼𝑛𝑐𝑟𝑒𝑎𝑠𝑖𝑛𝑔(𝑋) = {
1 𝑖𝑓 𝑥𝑖 ≤ 𝑥𝑖+1 ∀1 ≤ 𝑖 < 𝑁

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

14. 𝐷𝑒𝑐𝑟𝑒𝑎𝑠𝑖𝑛𝑔(𝑋) = {
1 𝑖𝑓 𝑥𝑖 ≥ 𝑥𝑖+1 ∀1 ≤ 𝑖 < 𝑁

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Our chosen set of features is by no means the only
appropriate one to enable Substate profiling. Other potential
features will be explored in the future.

C. ProfileGenerator

The ProfileGenerator creates the Substate profiles following
the basic high level steps listed below:

1) Given a Cp and the n test cases that reached it, the

corresponding n sets of (the fourteen) features are retrieved,

one set for each test case.

2) The n sets of features (and consequently the n test cases) are

clustered based on their similarities. k-means clustering is

used where k is a small percentage of n and is guaranteed to

be ≥ 2. Hereafter, let’s assume that k’ clusters resulted from

this step, where k’ ≤ k.

3) Each of the resulting k’ clusters is deemed to represent a

unique Substate behavior at the given Cp and thus is

considered to be a profile element that is covered by an

exclusive subset of the n test cases.

4) Therefore, at the given Cp, k’ profile elements are identified

in addition to the test cases that cover each.
Notes: a) It is plausible that a single cluster would result from the

above steps due to the n sets of features being identical. b) Test

cases that induce one or more NaN values at a given Cp are

clustered together, regardless of any other data values they

induce; similarly, if the test cases induce one or more Infinity

values. The reason is that such test cases share a strongly

differentiating trait, in addition, most of the fourteen features

cannot be computed given such values.

5) The above steps are repeated for each Cp.

6) As a final step, the ProfileGenerator gathers all the profile

elements from all the Cp’s to build a Substate profile for

each test case. Recall from step 4) that information about

which test cases covered which profile element already

exists. The outcome of this step is one file for each test case

comprising a sequence of 1’s and 0’s indicating which

profile elements were covered and which were not. It is

worth mentioning that the ProfileGenerator discards any

profile element that is covered by all the test suite.
In the context of test suite reduction, choosing a larger k will

most likely result in more profile elements to be covered, and
more defects to be revealed; however, this occurs at the expense
of reduction. In practice, picking the value of k really depends
on how many test cases the tester is willing to audit; this issue is
further discussed in Section V.B (RQ3). In our experiments we
varied the value of k by setting it to 2 and to the following
percentages of n: 0.5%, 1%, 1.5%, 2%, 3%, …,10%. The
profiles corresponding to these varying values of k will be
termed: sstatek@2 profiles, sstatek@0.5% profiles, sstatek@1%

profiles etc.

D. Illustrating Example

We now walk through an example to illustrate our proposed
approach with the help of Figure 2. Consider the
BinarytoDecimal program in Section III. The DataCollector

identifies one Cp in main() and eight Cp’s in decimal(),
specifically:

 Cp1: at the entry point of main(); initializes the formal

parameter args
 Cp2: at the entry point of decimal(); initializes the formal

parameter binary
 Cp3: at statement 2; initializes variable decimal to 0

 Cp4: at statement 3, initializes variable i to 0

 Cp5: at statement 3, increments variable i
 Cp6: at statement 4; initializes variable increment to 0

 Cp7: at statement 6; defines variable increment
 Cp8: at statement 7; defines variable decimal
 Cp9: at statement 8; returns the value in decimal

Cp3 through Cp6 are uninteresting as each takes on the same
values regardless of the test case being executed. In particular,
the data points collected for each of them due to each of the six
test cases are as follows: data(Cp3)=<0>, data(Cp4)=<0>,
data(Cp5)=<0, 1, 2, 3, 4, 5, 6, 7>, data(Cp6)=<0, 0, 0, 0, 0, 0, 0,
0>. For these Cp’s, the extracted features are identical across test
cases, and thus k-means clustering identifies a single cluster,
regardless of the chosen k. The single profile element produced
for each of these Cp’s could be covered by any of the test cases,
thus there is no guarantee that any of the failing test cases would
be included in the reduced test suite. The ProfileGenerator will
discard these profile elements in its final step.

The data collected at Cp1 and Cp2 are identical strings. Recall
that each data point comprises three values, the length of the
string, its richness, and its entropy; therefore, the following
tuples are collected at Cp1 and Cp2: data(t1)=<(8, 2, 0.954)>,
data(t2)=<(8, 2, 0.954)>, data(t3)=<(8, 2, 0.954)>, data(t4)=<(8,
2, 0.811)>, data(t5)=<(8, 2, 0.543)>, data(t6)=<(8, 2, 0.954)>.
Since the length and richness are the same across all six test
cases and both Cp’s, they will not result in any profile elements.
However, applying k-means clustering (with k = 2) on the
features extracted from the entropy values will identify one
cluster that includes t5 and a second cluster that includes the
other five test cases; thus, resulting in two profile elements at
Cp1 and another two at Cp2 (see Figure 2).

Cp7 through Cp9 are most interesting. The values they take
on for passing vs. failing test cases are very different. For
example, passing test case t1 results in data(Cp7) = <32, 8, 4, 2,
1>, data(Cp8) = <0, 0, 32, 32, 40, 44, 46, 47>, and data(Cp9) =
<47>, and failing test case t6 yields data(Cp7) = <-128, 32, 16,
4, 1>, data(Cp8) = <-128, -128, -96, -80, -80, -76, -76, -75>, and
data(Cp9) = <-75>. Table 4 shows the computed features at Cp7
for all test cases. Performing k-means clustering (with k = 2) on
these sets of features identifies two clusters that clearly segregate
the failing test cases (due to the features annotated with a ‘*’).

Figure 2 – Example overview

Thus, in order for the two profile elements produced at Cp7 to be
covered, either t5 or t6 must be included in the reduced test suite.
Similarly, processing the collected data points at Cp8 also results
in two clusters that isolate the failing test cases (see Figure 2).
However, at Cp9, the collected data at every test is as follows:
data(t1)=<47>, data(t2)=<93>, data(t3)=<124>,
data(t4)=<125>, data(t5)=<-17>, and data(t6)=<-75>, which
results in t5, t6, and t1 to being included in the same cluster. That
is the failing tests are clearly segregated in Cp7 and Cp8, but
mildly segregated in Cp9.

