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Abstract—Test suite reduction (TSR) aims at removing 

redundant test cases from regression test suites. A typical TSR 

approach ensures that structural profile elements covered by the 

original test suite are also covered by the reduced test suite. It is 

plausible that structural profiles might be unable to segregate 

failing runs from passing runs, which diminishes the effectiveness 

of TSR in regard to defect detection. This motivated us to explore 

state profiles, which are based on the collective values of program 

variables. 

This paper presents Substate Profiling, a new form of state 

profiling that enhances existing profile-based analysis techniques 

such as TSR and coverage-based fault localization. Compared to 

current approaches for capturing program states, Substate 

Profiling is more practical and finer grained.  

We evaluated our approach using thirteen multi-fault subject 

programs comprising 53 defects. Our study involved greedy TSR 

using Substate profiles and four structural profiles, namely, basic-

block, branch, def-use pair, and the combination of the three. For 

the majority of the subjects, Substate Profiling detected 

considerably more defects with a comparable level of reduction. 

Also, Substate profiles were found to be complementary to 

structural profiles in many cases, thus, combining both types is 

beneficial. 
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I.  INTRODUCTION  

Test suite reduction (TSR), also referred to as test suite 
minimization [31][45][56], aims at reducing the number of test 
cases of a given regression test suite in a manner that does not 
compromise its defect detection ability [45][46][52][53]. 
Naturally, there is cost incurred when performing TSR. 
However, in many situations, such cost would be insignificant 
compared to the cost savings yielded by the reduced test suite. 
In particular, TSR is most beneficial under one or both of the 
following circumstances: 1) test suite execution is highly costly, 
e.g., due to manual effort or resource consumption; and 2) 
manual auditing is required, i.e., the tester is required to 
manually determine whether test cases pass or fail. Rothermel 
et al. [47] reported of a case in industry where executing the 
complete regression test suite (of a 20K LOC product) required 
seven weeks. Cyber Physical Systems [39][40][41] is an 
example domain where TSR might be highly beneficial. In such 
domain, software closely interacts with physical processes; 
therefore, test execution is typically costly, and test oracles are 
likely to be absent, thus requiring manual auditing. On the other 
hand, TSR might not be worthwhile in situations where test 

                                                           
1 An execution profile comprises recorded information meant to capture the 

runtime behavior of a program during a given test run 

oracles are fully automated and test suite execution is repeatable 
at no major additional cost. 

A widely adopted approach for test suite reduction ensures 
that the test requirements [1] satisfied by the original test suite 
are also satisfied by the reduced test suite [45][51][58]; in other 
words, both test suites are required to cover the same program 
elements. Commonly used program elements include methods, 
statements, branches, and def-use pairs [21]; which are 
structural in nature and relatively simple [31][38][58]. More 
complex and seldom used structural program elements include 
acyclic paths [4], call-stacks [42], and slice pairs [38].  

It is plausible that a given failure might not be characterized 
by the execution of any structural program element, be it simple 
or as complex as a complete path [1]. That is, there are 
situations in which structural execution profiles1 are unable to 
segregate failing runs from passing runs, or from other failing 
runs that are due to different defects. In such situations, test 
suite reduction is likely to yield reduced test suites that are not 
as effective as their respective original test suites in regard to 
defect detection. This motivated us to explore alternative types 
of profiles, namely, state profiles that are constructed based on 
the collective values of program variables. Similar to structural 
profiles, state profiles are meant to capture the execution 
behavior of programs, but from a memory perspective. Thus, it 
is more appropriate to define a state profile as being data 
representing the memory behavior of an executing program.  

Researchers have devised numerous test suite reduction 
techniques of which most could be classified as greedy [9] 
[29][46], heuristic-based [20][7][8], distribution-based 
[29][38], or ILP-based [22][31]. This paper is not proposing a 
new test suite reduction technique, but a new type of profiling 
that makes existing profile-based reduction techniques more 
effective. Specifically, this paper presents Substate Profiling, a 
new form of state profiling that is relatively practical in addition 
to being fine grained with respect to what variables to consider 
and when/where to record their values.  Substate Profiling is 
suitable for profile-based dynamic analysis techniques such as 
test suite reduction and prioritization, and coverage-based fault 
localization. To assess the benefits of using Substate Profiling, 
we conducted a comparative study involving greedy test suite 
reduction using Substate profiles and four other structural 
profiles, namely, basic-block, branch, def-use pair, and the 
combination of the three (termed ALL [38]). The experiments 
involved thirteen multi-fault Java programs, which included a 
total of 53 defects. The results showed that, comparatively, 
Substate Profiling detected considerably more defects for the 
majority of the subjects, while exhibiting comparable reduction 



levels in most cases. Our results also showed that in many cases 
Substate profiles are complementary to structural profiles, thus, 
combining them is beneficial. 

Work related to Substate Profiling entails capturing and 
comparing program states for various purposes. Zimmerman 
and Zeller [59] modeled memory as a graph that captures 
program states to assist debugging. Xie and Notkin [55] 
captured the values of global variables and function parameters 
in order to compare state profiles, which they termed “value 
spectra”. Xie et al. [54] minimized unit test suites by capturing 
the state of objects at the entry of test functions. Elbaum et al. 
[15] analyzed program states in order to create tests that are 
hybrid of unit and system tests. Jaygarl et al. [25] proposed 
OCAT, an approach that captures, generates, and mutates 
objects in order to improve Randoop. Francis [16] collected 
samples of object states to enable greedy test suite reduction 
and prioritization techniques.  

The aforementioned body of work differs from ours 
primarily in regard to the granularity at which program states 
are captured. Substate Profiling is the only one aiming at 
capturing/approximating the memory behavior throughout 
program execution. Whereas existing techniques record states 
at the start/end of tests or functions, we record state information 
at every definition statement in addition to start/end of 
functions. Section VI further details these differences and 
presents more related work. The main contributions of this 
work are as follows: 

 A new state profiling approach, termed Substate 
Profiling, which is fine grained and suitable for profile-
based dynamic analysis techniques such as test suite 
reduction and prioritization, and coverage-based fault 
localization 

 Supporting tools for the Java platform 
 An experimental study that contrasts the effectiveness of 

using Substate profiles to that of using structural profiles 
in greedy test suite reduction 

 Insight of whether Substate profiles are complementary to 
structural profiles 

The remainder of this paper is organized as follows.  Section 
II describes commonly used structural profiles.  Section III 
walks through a motivating example. Section IV presents and 
illustrates our proposed Substate Profiling approach and tools. 
Section V reports on our empirical study and summarizes our 
findings.  Section VI discusses related work, and Section VII 
presents our conclusions and future work. 

II. BACKGROUND 

This section presents the four structural profiles involved in 
our experiments presented in Section V. We use the same 
terminology adopted in [38] to describe them. 

 Basic blocks (BB): For every basic block B such that B is 

executed in at least one test, a BB profile indicates (via a 0 or 

1 entry) whether B is executed in the current test.  