Since two clusters are identified at each of Cp1 and Cp2, and
two clusters at each of Cp7, Cp8, and Cp9, a total of ten profile
elements are identified (e1, e2, …, e10). The ProfileGenerator
will therefore generate the following profiles for the six test
cases: prof(t1) =<1, 0, 1, 0, 1, 0, 1, 0, 1, 0>, prof(t2) = prof(t3) =
prof(t4) = <1, 0, 1, 0, 1, 0, 1, 0, 0, 1>, prof(t5) = <0, 1, 0, 1, 0,
1, 0, 1, 1, 0>, prof(t6) = <1, 0, 1, 0, 0, 1, 0, 1, 1, 0>.

To summarize, as shown in Figure 2, t5 is segregated at Cp1
and Cp2, and {t5, t6} are segregated at Cp7 and Cp8. But most
importantly, since e2 and e4 are only exercised by t5, a greedy
test suite reduction algorithm is guaranteed to include t5 in the
reduced test suite and thus the fault will be revealed.

E. Applications

The Substate profiles generated by the ProfileGenerator are
identical, in regard to format, to the structural profiles described
in Section II. Therefore, Substate Profiling can be used as the
basis for any profile-based technique developed to use structural
profiles, including test suite reduction, test suite prioritization,
and coverage-based fault localization (CBFL) [26][30][57].

Substate Profiling based CBFL identifies failure-correlated
profile elements that not only point out suspicious (definition
and return) statements but also provide information about the
values associated with them, which is very valuable during
debugging. Section V presents a study in which an existing
greedy test suite reduction algorithm [9][7][29][46] is used in
conjunction with Substate Profiling. Researchers have also
devised variants of this algorithm for test suite prioritization,
which could also be used with Substate Profiling. For
completeness, the greedy TSR algorithm is described next.

Given a program P, a test suite T, and a set of test
requirements TR that are covered by T. Test suite reduction aims
at finding T', a minimal subset of T, that covers all test

requirements in TR. The conjecture is that (the smaller) T' would
be as effective as T in revealing defects [46]. Coverage-based
test suite reduction selects test cases from T to include in T’ in a
way that maximizes the proportion of profile elements that are
covered. It attempts to cover as many of the elements covered
by T with as few test cases as possible. A coverage-maximizing
subset of a test suite is an instance of the set-cover problem,
which is NP-complete but which admits a greedy approximation
algorithm [9][23]. The greedy algorithm selects the test that
covers the largest number of elements not covered by the
previously selected tests. This specific approach was termed
basic coverage maximization in [29][38]. Note that this
algorithm might encounter ties; i.e., different tests might each
cover the maximal number of elements. In order to break the tie,
we randomly select one of the tied test cases, which means that
applying the algorithm several times might yield different
minimized test suites.

V. EMPIRICAL EVALUATION

This section presents our comparative empirical evaluation
of test suite reduction using Substate Profiling.

A. Subject Programs

We conducted our experiments using the following Java
programs: 1) NanoXML releases r1 through r5; 2) the JTidy
HTML syntax checker and pretty printer release 3; 3) the Xerces
XML parser release 2.1; and 4) the seven programs from the
Siemens benchmark that were translated to Java [1]. The
NanoXML releases and Siemens programs and test suites were
download from the SIR repository [13] (sir.unl.edu), whereas
JTidy and Xerces were previously used by the authors
[33][37][38][36].

JTidy and Xerces are multi-fault programs. Whereas, each of
the NanoXML releases and Siemens programs is associated with
several versions that are seeded with single faults. Since multi-
fault programs are more realistic, we created multi-fault versions
out of each of the NanoXML releases and Siemens programs as
follows: 1) We randomly selected five of the provided defects
such that no two defects involved the same statement. 2) We ran
the program using the complete test suite while keeping track of
the defects that were triggered within each test case. 3) We
discarded all test cases that triggered more than one defect; as
such, the final number of defects we considered varied between
1 and 5 as some defects were never triggered alone. 4) We
randomly reduced the number of test cases to arrive at a

 t1 t2 t3 t4 t5 t6

Size 5 5 5 6 7 5

Min* 1 1 4 1 -128 -128

Max 32 64 64 64 64 32

Avg* 9.4 18.6 24.8 20.83 -2.43 -15

Med 4 8 16 12 4 4

Std* 12.91 25.99 24.39 23.88 59.92 64.35

Iqr 18.5 37.5 42 28 31 87.5

Gini* 0.579 0.594 0.465 0.543 -10.9 -1.78

Skew* 0.964 0.954 0.636 0.82 -1.09 -0.97

Kurtosis -1.06 -1.07 -1.5 -1.08 -0.015 -1.03

Mode* 1 1 4 1 -128 -128

Zeros 0 0 0 0 0 0

Inc 0 0 0 0 0 0

Dec* 1 1 1 1 0 0

Table 4 – Features extracted at Cp7

 LOC #def |T| # Failures

Total def1 def2 def3 def4 def5 def6 def7 def8

JTidy 9.1K 8 1000 47 5 6 16 9 1 5 4 1

Xerces 52.5K 6 1519 24 3 3 5 4 4 5 - -

Nano r1 4.3K 2 212 30 20 10 - - - - - -

Nano r2 5.8K 3 177 20 15 1 4 - - - - -

Nano r3 7.2K 4 215 29 8 16 4 1 - - - -

Nano r5 7.5K 1 185 50 50 - - - - - - -

replace 554 4 1158 158

8 50 50 50 - - - -

tot_info 494 5 423 105 6 9 33 50 7 - - -

print_tok 536 3 1121 121 50 50 21 - - - - -

print_tok2 387 4 1200 200 50 50 50 50 - - - -

schedule 425 4 1000 173 23 50 50 50 - - - -

schedule2 766 4 1172 172 50 50 34 38 - - - -

tcas 136 5 931 157 9 45 3 50 50 - - -

Table 5 – Subjects, test suites, defects, and failures.

maximum of 50 failing tests per defect and a maximum of 1000
passing tests.

Since the aim of our study is to assess the effectiveness of
the reduced test suites at revealing faults, we discarded the
defects that exhibited no failures, and discarded NanoXML r4 as
no defects were associated with it. Also, due to a limitation in
the current implementation of the DataCollector, some
exceptions behaved in a manner that prevented the proper
collection of state data; this led us to discard one defect in
NanoXML r1 and two defects in NanoXML r5. Finally, in order
to factor out the negative impact of coincidental correctness on
the accuracy of our comparative study [24][33], we considered
a test case to be failing not only when it produces an unexpected
output but when an infection is detected right after the defect is
exercised (regardless of the output). This same approach was
followed in several of our previous studies [33][37][38][36].

Table 5 provides information about our subject programs: a)
code sizes; b) number of defects; c) test suite sizes; d) total
number of failures; and e) number of failures per defect. It is
worth noting that the execution traces of JTidy and Xerces are
considerably longer than for the other programs; this is not
apparent in Table 5 but it becomes clear in Table 10, which
shows the average time cost of collecting execution profiles.

B. Results and Observations

For each subject, we performed test suite reduction using
structural profiles of the following types: BB, BBE, DUP, and
ALL. Since the greedy reduction algorithm is not deterministic,
we applied it 100 times for each subject and computed the
average sizes of the reduced test suites and the average numbers

of the revealed defects. Accordingly, Table 6 reports for each
profile type and program, the average percentage reduction in
test suite size (rd%), and the average percentage of revealed
defects (df%). In the case of Substate profiles, we performed
reduction for thirteen values of k, starting with k=2 then setting
it to the following percentages of n: 0.5%, 1%, 1.5%, 2%, 3%,
…, 10%. Table 6 shows all the rd% and df% values, except for
those corresponding to k@8% through k@10%, which were
omitted for space limitations. The two right most columns in
Table 6 indicate which of the approaches performed better
according to the following: a) ALL is considered as a
representative of structural profiling; b) the approach exhibiting
the higher df% is deemed better, as long as rd% is not diminished
by more than 20%. The cells in Table 6 reflecting the better
results are shaded in grey. Next, we present our results by
answering relevant research questions.

RQ1: How does Substate Profiling perform relative to
Structural Profiling? – Table 6 allows us to make the following
observations:
1) JTidy: in regard to defect detection, sstatek@2 profiles

performed better than BB and BBE, and sstatek@1.5%

performed better than DUP and ALL. In addition, Substate

profiling covered 100% of the defects starting with k@2%.

Regarding test suite reduction, the rd% for k@2 is

comparable to that of BB and BBE, however, the rd% for

k@1.5% and k@2% are considerably lower than that for

DUP and ALL. Only the cells corresponding to k@1.5%

and k@2% are shaded (considered better performers than

ALL) since their df% is higher than the df% for ALL, and the

difference between their rd% and that of ALL is less than

 BB BBE DUP ALL k@2 k@.5% k@1% k@1.5% k@2% k@3% k@4% k@5% k@6% k@7% Better

rd% df% rd% df% rd% df% rd% df% rd% df% rd% df% rd% df% rd% df% rd% df% rd% df% rd% df% rd% df% rd% df% rd% df% State Struct

JTidy 94 60 93 71 90 87 89 87 92 76 90 80 84 86 79 93 75 100 67 100 60 100 55 100 51 100 47 100 

Xerces 89 65 88 58 84 66 83 66 85 71 84 86 80 100 76 100 72 100 67 100 59 100 56 100 52 100 49 100 

Nano r1 88 100 87 100 88 100 84 100 86 100 86 100 87 100 86 100 83 100 77 100 72 100 68 100 64 100 62 100 - -

Nano r2 85 100 85 100 84 100 82 100 83 100 83 100 83 100 83 100 83 100 76 100 72 100 68 100 65 100 63 100 - -

Nano r3 86 60 86 67 86 62 84 65 82 100 82 100 82 100 82 100 79 100 73 100 67 100 64 100 61 100 58 100 

Nano r5 87 100 85 100 85 100 83 100 83 100 83 100 83 100 83 100 82 100 81 100 78 100 75 100 72 100 69 100 - -

replace 99 62 99 75 99 68 99 75 99 81 98 100 96 100 94 100 92 100 89 100 85 100 82 100 80 100 78 100 

tot_info 97 45 97 44 98 60 97 60 96 65 96 75 95 64 93 65 90 80 83 95 79 90 74 95 70 89 65 90 

print_tok 99 100 99 100 94 100 94 100 98 100 97 100 95 100 92 100 90 100 86 100 82 100 79 100 76 100 73 100 - -

print_tok2 99 75 99 100 99 100 99 100 99 100 98 100 95 100 93 100 91 100 88 100 84 100 79 100 76 100 73 100 - -

schedule 99 50 99 50 98 75 97 75 98 68 98 75 95 81 93 87 91 87 86 81 82 93 77 87 74 100 70 100 

schedule2 99 100 99 100 99 100 99 100 98 100 97 100 94 100 91 100 88 100 82 100 76 100 72 100 66 100 62 100 - -

tcas 99 55 98 65 99 35 98 50 99 70 98 75 97 80 96 85 95 95 93 100 91 100 89 100 87 100 84 100 

Table 6 – rd% and df% computed (given all failures)

 BB BBE DUP ALL k@2 k@.5% k@1% k@1.5% k@2% k@3% k@4% k@5% k@6% k@7% Better

rd% df% rd% df% rd% df% rd% df% rd% df% rd% df% rd% df% rd% df% rd% df% rd% df% rd% df% rd% df% rd% df% rd% df% State Struct

JTidy 94 43 93 62 90 75 89 77 92 67 90 73 85 81 80 89 75 89 67 93 61 94 56 99 51 100 48 99 

Xerces 89 47 88 50 84 52 83 63 85 47 84 61 80 85 76 89 73 92 67 97 62 99 59 100 56 100 53 100 

Nano r1 86 55 85 55 86 55 83 55 85 60 86 65 85 65 85 70 81 85 75 100 70 100 65 100 63 100 60 100 

Nano r2 84 100 84 100 83 100 81 100 82 100 83 100 82 100 82 100 82 100 75 100 71 100 66 100 64 100 60 100 - -

Nano r3 87 52 87 52 88 60 85 50 83 92 83 87 83 97 83 95 80 97 74 100 68 85 64 97 62 92 59 95 