 Basic-block edges (BBE) or branches:  For every pair of 

basic blocks B1 and B2 such that there is a branch from B1 to 

                                                           
2 This example is borrowed from the authors’ previous related work [34]. 

B2 in at least one test, a BBE profile indicates whether this 

branch is taken in the current test. 

 Def-use pairs (DUP): For each pair of statements s1 and s2 

such that: 1) s1 defines a variable x; 2) s2 uses x; and 3) s1 

dynamically reaches s2 in at least one test; a DUP profile 

indicates whether s1 dynamically reaches s2 in the current test. 

 All above profiles combined (ALL): Combined entries of 

BB, BBE and DUP.  
In order to generate the above structural profiles, we built a 

tool that targets the Java platform based on the ASM Java 
bytecode manipulation and analysis framework (asm.ow2.org). 

III. MOTIVATING EXAMPLE 

As noted earlier, there are situations in which structural 
profiles fall short at characterizing defects. This section provides 
an example2 that demonstrates a case where state profiling 
performs better than structural profiling. Consider the Java 
program shown in Table 1. Given a string representing an eight-
digit binary number, the function decimal() is meant to return its 

decimal conversion.  When variable i is zero, statement 8 causes 

variable increment to overflow and take on the value -128 as 

opposed to 128 (since the range of byte is [-128, 127]); thus 

causing a failure whenever the input string has its leftmost bit 
set.  Table 1 also shows six test cases, two of which trigger a 
failure, and their corresponding statement coverage information: 
a check mark indicates that the statement at the given row was 
executed at least once using the test case at the given column 
(i.e., the profile count was non-zero). Note how the resulting 
statement profiles for both passing and failing test cases are 
identical, and thus are not helpful in techniques such as test suite 
reduction or fault localization. 

Table 2 and Table 3 respectively show the branch coverage 
and def-use coverage information. Here also, all test cases 
exhibit the same profiles, which deems them not useful. 
Therefore, BB, BBE, DUP (and ALL) structural profiles fail to 
differentiate between the passing and failing runs in our 
example. 

We now shift our focus to state profiling by zeroing in on 
statement 6 where variable increment is repeatedly defined. 

Figure 1 shows the values taken by increment throughout the 
execution of the test cases. Clearly, the curves for the two failing 
test cases t5 and t6 exhibit shapes that are considerably different 
from the rest, suggesting that in our example, state profiling 
would be more useful than structural profiling. It is worth noting 
that profiling the values taken by variable decimal at statement 

7 would also help differentiate the failing test cases from the 
passing ones. 

The goal of this work is to devise a profiling approach and 
tool that capture anomalous state behaviors such as those 
exhibited by increment and decimal. 

IV. SUBSTATE PROFILING: APPROACH, TOOLS, AND 

APPLICATIONS  

The purpose of a profiling tool is to detect and record some 
events of interest that occurred during a program execution. In 
the context of structural profiling, an event is the execution of a 



program element, e.g., a statement or branch. In the context of 
state profiling, an event is the instantiation of a program state. 
Which brings forward two critical questions:  

1) What constitutes a program state, is it a value-snapshot of 

all program variables? 

2) When should the program state be captured, should it be 

done following the execution of every definition 

statement? 

To achieve ultra-high accuracy, the answer should be yes for 

both questions. However, this is clearly not feasible, which calls 

for an approximating approach. In fact, as presented in Section 

VI, we are not aware of any related work that does not involve 

some form of an approximation strategy.  

Our strategy for making Substate Profiling feasible must not 
compromise its ability to characterize non-trivial failures. For 
that purpose, our design guarantees that Substate Profiling 
captures the data of interest following every event that can 
potentially change the program state. Specifically, following the 
execution of every definition statement (in addition to other 
locations as discussed later). However, for the sake of 
scalability, the captured data does not comprise a value-snapshot 
of all program variables, but only the values of the variables 
being assigned at the capture location. In other words, instead of 
considering the overall-states exhibited by a program P, 
Substate Profiling considers the collective sub-states exhibited 
at capture locations in P, specifically, at definition statements, 
return statements, and at the entry of functions (in order to 
capture the values of formal parameters). Hereafter, we will refer 
to these locations as capture points or Cp’s for short [19]. 

Our proposed approach comprises three main components: 
the DataCollector, the FeatureExtractor, and the 
ProfileGenerator.  Given a program P and an associated test 
suite T:  

1) For each test case t in T, the DataCollector is applied in 

order to capture the data at the Cp’s in P. 

2) For each test case t in T, the collected raw data at each Cp 

is abstracted into features using the FeatureExtractor. 

Therefore, if a Cp is executed by n different test cases, it will 

be associated with n sets of features. 

3) At each Cp, the ProfileGenerator identifies one or more 

profile elements. This is achieved by applying cluster 

analysis based on the extracted features. Hence, a profile 

element at a Cp would represent a substate behavior 

exhibited by a subset of the n test cases that executed that Cp. 

4) As a final step, the ProfileGenerator uses the complete set 

of profile elements (gathered from all the Cp’s) to build a 

Substate profile for each test case. This step is 

straightforward since the mapping between a profile element 

and the test cases that exhibited its behavior is readily 

available. 
Next, we provide a detailed description of the DataCollector, 

the FeatureExtractor, and the ProfileGenerator. Then we 
provide an illustrative example and discuss potential 
applications of our profiling approach. (It might be helpful for 
some readers to first skim through the illustrative example 
presented in Section IV.D). 

A. DataCollector 

The DataCollector is applied to each test case in order to 
capture the data at the Cp’s, i.e., definition statements, return 
statements, and functions entries. To better match a given Cp 
across test cases, we associate it with the following identifying 
attributes: 1) the signature of the method it belongs to; 2) the 
instruction offset within the method; and 3) the identifier of the 
thread within which it executed. Therefore, in order to compare 
the substates induced at a given Cp across a set of test cases, we 
require the three aforementioned attributes to be identical for all 
of the test cases in the set.  

/*Given a string representing an 8 digit 
binary number, the method decimal() 
returns its decimal conversion. Due to 
overflow, failure occurs whenever the input 
string has its leftmost position set */ 
public class BinarytoDecimal { 

Passing Failing 

t1 t2 t3 t4 t5 t6 

0
0
1
0

1
1
1

1
 

0
1
0
1

1
1
0

1
 

0
1
1
1

1
1
0

0
 

0
1
1
1

1
1
0

1
 

1
1
1
0

1
1
1

1
 

1
0
1
1

0
1
0

1
 

public static void main(String args[]) {       

1   decimal(args[0]); }       
public static int decimal(String binary) {       

2   int decimal = 0;       
3   for (int i = 0; i < binary.length(); i++) {       

4     byte increment = 0; 
5     if (binary.charAt(i) == '1') { 

      

6         increment =  
               (byte)Math.pow(2.0,(double)(7-i)); 

      

       } 
7     decimal += increment; 
} 

      

8   return decimal;}}       

Table 1 – Java Code and BB coverage 

 

 
Figure 1 – Values taken by increment 
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In case of definition statements, the variables being defined 
at a Cp could be local variables, formal parameters, static 
variables, attributes of class instances, or array elements. When 
the data at a Cp is of primitive scalar type we record its value as 
is, and in case it is of java.lang.Number type we record the value 
returned by doubleValue(). This scalar data can be used directly 
by the FeatureExtractor, described in the next section. Whereas, 
in case the data is of type java.lang.String, the captured strings 
need to be first mapped to numeric measures in order to extract 
meaningful features characterizing them. We opted to use three 
measures to represent a given string, namely, its length, richness 
[11][6], and entropy [14]. (We explored using the string’s hash 
code, but realized that it is not appropriate since using it to 
compute most of the features listed in Section IV.B would yield 
values that do not characterize strings in any meaningful way.) 

Special consideration was given to the data collected at a Cp 
if it included one or more NaN or Infinity values, as described in 
Section IV.C. Also, the current implementation of the 
DataCollector considers an array element definition to be a 
definition of the entire array; i.e., when recording data values, it 
does not take into consideration the array indexes. This design 
decision was made for efficiency purposes, however, we intend 
to revisit it in future work. 

As detailed later, the ProfileGenerator does not operate on 
the raw data collected by the DataCollector, but on features 
extracted from that data. Therefore, the data collected at each Cp 
needs to be analyzed (for each test case) in order to extract 
features that compactly characterize it. Some features could be 
determined on the fly, and thus are computed within the 
DataCollector as the data points are being collected; we will 
refer to this set of simple features as Fsimple. Other features 
require all the data points to be present a priori, for those, the 
DataCollector stores the data until the end of execution in order 
to compute them; we will refer to this set of features as Fcomplex.  

Clearly, if we only consider the features in Fsimple then there 
would not be any concerns about memory consumption 
regarding the DataCollector. However, in order to consider the 
features in Fcomplex, we need to take precautionary measures since 
we collect every value that gets exhibited at every Cp. 
Specifically, at each Cp, we opted to store the first Vlead leading, 
and the Vtrail trailing captured data/value points, where Vlead and 
Vtrail are configurable (in our experiments we use Vlead = Vtrail = 
2000). It should be noted that we do not totally discard the 
(middle) data points that were not stored since we use them in 
computing the features in Fsimple. 

The current implementation of the DataCollector comprises 
3,168 lines of Java code; it is composed of two components: the 
Instrumenter and the Profiler. The preliminary step in applying 
the DataCollector is to instrument the target byte code classes 
and/or jar files using the Instrumenter, which was also 
implemented using the ASM framework (asm.ow2.org).  The 
Instrumenter inserts a number of method calls to the Profiler at 
the following points of interest:  

 Methods entries: to capture the values of formal parameters. 

 Methods exits: to capture the return values. 

 Definition statements: to capture the values assigned to local 

variables, static variables, attributes of class instances, and 

array elements. 

 Additional points of interest (e.g., throw statements) to 

enable better monitoring of the subject programs. 
At runtime, the instrumented application invokes the 

Profiler, passing it information that enables it to collect values 
assigned at the Cp’s. It is worth noting that the DataCollector is 
thread-safe, which is particularly necessary for tracking local 
variables. 

B. FeatureExtractor 

For each test case, fourteen features are extracted from the 
data collected at each Cp to be passed on to the 
ProfileGenerator. These features are meant to compactly 
abstract the state behavior at a given Cp. Seven of these features, 
which constitute Fsimple, are computed on the fly by the 
DataCollector, namely, Size, Min, Max, Mean, Decreasing, 
Increasing, and longestRunOfZeros.  

The remaining features, which constitute Fcomplex, are 
computed at the end of each profiled test execution. They 
include Median, Mode, Standard deviation, Inter-quartile 
range, Skewness, Kurtosis and Gini coefficient [5]. These 
features are chosen based on major types of statistical measures 
used in the literature [48], specifically: central tendency (Mean, 
Median, and Mode), dispersion (Standard deviation and Inter-
quartile range), inequality (Gini), and shape (Skewness and 
Kurtosis). Recall that in cases when Size > Vlead + Vtrail, some 
data points will not be used in the computation of the features in 
Fcomplex.  

For a given set of values 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑁} we define the 
fourteen features as follows: 

1. 𝑆𝑖𝑧𝑒(𝑋) = 𝑁 

2. 𝑀𝑖𝑛(𝑋) = 𝑥𝑘𝑤ℎ𝑒𝑟𝑒 𝑥𝑘 ≤ 𝑥𝑖∀1 ≤ 𝑖 ≤ 𝑁 

3. 𝑀𝑎𝑥(𝑋) = 𝑥𝑘𝑤ℎ𝑒𝑟𝑒 𝑥𝑘 ≥ 𝑥𝑖∀1 ≤ 𝑖 ≤ 𝑁 

4. 𝑀𝑒𝑎𝑛(𝑋) = �̅� =
∑ 𝑥𝑖

𝑁
𝑖=1

𝑁
 

5. 𝑀𝑒𝑑𝑖𝑎𝑛(𝑋) =  𝑄2(𝑋) where 𝑄2(𝑋) is the second quartile of X 

6. 𝑆𝑡𝑑𝐷𝑒𝑣(𝑋) = √∑ (𝑥𝑖−�̅�)2𝑁
𝑖=1

𝑁−1
 

7. 𝐼𝑄𝑅(𝑋) = 𝑄3(𝑋) − 𝑄1(𝑋) where 𝑄1(𝑋) and 𝑄3(𝑋) are the first and third 

quartiles of X respectively. 

8. 𝑆𝑘𝑒𝑤𝑛𝑒𝑠𝑠(𝑋) =

∑ (𝑥𝑖−�̅�)3𝑁
𝑖=1

𝑁

(
∑ (𝑥𝑖−�̅�)2𝑁

𝑖=1
𝑁−1

)

3
2

 

9. 𝐾𝑢𝑟𝑡𝑜𝑠𝑖𝑠(𝑋) =

∑ (𝑥𝑖−�̅�)4𝑁
𝑖=1

𝑁

(𝑆𝑡𝑑𝐷𝑒𝑣(𝑋))4
− 3 

10. 𝐺𝑖𝑛𝑖(𝑋) =
2 ∑ 𝑖𝑥𝑖

′𝑁
𝑖=1

𝑁 ∑ 𝑥𝑖
′𝑁

𝑖=1

−
𝑁+1

𝑁
 where {𝑥1

′, 𝑥2
′, … , 𝑥𝑁

′} is a sorted version of 

X. 