Nano r5 82 100 82 100 80 100 77 100 79 100 79 100 79 100 79 100 78 100 77 100 74 100 72 100 68 100 65 100 - -

replace 99 25 99 50 99 25 98 50 98 25 97 31 95 37 93 37 90 37 87 56 83 62 79 68 77 81 74 93 

tot_info 97 25 96 44 97 40 96 60 95 50 95 55 94 50 91 55 89 55 82 65 77 65 71 60 69 70 65 75 

print_tok 99 100 99 100 93 66 93 100 98 83 97 83 94 91 92 83 90 91 86 91 83 100 80 100 77 100 74 100 

print_tok2 99 75 99 100 99 75 99 100 99 75 97 75 95 81 93 81 90 81 86 81 83 93 78 93 75 87 72 87 

schedule 99 50 98 50 98 75 98 75 98 56 97 43 94 75 92 75 89 81 84 81 79 93 75 93 71 100 67 93 

schedule2 99 56 99 56 99 56 99 68 99 68 97 81 94 93 89 100 86 100 79 100 74 100 69 100 63 100 59 100 

tcas 99 30 98 25 99 5 98 25 99 35 98 35 96 30 95 35 94 35 92 35 89 35 87 35 84 40 81 45 

Table 7 – rd% and df% computed given a single failure per defect

20%. Therefore, for JTidy, Substate profiling performed

better than structural profiling, as indicated by the check

mark in the right most columns of Table 6.

2) Xerces: in regard to defect detection, Substate profiling

performed better than any of the structural profiles starting

with k@2, and covered 100% of the defects starting with

k@1%. Noting that for k@2 and k@1% the rd% is

somewhat comparable to that for ALL. The cells

corresponding to k@4% through k@7% are not shaded

since they reflect rd% values that are relatively very low.

3) NanoXML r1, r2, and r5: in these three cases Substate

profiling and structural profiling performed equally well.

Compared to ALL, the rd% values are almost equal for small

k values but much smaller for large k values, which is

expected.

4) NanoXML r3: Substate profiling covered 100% of the

defects starting with k@2%, whereas none of the strutural

profiles performed well.

5) replace: k@2 performed better than any of the structural

profiles, and starting with k@.5%, 100% of the defects are

covered.

6) tot_info: k@2 performed better than any of the structural

profiles.

7) print_token, print_token2, and schedule2: in these three

cases, Substate profiling and structural profiling performed

equally well.

8) schedule: k@1% performed better than the structural

profiles, and 100% of the defects are covered starting with

k@6%.

9) tcas: similarly, k@2 performed better than any of the

structural profiles, and starting with k@3%, 100% of the

defects are covered.

In summary, Substate profiling performed better for seven

subjects, and equally well for six subjects. It should be noted

however that our criteria for ranking the two approaches gives

more weight to defect coverage than to test suite reduction.

RQ2: What impact does the number of failures have on the
effectiveness of the techniques? – As shown in Table 5, some
of the defects have a large number of failures associated with
them, which is not typical in a realistic setting. For example, def3
of JTidy induces 16 failures, and def2 of replace induces 50
failures. To better assess the effectiveness of Substate profiling
in a realistic environment, we modified the experiments
described in RQ1 by considering a single failure per defect.
Specifically, we randomly considered only one failure from each
defect, then applied greedy reduction. This was repeated n times
such as n = 10× (original number of failures). Table 7 reports the
corresponding averages and allows us to make the following
observations:

1) NanoXML r1 and schedule2: for these two subjects, there

was tie between the two approaches when considering all

failures. However, when a single failure was considered,

Substate profiling perfomed better.

2) print_token and print_token2: for these cases, there was

also a tie between the two approaches when considering all

failures, but when a single failure was considered,

structural profiling perfomed better. We examined the

defects in these two programs and realized that both

print_token and print_token2 have faulty conditional

statements, which are expected to be detected by structural

profiling, but not necessarly by Substate profiling. Since

the latter considers only definition and return statements.

3) The outcome of the two approaches was unchanged for the

remaining nine subjects.

Using single failures, Substate profiling performed better for
nine subjects, worse for two subjects, and equally well for two
subjects. Clearly, using a single failure is the more realistic
approach to evaluate our proposed technique. In our study, using
all failures yielded different results than those for single failures,
however, the conclusions are to a great extent the same.

RQ3: So what value of k should a tester use? – Table 6
suggests that k@2% is optimal for JTidy, k@1.5% is optimal for
Xerces, and k@2 is optimal for NanoXML r3. Therefore, there
does not seem to be an optimal value of k that testers should use
for all applications. However, it should be reasonable to assume
that a larger k is likely to yield more defect coverage at the cost
of diminished test suite reduction. In addition, testers could
experiment with different values of k on prior releases of their
products; thus conjecturing that values of k that worked well in
prior releases would also yield good results in the current
release.

RQ4: Are Substate profiles complementary to structural
profiles? - Our goal here is to explore whether combining
structural profiles with Substate profiles generated using small
values of k (specifically, k@2, k@.5%, k@1% and k@2%),
would yield better results than when each approach is used
separately. In this context, a better result is one that: 1) reveals
more defects (higher df%) than both separate approaches; and 2)
in case the same number of defects is revealed (i.e., a tie), the
better result is the one with the fewer selected test cases (higher
rd%). Table 8 shows the results when combining BB, BBE, DUP,
and ALL profiles, each with sstatek@2, sstatek@.5%, sstatek@1%, and
sstatek@2% profiles. For example, column “BBE + .5%”, shows
the results for combining BBE profiles with sstatek@.5% profiles.
The highlighted cells correspond to the cases when the
combined techniques performed better than both of the original
techniques. For example, the “BBE + .5%” result for Xerces is
highlighted since “78/92” is better than its BBE and sstatek@.5%

 Collect (a) Processing + Reduction (b) Total Cost (c)

ALL sstate ALL sstate ALL sstate

JTidy 30 31 315 3755 30315 34755

Xerces 15 6 978 829 23748 9937

Nano1 0.5 0.4 10 5 108 95

Nano2 0.5 0.4 8 5 95 81

Nano3 0.5 0.4 14 7 122 104

Nano5 0.5 0.5 12 5 103 90

replace 0.7 0.6 13 12 813 665

tot_info 0.7 0.6 5 17 301 291

print_tok 0.7 0.6 17 62 780 742

print_tok2 0.7 0.6 9 25 818 746

schedule 0.7 0.6 10 9 694 614

schedule2 0.7 0.7 17 44 841 847

tcas 0.7 0.5 3 4 624 497

Table 10 – Cost analysis (in secs): a) Avg time for collecting

a single profile. b) Time for processing the profiles and for

minimization (single replication)

results, which are “88/58” and “84/86”, respectively. In this
case, the result is considered better as it revealed more defects
than when using both BBE and sstatek@.5%. Now consider the
“BBE + 1%” result for JTidy, namely, “82/86”. This result is not
highlighted since it is not deemed better than its corresponding
sstatek@1% result, namely, “84/86”. In all, 53 out of the 208
results were better than the results generated by either of the
original techniques. Table 9 shows the equivalent results for the
case when a single failure per defect is considered. For that, the
improved results were observed in 87 out of the 208 cases. These
findings suggest that there is a considerable chance that:

1) Combining Substate profiles with structural profiles would

be beneficial.