11. 𝑀𝑜𝑑𝑒(𝑋) = 𝑎𝑟𝑔𝑚𝑎𝑥 |𝐶(𝑥𝑖)| 𝑤ℎ𝑒𝑟𝑒 1 ≤ 𝑖 ≤ 𝑁 𝑎𝑛𝑑 𝐶(𝑥𝑖) = {𝑥 ∈
𝑋 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑥 = 𝑥𝑖} 

12. 𝐿𝑜𝑛𝑔𝑒𝑠𝑡𝑅𝑢𝑛𝑂𝑓𝑍𝑒𝑟𝑜𝑠(𝑋) = 𝑀𝑎𝑥(𝑞 − 𝑝 + 1)   𝑤ℎ𝑒𝑟𝑒 1 ≤ 𝑝 ≤ 𝑞 ≤
𝑁 𝑎𝑛𝑑 𝑥𝑖 = 0 ∀𝑝 ≤ 𝑖 ≤ 𝑞 

13. 𝐼𝑛𝑐𝑟𝑒𝑎𝑠𝑖𝑛𝑔(𝑋) = {
1 𝑖𝑓 𝑥𝑖 ≤ 𝑥𝑖+1 ∀1 ≤ 𝑖 < 𝑁

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

14. 𝐷𝑒𝑐𝑟𝑒𝑎𝑠𝑖𝑛𝑔(𝑋) = {
1 𝑖𝑓 𝑥𝑖 ≥ 𝑥𝑖+1 ∀1 ≤ 𝑖 < 𝑁

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 



Our chosen set of features is by no means the only 
appropriate one to enable Substate profiling. Other potential 
features will be explored in the future. 

C. ProfileGenerator 

The ProfileGenerator creates the Substate profiles following 
the basic high level steps listed below: 

1) Given a Cp and the n test cases that reached it, the 

corresponding n sets of (the fourteen) features are retrieved, 

one set for each test case. 

2) The n sets of features (and consequently the n test cases) are 

clustered based on their similarities. k-means clustering is 

used where k is a small percentage of n and is guaranteed to 

be ≥ 2. Hereafter, let’s assume that k’ clusters resulted from 

this step, where k’ ≤ k. 

3) Each of the resulting k’ clusters is deemed to represent a 

unique Substate behavior at the given Cp and thus is 

considered to be a profile element that is covered by an 

exclusive subset of the n test cases. 

4) Therefore, at the given Cp, k’ profile elements are identified 

in addition to the test cases that cover each.  
Notes: a) It is plausible that a single cluster would result from the 

above steps due to the n sets of features being identical. b) Test 

cases that induce one or more NaN values at a given Cp are 

clustered together, regardless of any other data values they 

induce; similarly, if the test cases induce one or more Infinity 

values. The reason is that such test cases share a strongly 

differentiating trait, in addition, most of the fourteen features 

cannot be computed given such values. 

5) The above steps are repeated for each Cp. 

6) As a final step, the ProfileGenerator gathers all the profile 

elements from all the Cp’s to build a Substate profile for 

each test case. Recall from step 4) that information about 

which test cases covered which profile element already 

exists. The outcome of this step is one file for each test case 

comprising a sequence of 1’s and 0’s indicating which 

profile elements were covered and which were not. It is 

worth mentioning that the ProfileGenerator discards any 

profile element that is covered by all the test suite. 
In the context of test suite reduction, choosing a larger k will 

most likely result in more profile elements to be covered, and 
more defects to be revealed; however, this occurs at the expense 
of reduction. In practice, picking the value of k really depends 
on how many test cases the tester is willing to audit; this issue is 
further discussed in Section V.B (RQ3). In our experiments we 
varied the value of k by setting it to 2 and to the following 
percentages of n: 0.5%, 1%, 1.5%, 2%, 3%, …,10%. The 
profiles corresponding to these varying values of k will be 
termed: sstatek@2 profiles, sstatek@0.5% profiles, sstatek@1% 

profiles etc.  

D. Illustrating Example 

We now walk through an example to illustrate our proposed 
approach with the help of Figure 2. Consider the 
BinarytoDecimal program in Section III. The DataCollector 

identifies one Cp in main() and eight Cp’s in decimal(), 
specifically: 

 Cp1: at the entry point of main(); initializes the formal 

parameter args 
 Cp2: at the entry point of decimal(); initializes the formal 

parameter binary 
 Cp3: at statement 2; initializes variable decimal to 0 

 Cp4: at statement 3, initializes variable i to 0 

 Cp5: at statement 3, increments variable i 
 Cp6: at statement 4; initializes variable increment to 0 

 Cp7: at statement 6; defines variable increment 
 Cp8: at statement 7; defines variable decimal  
 Cp9: at statement 8; returns the value in decimal 

Cp3 through Cp6 are uninteresting as each takes on the same 
values regardless of the test case being executed. In particular, 
the data points collected for each of them due to each of the six 
test cases are as follows: data(Cp3)=<0>, data(Cp4)=<0>, 
data(Cp5)=<0, 1, 2, 3, 4, 5, 6, 7>, data(Cp6)=<0, 0, 0, 0, 0, 0, 0, 
0>. For these Cp’s, the extracted features are identical across test 
cases, and thus k-means clustering identifies a single cluster, 
regardless of the chosen k. The single profile element produced 
for each of these Cp’s could be covered by any of the test cases, 
thus there is no guarantee that any of the failing test cases would 
be included in the reduced test suite. The ProfileGenerator will 
discard these profile elements in its final step.  

The data collected at Cp1 and Cp2 are identical strings. Recall 
that each data point comprises three values, the length of the 
string, its richness, and its entropy; therefore, the following 
tuples are collected at Cp1 and Cp2: data(t1)=<(8, 2, 0.954)>, 
data(t2)=<(8, 2, 0.954)>, data(t3)=<(8,  2, 0.954)>, data(t4)=<(8, 
2, 0.811)>, data(t5)=<(8, 2, 0.543)>,  data(t6)=<(8, 2, 0.954)>. 
Since the length and richness are the same across all six test 
cases and both Cp’s, they will not result in any profile elements. 
However, applying k-means clustering (with k = 2) on the 
features extracted from the entropy values will identify one 
cluster that includes t5 and a second cluster that includes the 
other five test cases; thus, resulting in two profile elements at 
Cp1 and another two at Cp2 (see Figure 2). 

Cp7 through Cp9 are most interesting. The values they take 
on for passing vs. failing test cases are very different. For 
example, passing test case t1 results in data(Cp7) = <32, 8, 4, 2, 
1>, data(Cp8) = <0, 0, 32, 32, 40, 44, 46, 47>, and data(Cp9) = 
<47>, and failing test case t6 yields data(Cp7) = <-128, 32, 16, 
4, 1>, data(Cp8) = <-128, -128, -96, -80, -80, -76, -76, -75>, and 
data(Cp9) = <-75>. Table 4 shows the computed features at Cp7 
for all test cases. Performing k-means clustering (with k = 2) on 
these sets of features identifies two clusters that clearly segregate 
the failing test cases (due to the features annotated with a ‘*’). 