2) Substate profiles are complementary to structural profiles.

B. Cost Analysis

Regardless of the profile type used, coverage-based test suite
reduction involves three main steps: 1) collecting the profiles; 2)
processing and consolidating the profiles; and 3) greedy
reduction. Table 10 shows for ALL and Substate profiling: a) the
average times for collecting a single profile; b) the times for
processing the profiles, and for executing a single iteration of the
reduction step; and c) the total costs incurred, which take into
consideration the execution of the complete test suites. Based on
the reported total costs, Substate profiling is less costly except
for the case of JTidy. However, the cost difference is minor in
most cases. More importantly, all measured times are likely to
be insignificant in cases when manual auditing is required and/or
when the cost of test execution is hindering, as discussed in
Section I.

C. Threats to Validity

Our experiments involved a limited number of programs and
defects which requires us to conduct more extensive
experiments in the future that include more programs that are
larger and are drawn from different domains.

Our approach enables the tester to choose a value of k that is
proportional to the resources available for auditing. However,
we believe that the tester needs more information about the
impact of a given value of k in practice. In Section V.B.RQ3, we
suggested that prior releases of the software product could be
leveraged to determine an effective value of k; however, more
needs to be done in relation to this issue.

Finally, our study uses BB, BBE, DUP, and ALL as
representative structural profiling elements; whereas, other
suitable structural elements do exist. Actually, the work
presented in [38] shows that slice pair profiling is very effective
in regard to defect detection. However, it greatly suffers in
regard to test suite size reduction, in addition, the cost of
collecting and processing slice pair profiles is hindering, which
is not the case in Substate Profiling.

VI. RELATED WORK

The focus of this section is on work related to state profiling.
For work related to test suite reduction, the reader can refer to
[44][45][46][51][52][53] for early work, to [31][18][49][12] for
more recent work, and to the comprehensive survey provided by
Yoo and Harman [56]. The authors’ previous contribution to test
suite reduction can be found in [38][35].

 BB+2 BB+.5% BB+1% BB+2% BBE+2 BBE+.5% BBE+1% BBE+2% DUP+2 DUP+.5% DUP+1% DUP+2% ALL+2 ALL+.5% ALL+1% ALL+2%

rd% df% rd% df% rd% df% rd% df% rd% df% rd% df% rd% df% rd% df% rd% df% rd% df% rd% df% rd% df% rd% df% rd% df% rd% df% rd% df%

JTidy 90 79 88 81 83 86 74 98 89 80 87 78 82 86 73 100 87 90 85 90 80 93 72 100 86 92 85 92 80 95 72 100

Xerces 80 82 79 83 75 100 69 100 80 85 78 92 75 100 69 100 77 82 76 85 73 100 67 100 77 84 75 87 72 100 67 100

Nano r1 79 100 80 100 79 100 76 100 79 100 79 100 79 100 75 100 79 100 79 100 80 100 76 100 77 100 77 100 77 100 74 100

Nano r2 76 100 76 100 75 100 75 100 76 100 76 100 76 100 75 100 76 100 76 100 76 100 75 100 74 100 74 100 74 100 73 100

Nano r3 76 100 76 100 76 100 74 100 75 100 76 100 76 100 73 100 77 100 77 100 77 100 75 100 74 100 74 100 74 100 71 100

Nano r5 78 100 78 100 78 100 78 100 76 100 76 100 76 100 76 100 76 100 76 100 76 100 76 100 75 100 75 100 75 100 75 100

replace 98 81 97 100 95 100 92 100 98 93 97 100 95 100 92 100 98 75 97 100 95 100 92 100 98 81 97 100 95 100 91 100

tot_info 94 75 94 60 93 65 88 85 94 60 94 65 93 80 88 85 94 70 94 65 93 70 89 75 93 65 94 70 93 65 88 80

print_tok 98 100 97 100 95 100 90 100 98 100 97 100 95 100 90 100 93 100 92 100 91 100 86 100 93 100 92 100 90 100 86 100

print_tok2 98 100 97 100 95 100 91 100 98 100 97 100 95 100 91 100 98 100 97 100 95 100 91 100 98 100 97 100 95 100 91 100

schedule 98 75 97 81 95 75 90 93 98 75 97 81 95 81 90 75 97 100 96 100 94 93 89 100 97 100 96 100 94 93 89 93

schedule2 98 100 97 100 94 100 87 100 98 100 97 100 94 100 88 100 98 100 97 100 94 100 88 100 98 100 97 100 94 100 88 100

tcas 98 80 98 85 96 85 94 100 98 80 97 80 96 80 94 100 98 80 98 85 97 75 95 90 98 85 97 85 96 95 94 95

Table 8 – Complementary rd% and df% (given all failures)

 BB+2 BB+.5% BB+1% BB+2% BBE+2 BBE+.5% BBE+1% BBE+2% DUP+2 DUP+.5% DUP+1% DUP+2% ALL+2 ALL+.5% ALL+1% ALL+2%

rd% df% rd% df% rd% df% rd% df% rd% df% rd% df% rd% df% rd% df% rd% df% rd% df% rd% df% rd% df% rd% df% rd% df% rd% df% rd% df%

JTidy 90 76 88 77 83 84 74 91 89 80 87 79 82 84 74 91 86 90 85 93 80 95 72 98 86 87 85 92 80 93 72 97

Xerces 80 63 79 74 75 89 69 94 80 64 78 72 75 88 69 93 77 70 76 79 73 93 67 96 76 69 75 78 72 91 67 97