 
Figure 2 – Example overview 



Thus, in order for the two profile elements produced at Cp7 to be 
covered, either t5 or t6 must be included in the reduced test suite. 
Similarly, processing the collected data points at Cp8 also results 
in two clusters that isolate the failing test cases (see Figure 2). 
However, at Cp9, the collected data at every test is as follows: 
data(t1)=<47>, data(t2)=<93>, data(t3)=<124>, 
data(t4)=<125>, data(t5)=<-17>, and data(t6)=<-75>, which 
results in t5, t6, and t1 to being included in the same cluster. That 
is the failing tests are clearly segregated in Cp7 and Cp8, but 
mildly segregated in Cp9.  

Since two clusters are identified at each of Cp1 and Cp2, and 
two clusters at each of Cp7, Cp8, and Cp9, a total of ten profile 
elements are identified (e1, e2, …, e10). The ProfileGenerator 
will therefore generate the following profiles for the six test 
cases: prof(t1) =<1, 0, 1, 0, 1, 0, 1, 0, 1, 0>, prof(t2) = prof(t3) = 
prof(t4) = <1, 0, 1, 0, 1, 0, 1, 0, 0, 1>, prof(t5) = <0, 1, 0, 1, 0, 
1, 0, 1, 1, 0>, prof(t6) = <1, 0, 1, 0, 0, 1, 0, 1, 1, 0>.  

To summarize, as shown in Figure 2, t5 is segregated at Cp1 
and Cp2, and {t5, t6} are segregated at Cp7 and Cp8. But most 
importantly, since e2 and e4 are only exercised by t5, a greedy 
test suite reduction algorithm is guaranteed to include t5 in the 
reduced test suite and thus the fault will be revealed. 

E. Applications 

The Substate profiles generated by the ProfileGenerator are 
identical, in regard to format, to the structural profiles described 
in Section II. Therefore, Substate Profiling can be used as the 
basis for any profile-based technique developed to use structural 
profiles, including test suite reduction, test suite prioritization, 
and coverage-based fault localization (CBFL) [26][30][57].  

Substate Profiling based CBFL identifies failure-correlated 
profile elements that not only point out suspicious (definition 
and return) statements but also provide information about the 
values associated with them, which is very valuable during 
debugging. Section V presents a study in which an existing 
greedy test suite reduction algorithm [9][7][29][46] is used in 
conjunction with Substate Profiling. Researchers have also 
devised variants of this algorithm for test suite prioritization, 
which could also be used with Substate Profiling. For 
completeness, the greedy TSR algorithm is described next. 

Given a program P, a test suite T, and a set of test 
requirements TR that are covered by T. Test suite reduction aims 
at finding T', a minimal subset of T, that covers all test 

requirements in TR. The conjecture is that (the smaller) T' would 
be as effective as T in revealing defects [46]. Coverage-based 
test suite reduction selects test cases from T to include in T’ in a 
way that maximizes the proportion of profile elements that are 
covered. It attempts to cover as many of the elements covered 
by T with as few test cases as possible. A coverage-maximizing 
subset of a test suite is an instance of the set-cover problem, 
which is NP-complete but which admits a greedy approximation 
algorithm [9][23].  The greedy algorithm selects the test that 
covers the largest number of elements not covered by the 
previously selected tests. This specific approach was termed 
basic coverage maximization in [29][38]. Note that this 
algorithm might encounter ties; i.e., different tests might each 
cover the maximal number of elements. In order to break the tie, 
we randomly select one of the tied test cases, which means that 
applying the algorithm several times might yield different 
minimized test suites. 

V. EMPIRICAL EVALUATION 

This section presents our comparative empirical evaluation 
of test suite reduction using Substate Profiling. 

A. Subject Programs 

We conducted our experiments using the following Java 
programs: 1) NanoXML releases r1 through r5; 2) the JTidy 
HTML syntax checker and pretty  printer release 3; 3) the Xerces 
XML parser release 2.1; and 4) the seven programs from the 
Siemens benchmark that were translated to Java [1]. The 
NanoXML releases and Siemens programs and test suites were 
download from the SIR repository [13] (sir.unl.edu), whereas 
JTidy and Xerces were previously used by the authors 
[33][37][38][36]. 

JTidy and Xerces are multi-fault programs. Whereas, each of 
the NanoXML releases and Siemens programs is associated with 
several versions that are seeded with single faults. Since multi-
fault programs are more realistic, we created multi-fault versions 
out of each of the NanoXML releases and Siemens programs as 
follows: 1) We randomly selected five of the provided defects 
such that no two defects involved the same statement. 2) We ran 
the program using the complete test suite while keeping track of 
the defects that were triggered within each test case. 3) We 
discarded all test cases that triggered more than one defect; as 
such, the final number of defects we considered varied between 
1 and 5 as some defects were never triggered alone. 4) We 
randomly reduced the number of test cases to arrive at a 

 t1 t2 t3 t4 t5 t6 

Size 5 5 5 6 7 5 

Min* 1 1 4 1 -128 -128 

Max 32 64 64 64 64 32 

Avg* 9.4 18.6 24.8 20.83 -2.43 -15 

Med 4 8 16 12 4 4 

Std* 12.91 25.99 24.39 23.88 59.92 64.35 

Iqr 18.5 37.5 42 28 31 87.5 

Gini* 0.579 0.594 0.465 0.543 -10.9 -1.78 

Skew* 0.964 0.954 0.636 0.82 -1.09 -0.97 

Kurtosis -1.06 -1.07 -1.5 -1.08 -0.015 -1.03 

Mode* 1 1 4 1 -128 -128 

Zeros 0 0 0 0 0 0 

Inc 0 0 0 0 0 0 

Dec* 1 1 1 1 0 0 

Table 4 – Features extracted at Cp7 

 LOC #def |T| # Failures 

Total def1 def2 def3 def4 def5 def6 def7 def8 

JTidy  9.1K 8 1000 47 5 6 16 9 1 5 4 1 

Xerces 52.5K 6 1519 24 3 3 5 4 4 5 - - 

Nano r1 4.3K 2 212 30 20 10 - -  - - - - 

Nano r2 5.8K 3 177 20 15 1 4 -  - - - - 

Nano r3 7.2K 4 215 29 8 16 4 1 - - - - 

Nano r5 7.5K 1 185 50 50 - - - - - - - 

replace 554 4 1158 158 

 

 

 

8 50 50 50 - - - - 

tot_info 494 5 423 105 6 9 33 50 7 - - - 

print_tok 536 3 1121 121 50 50 21 - - - - - 

print_tok2 387 4 1200 200 50 50 50 50 - - - - 

schedule 425 4 1000 173 23 50 50 50 - - - - 

schedule2 766 4 1172 172 50 50 34 38 - - - - 

tcas 136 5 931 157 9 45 3 50 50 - - - 

Table 5 – Subjects, test suites, defects, and failures. 



maximum of 50 failing tests per defect and a maximum of 1000 
passing tests. 

Since the aim of our study is to assess the effectiveness of 
the reduced test suites at revealing faults, we discarded the 
defects that exhibited no failures, and discarded NanoXML r4 as 
no defects were associated with it. Also, due to a limitation in 
the current implementation of the DataCollector, some 
exceptions behaved in a manner that prevented the proper 
collection of state data; this led us to discard one defect in 
NanoXML r1 and two defects in NanoXML r5. Finally, in order 
to factor out the negative impact of coincidental correctness on 
the accuracy of our comparative study [24][33], we considered 
a test case to be failing not only when it produces an unexpected 
output but when an infection is detected right after the defect is 
exercised (regardless of the output). This same approach was 
followed in several of our previous studies [33][37][38][36].  

Table 5 provides information about our subject programs: a) 
code sizes; b) number of defects; c) test suite sizes; d) total 
number of failures; and e) number of failures per defect. It is 
worth noting that the execution traces of JTidy and Xerces are 
considerably longer than for the other programs; this is not 
apparent in Table 5 but it becomes clear in Table 10, which 
shows the average time cost of collecting execution profiles. 

B. Results and Observations 

For each subject, we performed test suite reduction using 
structural profiles of the following types: BB, BBE, DUP, and 
ALL. Since the greedy reduction algorithm is not deterministic, 
we applied it 100 times for each subject and computed the 
average sizes of the reduced test suites and the average numbers 

of the revealed defects. Accordingly, Table 6 reports for each 
profile type and program, the average percentage reduction in 
test suite size (rd%), and the average percentage of revealed 
defects (df%). In the case of Substate profiles, we performed 
reduction for thirteen values of k, starting with k=2 then setting 
it to the following percentages of n: 0.5%, 1%, 1.5%, 2%, 3%, 
…, 10%. Table 6 shows all the rd% and df% values, except for 
those corresponding to k@8% through k@10%, which were 
omitted for space limitations. The two right most columns in 
Table 6 indicate which of the approaches performed better 
according to the following: a) ALL is considered as a 
representative of structural profiling; b) the approach exhibiting 
the higher df% is deemed better, as long as rd% is not diminished 
by more than 20%. The cells in Table 6 reflecting the better 
results are shaded in grey. Next, we present our results by 
answering relevant research questions.  

RQ1: How does Substate Profiling perform relative to 
Structural Profiling? – Table 6 allows us to make the following 
observations: 
1) JTidy: in regard to defect detection, sstatek@2 profiles 

performed better than BB and BBE, and sstatek@1.5% 

performed better than DUP and ALL. In addition, Substate 

profiling covered 100% of the defects starting with k@2%. 

Regarding test suite reduction, the rd% for k@2 is 

comparable to that of BB and BBE, however, the rd% for 

k@1.5% and k@2% are considerably lower than that for 

DUP and ALL. Only the cells corresponding to k@1.5% 

and k@2% are shaded (considered better performers than 

ALL) since their df% is higher than the df% for ALL, and the 

difference between their rd% and that of ALL is less than 

 BB BBE DUP ALL k@2 k@.5% k@1% k@1.5% k@2% k@3% k@4% k@5% k@6% k@7% Better 

rd% df% rd% df% rd% df% rd% df% rd% df% rd% df% rd% df% rd% df% rd% df% rd% df% rd% df% rd% df% rd% df% rd% df% State Struct 

JTidy 94 60 93 71 90 87 89 87 92 76 90 80 84 86 79 93 75 100 67 100 60 100 55 100 51 100 47 100   

Xerces 89 65 88 58 84 66 83 66 85 71 84 86 80 100 76 100 72 100 67 100 59 100 56 100 52 100 49 100   

Nano r1 88 100 87 100 88 100 84 100 86 100 86 100 87 100 86 100 83 100 77 100 72 100 68 100 64 100 62 100 - - 

Nano r2 85 100 85 100 84 100 82 100 83 100 83 100 83 100 83 100 83 100 76 100 72 100 68 100 65 100 63 100 - - 

Nano r3 86 60 86 67 86 62 84 65 82 100 82 100 82 100 82 100 79 100 73 100 67 100 64 100 61 100 58 100   

Nano r5 87 100 85 100 85 100 83 100 83 100 83 100 83 100 83 100 82 100 81 100 78 100 75 100 72 100 69 100 - - 

replace 99 62 99 75 99 68 99 75 99 81 98 100 96 100 94 100 92 100 89 100 85 100 82 100 80 100 78 100   

tot_info 97 45 97 44 98 60 97 60 96 65 96 75 95 64 93 65 90 80 83 95 79 90 74 95 70 89 65 90   

print_tok 99 100 99 100 94 100 94 100 98 100 97 100 95 100 92 100 90 100 86 100 82 100 79 100 76 100 73 100 - - 

print_tok2 99 75 99 100 99 100 99 100 99 100 98 100 95 100 93 100 91 100 88 100 84 100 79 100 76 100 73 100 - - 

schedule 99 50 99 50 98 75 97 75 98 68 98 75 95 81 93 87 91 87 86 81 82 93 77 87 74 100 70 100   

schedule2 99 100 99 100 99 100 99 100 98 100 97 100 94 100 91 100 88 100 82 100 76 100 72 100 66 100 62 100 - - 

tcas 99 55 98 65 99 35 98 50 99 70 98 75 97 80 96 85 95 95 93 100 91 100 89 100 87 100 84 100   

Table 6 – rd% and df% computed (given all failures) 

 
 BB BBE DUP ALL k@2 k@.5% k@1% k@1.5% k@2% k@3% k@4% k@5% k@6% k@7% Better 

rd% df% rd% df% rd% df% rd% df% rd% df% rd% df% rd% df% rd% df% rd% df% rd% df% rd% df% rd% df% rd% df% rd% df% State Struct 

JTidy 94 43 93 62 90 75 89 77 92 67 90 73 85 81 80 89 75 89 67 93 61 94 56 99 51 100 48 99   

Xerces 89 47 88 50 84 52 83 63 85 47 84 61 80 85 76 89 73 92 67 97 62 99 59 100 56 100 53 100   

Nano r1 86 55 85 55 86 55 83 55 85 60 86 65 85 65 85 70 81 85 75 100 70 100 65 100 63 100 60 100   

Nano r2 84 100 84 100 83 100 81 100 82 100 83 100 82 100 82 100 82 100 75 100 71 100 66 100 64 100 60 100 - - 

Nano r3 87 52 87 52 88 60 85 50 83 92 83 87 83 97 83 95 80 97 74 100 68 85 64 97 62 92 59 95   

Nano r5 82 100 82 100 80 100 77 100 79 100 79 100 79 100 79 100 78 100 77 100 74 100 72 100 68 100 65 100 - - 

replace 99 25 99 50 99 25 98 50 98 25 97 31 95 37 93 37 90 37 87 56 83 62 79 68 77 81 74 93   

tot_info 97 25 96 44 97 40 96 60 95 50 95 55 94 50 91 55 89 55 82 65 77 65 71 60 69 70 65 75   

print_tok 99 100 99 100 93 66 93 100 98 83 97 83 94 91 92 83 90 91 86 91 83 100 80 100 77 100 74 100   

print_tok2 99 75 99 100 99 75 99 100 99 75 97 75 95 81 93 81 90 81 86 81 83 93 78 93 75 87 72 87   

schedule 99 50 98 50 98 75 98 75 98 56 97 43 94 75 92 75 89 81 84 81 79 93 75 93 71 100 67 93   

schedule2 99 56 99 56 99 56 99 68 99 68 97 81 94 93 89 100 86 100 79 100 74 100 69 100 63 100 59 100   

tcas 99 30 98 25 99 5 98 25 99 35 98 35 96 30 95 35 94 35 92 35 89 35 87 35 84 40 81 45   

Table 7 – rd% and df% computed given a single failure per defect  

 

 



20%. Therefore, for JTidy, Substate profiling performed 

better than structural profiling, as indicated by the check 

mark in the right most columns of Table 6. 