Nano r1 78 65 78 70 78 70 74 85 77 65 77 70 77 65 72 75 78 65 78 70 78 75 74 80 74 75 75 65 75 65 71 75

Nano r2 75 100 75 100 75 100 74 100 75 100 74 100 74 100 74 100 75 100 74 100 74 100 74 100 73 100 72 100 72 100 71 100

Nano r3 77 100 77 95 77 95 74 97 77 95 77 97 76 92 73 100 78 100 78 95 78 100 75 95 75 95 75 92 75 92 72 97

Nano r5 72 100 72 100 73 100 72 100 72 100 72 100 72 100 71 100 72 100 71 100 71 100 71 100 70 100 69 100 70 100 69 100

replace 98 25 97 25 94 37 90 43 98 50 97 50 94 62 90 68 98 25 97 25 94 50 90 50 97 50 96 50 94 56 90 62

tot_info 93 50 93 50 92 55 87 55 93 60 93 60 92 60 86 65 94 44 94 50 92 50 87 55 93 60 93 60 92 65 86 60

print_tok 98 100 97 100 94 100 90 100 98 100 97 100 94 100 90 100 93 83 92 74 90 91 86 91 93 100 92 100 90 100 86 100

print_tok2 98 75 97 87 95 81 90 81 98 100 97 100 94 100 90 100 98 75 97 81 95 81 90 81 98 100 97 100 95 100 91 100

schedule 98 56 97 50 94 75 89 75 97 50 97 50 94 68 89 81 97 75 96 75 94 87 88 87 97 81 96 81 93 81 88 100

schedule2 98 68 97 81 93 93 86 100 98 68 97 87 93 87 86 93 98 81 96 81 93 93 85 100 98 75 96 81 93 93 86 100

tcas 98 45 97 50 96 44 94 55 98 50 97 44 95 44 93 50 98 35 97 35 96 25 94 35 98 50 97 50 95 50 93 44

Table 9 – Complementary rd% and df% computed given a single failure per defect

Zimmerman and Zeller [59] modeled memory as a graph that
captures program state. Values are represented as vertices and
references between values as edges. One approach for state
profiling would be to capture memory graphs following the
execution of definition statements, another would be to capture
them at the end of program execution. However, the former is
clearly infeasible, and the latter will likely miss states relevant
to failure. Our approach attempts to strike the right balance
between these two extreme forms of state profiling.

Xie and Notkin [55] profiled the values of global variables
and function parameters at the entry and exit of functions in
order to collect and compare state profiles, which they termed
“value spectra”, for the purpose of regression testing. The goal
of the comparison is to detect internal behavior deviations
between two program versions even when program outputs are
the same. We ran part of our experiments (using JTidy and
Xerces) while only considering static variables and formal
parameters. We observed a measurable improvement in regard
to reduction, but a major deterioration with respect to the number
of bugs revealed.

Xie et al. [54] minimized unit test suites by collecting the
state of objects at the entry of unit test functions; a test initiated
with a previously observed state is deemed redundant. Their
proposed framework, Rostra, was successfully used to minimize
test suites generated by test case generation tools such as JTest
and JCrasher. Substate Profiling has a wider scope, in regard to
applications and the level of testing.

Gyori et al. proposed PolDet [19], a technique that detects
polluting unit tests; i.e., tests that might cause subsequently
executed tests to fail as a result of erroneously modifying data
they share with them. Given a unit test t, PolDet captures the
program's heap-state before t's setup and teardown code. The
two captured states are compared in order to determine whether
or not their differences are potentially harmful for subsequently
executing tests. For example, t is deemed non-polluting if the
captured states are isomorphic, even if the recorded objects field
values are different. Also, private fields and local variables are
not considered when capturing the states, since they cannot be
accessed by other tests and thus cannot be harmful. PolDet’s
approach to capturing and comparing states appears to be
relevant to our work, however it is not useful for general state
profiling since it operates at a level of abstraction that is too high
for its purposes. Specifically, state behaviors occurring during a
test run might not always be reflected in the final captured state,
and uncaptured state behaviors involving local variables and
private fields might be relevant to failure.

Francis [16] collected object states to enable test suite
reduction. However, their empirical results were not as favorable
as ours. The JTidy subject program we used is identical to the
one they used. As presented in [16], their approach revealed 71%
of the defects with an rd% of 77, whereas Substate Profiling
revealed roughly 96% for the same rd%, and 100% for an rd% of
75 (see the results for k@1.5% and k@2% in Table 6). We also
used the same version of Xerces they used, but with a slightly
different set of defects. Their approach revealed all the defects
with an rd% of 50, whereas ours revealed all the defects with an
rd% of 80. We believe that object-state profiling [16] does not
perform as well because it might miss many object states that

could be relevant to failure. This might happen for two reasons:
1) the object states are only collected at the exit points of
functions; and 2) only samples of them are actually collected
[16].

Elbaum et al. [15] presented a framework for creating and
replaying tests that are hybrid of unit and system tests, which
they termed Differential Unit Tests. Their approach involves
analyzing program states acquired before and after the execution
of a given unit test. Since they recognize that recording raw
program states is impractical, they adopted several strategies to
approximate them. For example, they considered a single
representative of each equivalence class of program states. They
also considered only the values of reference fields and discarded
scalar fields, which would maintain the heap shape of a program
state. The framework was subsequently extended [27] to create
Aggregated Differential Unit Tests. In future work, we intend to
explore adopting their approach for identifying equivalence
classes of program states.

Jaygarl et al [25] proposed OCAT to improve the coverage
performance of the random testing tool Randoop. OCAT
operates as follows: 1) It captures objects with non-isomorphic
states for each class type. State isomorphism of objects is
checked following Rostra [54]. 2) The objects are used as seeds
for Randoop to generate more object instances, which entails
randomly generating method sequences. 3) It mutates the objects
in order to cover the not-yet-covered branches, which involves
applying an SMT solver.

In relation to model-based testing, Mouchawrab et al. [43]
compared testing techniques that are based on structural
coverage to those based on UML state diagrams. Their results
showed that there is no significant difference in terms of fault
detection effectiveness, and that the two techniques are
complementary. Asoudeh and Labiche [3] used a genetic
algorithm to generate minimal cost test suites from finite state
machines. Gao et al. [17] and Turner et al. [50] treated program
objects as each having a set of states with transitions between
them; the transitions are considered to be triggered when the
objects’ methods are invoked. They proposed test generation
techniques based on such models. It is worth noting that Elbaum
et al. [15] also modeled objects as state machines.