2) Xerces: in regard to defect detection, Substate profiling 

performed better than any of the structural profiles starting 

with k@2, and covered 100% of the defects starting with 

k@1%. Noting that for k@2 and k@1% the rd% is 

somewhat comparable to that for ALL. The cells 

corresponding to k@4% through k@7% are not shaded 

since they reflect rd% values that are relatively very low. 

3) NanoXML r1, r2, and r5: in these three cases Substate 

profiling and structural profiling performed equally well. 

Compared to ALL, the rd% values are almost equal for small 

k values but much smaller for large k values, which is 

expected.   

4) NanoXML r3: Substate profiling covered 100% of the 

defects starting with k@2%, whereas none of the strutural 

profiles performed well.  

5) replace: k@2 performed better than any of the structural 

profiles, and starting with k@.5%, 100% of the defects are 

covered. 

6) tot_info: k@2 performed better than any of the structural 

profiles. 

7) print_token, print_token2, and schedule2: in these three 

cases, Substate profiling and structural profiling performed 

equally well. 

8) schedule: k@1% performed better than the structural 

profiles, and 100% of the defects are covered starting with 

k@6%. 

9) tcas: similarly, k@2 performed better than any of the 

structural profiles, and starting with k@3%, 100% of the 

defects are covered. 

In summary, Substate profiling performed better for seven 

subjects, and equally well for six subjects. It should be noted 

however that our criteria for ranking the two approaches gives 

more weight to defect coverage than to test suite reduction.  

RQ2: What impact does the number of failures have on the 
effectiveness of the techniques? – As shown in Table 5, some 
of the defects have a large number of failures associated with 
them, which is not typical in a realistic setting. For example, def3 
of JTidy induces 16 failures, and def2 of replace induces 50 
failures. To better assess the effectiveness of Substate profiling 
in a realistic environment, we modified the experiments 
described in RQ1 by considering a single failure per defect. 
Specifically, we randomly considered only one failure from each 
defect, then applied greedy reduction. This was repeated n times 
such as n = 10× (original number of failures). Table 7 reports the 
corresponding averages and allows us to make the following 
observations: 

1) NanoXML r1 and schedule2: for these two subjects, there 

was tie between the two approaches when considering all 

failures. However, when a single failure was considered, 

Substate profiling perfomed better. 

2) print_token and print_token2: for these cases, there was 

also a tie between the two approaches when considering all 

failures, but when a single failure was considered, 

structural profiling perfomed better. We examined the 

defects in these two programs and realized that both 

print_token and print_token2 have faulty conditional 

statements, which are expected to be detected by structural 

profiling, but not necessarly by Substate profiling. Since 

the latter considers only definition and return statements. 

3) The outcome of the two approaches was unchanged for the 

remaining nine subjects. 

Using single failures, Substate profiling performed better for 
nine subjects, worse for two subjects, and equally well for two 
subjects. Clearly, using a single failure is the more realistic 
approach to evaluate our proposed technique. In our study, using 
all failures yielded different results than those for single failures, 
however, the conclusions are to a great extent the same. 

RQ3: So what value of k should a tester use? – Table 6 
suggests that k@2% is optimal for JTidy, k@1.5% is optimal for 
Xerces, and k@2 is optimal for NanoXML r3. Therefore, there 
does not seem to be an optimal value of k that testers should use 
for all applications. However, it should be reasonable to assume 
that a larger k is likely to yield more defect coverage at the cost 
of diminished test suite reduction. In addition, testers could 
experiment with different values of k on prior releases of their 
products; thus conjecturing that values of k that worked well in 
prior releases would also yield good results in the current 
release. 

RQ4: Are Substate profiles complementary to structural 
profiles? - Our goal here is to explore whether combining 
structural profiles with Substate profiles generated using small 
values of k (specifically, k@2, k@.5%, k@1% and k@2%), 
would yield better results than when each approach is used 
separately. In this context, a better result is one that: 1) reveals 
more defects (higher df%) than both separate approaches; and 2) 
in case the same number of defects is revealed (i.e., a tie), the 
better result is the one with the fewer selected test cases (higher 
rd%). Table 8 shows the results when combining BB, BBE, DUP, 
and ALL profiles, each with sstatek@2, sstatek@.5%, sstatek@1%, and 
sstatek@2% profiles. For example, column “BBE + .5%”, shows 
the results for combining BBE profiles with sstatek@.5%  profiles. 
The highlighted cells correspond to the cases when the 
combined techniques performed better than both of the original 
techniques. For example, the “BBE + .5%” result for Xerces is 
highlighted since “78/92” is better than its BBE and sstatek@.5% 

 Collect (a) Processing + Reduction (b) Total Cost (c) 

ALL sstate ALL sstate ALL sstate 

JTidy 30 31 315 3755 30315 34755 

Xerces 15  6  978  829  23748 9937 

Nano1 0.5 0.4 10 5 108 95 

Nano2 0.5 0.4 8 5 95 81 

Nano3 0.5 0.4 14 7 122 104 

Nano5 0.5 0.5 12 5 103 90 

replace 0.7 0.6 13 12 813 665 

tot_info 0.7 0.6 5 17 301 291 

print_tok 0.7 0.6 17 62 780 742 

print_tok2 0.7 0.6 9 25 818 746 

schedule 0.7 0.6 10 9 694 614 

schedule2 0.7 0.7 17 44 841 847 

tcas 0.7 0.5 3 4 624 497 

Table 10 – Cost analysis (in secs): a) Avg time for collecting 

a single profile. b) Time for processing the profiles and for 

minimization (single replication) 

 

 

 



results, which are “88/58” and “84/86”, respectively. In this 
case, the result is considered better as it revealed more defects 
than when using both BBE and sstatek@.5%.  Now consider the 
“BBE + 1%” result for JTidy, namely, “82/86”. This result is not 
highlighted since it is not deemed better than its corresponding 
sstatek@1% result, namely, “84/86”. In all, 53 out of the 208 
results were better than the results generated by either of the 
original techniques. Table 9 shows the equivalent results for the 
case when a single failure per defect is considered. For that, the 
improved results were observed in 87 out of the 208 cases. These 
findings suggest that there is a considerable chance that:  

1) Combining Substate profiles with structural profiles would 

be beneficial. 