VII. CONCLUSIONS AND FUTURE WORK

We presented a new state profiling approach, termed
Substate Profiling, which is fine grained and suitable for profile-
based dynamic analysis techniques. We empirically evaluated
our approach using greedy test suite reduction by comparing its
effectiveness to that of commonly used structural profiles. Our
results showed that, in most cases, Substate Profiling is more or
equally effective in regard to defect detection, and that it is
comparable in regard to cost and to the sizes of the reduced test
suites. Also, Substate profiles were found to be complementary
to structural profiles in many cases.

In future work we will investigate ways to estimate a
recommendable value of k by analyzing the structure of the
programs under test and by mining their bug repositories. We
will also apply Substate Profiling to other suitable techniques,
such as test suite prioritization and fault localization.

References

[1] Rawad Abou Assi, Wes Masri. Identifying Failure-Correlated

Dependence Chains. ICST Workshops 2011: 607-616.

[2] Ammann P. and Offutt J. Introduction to Software Testing. Cambridge
University Press, 2008.

[3] Nesa Asoudeh, Yvan Labiche. A Multi-objective Genetic Algorithm for
Generating Test Suites from Extended Finite State Machines. SSBSE
2013: 288-293.

[4] Thomas Ball, James R. Larus: Efficient Path Profiling. MICRO 1996: 46-
57.

[5] M. G. Bulmer. Principles of Statistics. Dover Publications, 1979.

[6] Chao, A. (2005) Species richness estimation. Pages 7909–7916 in N.
Balakrishnan, C. B. Read, and B. Vidakovic, eds. Encyclopedia of
Statistical Sciences. New York, Wiley.

[7] T. Chen and M. Lau, “A new heuristic for test suite
reduction,”Information and Software Technology, vol. 40, no. 5, pp. 347–
354, 1998.

[8] T. Chen and M. Lau, “A simulation study on some heuristics for test suite
reduction,” Information and Software Technology, vol. 40, no. 13, pp.
777–787, 1998.

[9] V. Chvatal. 1979. A Greedy Heuristic for the Set-Covering Problem.
Math. Oper. Res. 4, 3 (Aug. 1979), 233–235.

[10] Holger Cleve, Andreas Zeller: Locating causes of program failures. ICSE
2005: 342-351.

[11] Colwell, Robert K. (2009). "Biodiversity: Concepts, Patterns and
Measurement". In Simon A. Levin. The Princeton Guide to Ecology.
Princeton: Princeton University Press. pp. 257–263.

[12] Daniel Di Nardo, Nadia Alshahwan, Lionel C. Briand, Yvan Labiche.
Coverage-based regression test case selection, minimization and
prioritization: a case study on an industrial system. Softw. Test., Verif.
Reliab. 25(4): 371-396 (2015).

[13] Do H., Elbaum S., and Rothermel G. 2005. Supporting Controlled
Experimentation with Testing Techniques: An Infrastructure and its
Potential Impact. Empirical Software Engineering: An International
Journal, Volume 10, No. 4, pages 405-435, 2005.

[14] Elements of Information Theory, by Cover and Thomas, 2006.

[15] Sebastian G. Elbaum, Hui Nee Chin, Matthew B. Dwyer, Jonathan
Dokulil. Carving differential unit test cases from system test cases.
SIGSOFT FSE 2006: 253-264.

[16] Patrick Francis. Advanced Techniques for Software Failure Classification
and Observation-based Testing, MS Thesis, Case Western Reserve
University, August 2005.

[17] Jerry Z. Gao, David Chenho Kung, Pei Hsia, Yasufumi Toyoshima, Cris
Chen: Object state testing for object-oriented programs. COMPSAC
1995: 232-238.

[18] Arnaud Gotlieb and Dusica Marijan. FLOWER: optimal test suite
reduction as a network maximum flow. Proceedings of the 2014
International Symposium on Software Testing and Analysis, pp. 171-180.

[19] Alex Gyori, August Shi, Farah Hariri, Darko Marinov. Reliable testing:
detecting state-polluting tests to prevent test dependency. ISSTA 2015:
223-233.

[20] M. Jean Harrold, Rajiv Gupta, and Mary Lou Soffa. 1993. A Methodology
for Controlling the Size of a Test Suite. ACM Trans. Softw. Eng.
Methodol. 2, 3 (Jul 1993), 270–285.

[21] Mary Jean Harrold, Mary Lou Soffa. Efficient Computation of
Interprocedural Definition-Use Chains. ACM Trans. Program. Lang.
Syst. 16(2): 175-204 (1994).

[22] J. Hartmann and D. Robson, “Revalidation during the software
maintenance phase,” in Proceedings of International Conference on
Software Maintenance. IEEE, 1989, pp. 70–80.

[23] D.S. Hochbaum, Approximation algorithms for NP-hard problems, PWS
Publishing, Boston, MA, 1997.

[24] Gunel Jahangirova. Oracle problem in software testing. ISSTA 2017
Doctoral Symposium: 444-447.

[25] Hojun Jaygarl, Sunghun Kim, Tao Xie, Carl K. Chang. OCAT: object
capture-based automated testing. ISSTA 2010: 159-170.

[26] James A. Jones, Mary Jean Harrold, James F. Bowring. Debugging in
Parallel. ISSTA 2007: 16-26

[27] Matthew Jorde, Sebastian G. Elbaum, Matthew B. Dwyer. Increasing Test
Granularity by Aggregating Unit Tests.ASE 2008: 9-18.

[28] René Just, Darioush Jalali, and Michael D. Ernst. 2014. Defects4J: a
database of existing faults to enable controlled testing studies for Java
programs. In Proceedings of the 2014 International Symposium on
Software Testing and Analysis (ISSTA 2014). ACM, New York, NY,
USA, 437-440. DOI: https://doi.org/10.1145/2610384.2628055.

[29] David Leon, Andy Podgurski. A Comparison of Coverage-Based and
Distribution-Based Techniques for Filtering and Prioritizing Test Cases.
ISSRE 2003: 442-456.

[30] Ben Liblit, Mayur Naik, Alice X. Zheng, Alexander Aiken, Michael I.
Jordan. Scalable statistical bug isolation. PLDI 2005: 15-26

[31] Jun-Wei Lin, Reyhaneh Jabbarvand, Joshua Garcia, and Sam Malek.
Nemo: Multi-Criteria Test-Suite Minimization with Integer Nonlinear
Programming. International Conference of Software Engineering (ICSE
2018), Gothenburg, Sweden, May 2018.

[32] M. Marre and A. Bertolino. 2003. Using spanning sets for coverage
testing. IEEE Transactions on Software Engineering 29, 11 (Nov 2003),
974–984.

[33] Wes Masri, Rawad Abou Assi. Prevalence of coincidental correctness and
mitigation of its impact on fault localization. ACM Trans. Softw. Eng.
Methodol. 23(1): 8:1-8:28 (2014).

[34] Masri Wes, Daou James, and Abou-Assi Rawad. State Profiling of
Internal Variables. Regression/ICST 2014, Cleveland, April 2014, pp
332-335.

[35] Masri W. and El-Ghali M. Test Case Filtering and Prioritization Based on
Coverage of Combinations of Program Elements. Seventh International
Workshop on Dynamic Analysis, WODA, Chicago, IL, 2009, pp 29-34.

[36] Wes Masri, Andy Podgurski. Algorithms and tool support for dynamic
information flow analysis. Information & Software Technology 51(2):
385-404 (2009).

[37] Wes Masri, Andy Podgurski. Measuring the strength of information flows
in programs. ACM Trans. Softw. Eng. Methodol. 19(2): 5:1-5:33 (2009).

[38] Masri W., Podgurski A. and Leon D. An Empirical Study of Test Case
Filtering Techniques Based On Exercising Information Flows. IEEE
Transactions on Software Engineering, July, 2007, vol. 33, number 7,
page 454.

[39] Reza Matinnejad, Shiva Nejati, Lionel C. Briand. Automated testing of
hybrid Simulink/Stateflow controllers: industrial case studies.
ESEC/SIGSOFT FSE 2017: 938-943.

[40] Reza Matinnejad, Shiva Nejati, Lionel C. Briand, Thomas Bruckmann.
Automated test suite generation for time-continuous simulink models.
ICSE 2016: 595-606.

[41] Reza Matinnejad, Shiva Nejati, Lionel Briand, Thomas Bruckmann. Test
Generation and Test Prioritization for Simulink Models with Dynamic
Behavior. IEEE Transactions on Software Engineering. March 1, 2018.

[42] Scott McMaster, Atif M. Memon: Call Stack Coverage for Test Suite
Reduction. ICSM 2005: 539-548.

[43] Samar Mouchawrab, Lionel C. Briand, Yvan Labiche. Assessing,
Comparing, and Combining Statechart- based testing and Structural
testing: An Experiment. ESEM 2007.

[44] A Jefferson Offutt, Jie Pan, and Jeffrey M Voas. 1995. Procedures for
reducing the size of coverage-based test sets. In In Proc. Twelfth Int’l.
Conf. Testing Computer Softw.

[45] G. Rothermel, M. Harrold, J. Ostrin, and C. Hong, “An empirical study of
the effects of minimization on the fault detection capabilities of test
suites,” in Proceedings of International Conference on Software
Maintenance. Published by the IEEE Computer Society, 1998, p. 34

[46] Rothermel G, Harrold M, Ronne J, Hong C. Empirical studies of test suite
reduction. Software Testing, Verification, and Reliability December
2002; 4(2):219–249.

[47] Gregg Rothermel, Roland Untch, Chengyun Chu, and Mary Jean Harrold.
Test Case Prioritization: An Empirical Study. In Proceedings of the IEEE
International Conference on Software Maintenance, 1999, pp. 179-188.

[48] R. Shanmugam and R. Chattamvelli, Statistics for Scientists and
Engineers: Wiley, 2015.

[49] August Shi, Alex Gyori, Milos Gligoric, Andrey Zaytsev, and Darko
Marinov. Balancing trade-offs in test-suite reduction. Proceedings of the
22nd ACM SIGSOFT International Symposium on Foundations of
Software Engineering, 2014, pp. 246-256.

[50] Turner, C. D., and Robson, D. J. The state-based testing of object-oriented
programs. In ICSM ’93: Proceedings of the Conference on Software
Maintenance (1993), IEEE Computer Society, pp. 302–310.

[51] W. Eric Wong, Joseph Robert Horgan, Saul London, Aditya P. Mathur.
Effect of Test Set Minimization on Fault Detection Effectiveness. ICSE
1995: 41-50.

[52] W. Eric Wong, Joseph Robert Horgan, Saul London, Aditya P. Mathur.
Effect of Test Set Minimization on Fault Detection Effectiveness. Softw.,
Pract. Exper. 28(4): 347-369 (1998).

[53] W. Eric Wong, Joseph Robert Horgan, Aditya P. Mathur, Alberto
Pasquini. Test set size minimization and fault detection effectiveness: A

case study in a space application. Journal of Systems and Software 48(2):
79-89 (1999)

[54] Xie, T., Marinov, D., and Notkin, D. Rostra: A framework for detecting
redundant object-oriented unit tests. In Proceedings of the 19th IEEE
Interna-tional Conference on Automated Software Engineering (ASE
2004) (2004), IEEE Computer Society, pp. 196–205.

[55] Xie, T., and Notkin, D. Checking inside the black box: Regression testing
based on value spectra differences. In ICSM ’04: Proceedings of the 20th
IEEE In-ternational Conference on Software Maintenance (ICSM’04)
(2004), IEEE Computer Society, pp. 28–37.

[56] Shin Yoo, Mark Harman. Regression testing minimization, selection and
prioritization: a survey.Softw. Test., Verif. Reliab. 22(2): 67-120 (2012).

[57] Andreas Zeller: Isolating cause-effect chains from computer programs.
SIGSOFT FSE 2002: 1-10.

[58] Lingming Zhang, Darko Marinov, Lu Zhang, Sarfraz Khurshid. An
Empirical Study of JUnit Test-Suite Reduction. ISSRE 2011: 170-179.

[59] T. Zimmermann and A. Zeller, “Visualizing Memory Graphs,” in
Proceedings of the International Seminar on Software Visualization, pp.
191-204, Dagstuhl Castle, Germany, May 2001.