2) Substate profiles are complementary to structural profiles. 

B. Cost Analysis   

Regardless of the profile type used, coverage-based test suite 
reduction involves three main steps: 1) collecting the profiles; 2) 
processing and consolidating the profiles; and 3) greedy 
reduction. Table 10 shows for ALL and Substate profiling: a) the 
average times for collecting a single profile; b) the times for 
processing the profiles, and for executing a single iteration of the 
reduction step; and c) the total costs incurred, which take into 
consideration the execution of the complete test suites. Based on 
the reported total costs, Substate profiling is less costly except 
for the case of JTidy. However, the cost difference is minor in 
most cases. More importantly, all measured times are likely to 
be insignificant in cases when manual auditing is required and/or 
when the cost of test execution is hindering, as discussed in 
Section I. 

C. Threats to Validity  

Our experiments involved a limited number of programs and 
defects which requires us to conduct more extensive 
experiments in the future that include more programs that are 
larger and are drawn from different domains.  

Our approach enables the tester to choose a value of k that is 
proportional to the resources available for auditing. However, 
we believe that the tester needs more information about the 
impact of a given value of k in practice. In Section V.B.RQ3, we 
suggested that prior releases of the software product could be 
leveraged to determine an effective value of k; however, more 
needs to be done in relation to this issue. 

Finally, our study uses BB, BBE, DUP, and ALL as 
representative structural profiling elements; whereas, other 
suitable structural elements do exist. Actually, the work 
presented in [38] shows that slice pair profiling is very effective 
in regard to defect detection. However, it greatly suffers in 
regard to test suite size reduction, in addition, the cost of 
collecting and processing slice pair profiles is hindering, which 
is not the case in Substate Profiling. 

VI. RELATED WORK 

The focus of this section is on work related to state profiling. 
For work related to test suite reduction, the reader can refer to 
[44][45][46][51][52][53] for early work, to [31][18][49][12] for 
more recent work, and to the comprehensive survey provided by 
Yoo and Harman [56]. The authors’ previous contribution to test 
suite reduction can be found in [38][35].  

 BB+2 BB+.5% BB+1% BB+2% BBE+2 BBE+.5% BBE+1% BBE+2% DUP+2 DUP+.5% DUP+1% DUP+2% ALL+2 ALL+.5% ALL+1% ALL+2% 

rd% df% rd% df% rd% df% rd% df% rd% df% rd% df% rd% df% rd% df% rd% df% rd% df% rd% df% rd% df% rd% df% rd% df% rd% df% rd% df% 

JTidy 90 79 88 81 83 86 74 98 89 80 87 78 82 86 73 100 87 90 85 90 80 93 72 100 86 92 85 92 80 95 72 100 

Xerces 80 82 79 83 75 100 69 100 80 85 78 92 75 100 69 100 77 82 76 85 73 100 67 100 77 84 75 87 72 100 67 100 

Nano r1 79 100 80 100 79 100 76 100 79 100 79 100 79 100 75 100 79 100 79 100 80 100 76 100 77 100 77 100 77 100 74 100 

Nano r2 76 100 76 100 75 100 75 100 76 100 76 100 76 100 75 100 76 100 76 100 76 100 75 100 74 100 74 100 74 100 73 100 

Nano r3 76 100 76 100 76 100 74 100 75 100 76 100 76 100 73 100 77 100 77 100 77 100 75 100 74 100 74 100 74 100 71 100 

Nano r5 78 100 78 100 78 100 78 100 76 100 76 100 76 100 76 100 76 100 76 100 76 100 76 100 75 100 75 100 75 100 75 100 

replace 98 81 97 100 95 100 92 100 98 93 97 100 95 100 92 100 98 75 97 100 95 100 92 100 98 81 97 100 95 100 91 100 

tot_info 94 75 94 60 93 65 88 85 94 60 94 65 93 80 88 85 94 70 94 65 93 70 89 75 93 65 94 70 93 65 88 80 

print_tok 98 100 97 100 95 100 90 100 98 100 97 100 95 100 90 100 93 100 92 100 91 100 86 100 93 100 92 100 90 100 86 100 

print_tok2 98 100 97 100 95 100 91 100 98 100 97 100 95 100 91 100 98 100 97 100 95 100 91 100 98 100 97 100 95 100 91 100 

schedule 98 75 97 81 95 75 90 93 98 75 97 81 95 81 90 75 97 100 96 100 94 93 89 100 97 100 96 100 94 93 89 93 

schedule2 98 100 97 100 94 100 87 100 98 100 97 100 94 100 88 100 98 100 97 100 94 100 88 100 98 100 97 100 94 100 88 100 

tcas 98 80 98 85 96 85 94 100 98 80 97 80 96 80 94 100 98 80 98 85 97 75 95 90 98 85 97 85 96 95 94 95 

Table 8 – Complementary rd% and df% (given all failures)  

 
 BB+2 BB+.5% BB+1% BB+2% BBE+2 BBE+.5% BBE+1% BBE+2% DUP+2 DUP+.5% DUP+1% DUP+2% ALL+2 ALL+.5% ALL+1% ALL+2% 

rd% df% rd% df% rd% df% rd% df% rd% df% rd% df% rd% df% rd% df% rd% df% rd% df% rd% df% rd% df% rd% df% rd% df% rd% df% rd% df% 

JTidy 90 76 88 77 83 84 74 91 89 80 87 79 82 84 74 91 86 90 85 93 80 95 72 98 86 87 85 92 80 93 72 97 

Xerces 80 63 79 74 75 89 69 94 80 64 78 72 75 88 69 93 77 70 76 79 73 93 67 96 76 69 75 78 72 91 67 97 

Nano r1 78 65 78 70 78 70 74 85 77 65 77 70 77 65 72 75 78 65 78 70 78 75 74 80 74 75 75 65 75 65 71 75 

Nano r2 75 100 75 100 75 100 74 100 75 100 74 100 74 100 74 100 75 100 74 100 74 100 74 100 73 100 72 100 72 100 71 100 

Nano r3 77 100 77 95 77 95 74 97 77 95 77 97 76 92 73 100 78 100 78 95 78 100 75 95 75 95 75 92 75 92 72 97 

Nano r5 72 100 72 100 73 100 72 100 72 100 72 100 72 100 71 100 72 100 71 100 71 100 71 100 70 100 69 100 70 100 69 100 

replace 98 25 97 25 94 37 90 43 98 50 97 50 94 62 90 68 98 25 97 25 94 50 90 50 97 50 96 50 94 56 90 62 

tot_info 93 50 93 50 92 55 87 55 93 60 93 60 92 60 86 65 94 44 94 50 92 50 87 55 93 60 93 60 92 65 86 60 

print_tok 98 100 97 100 94 100 90 100 98 100 97 100 94 100 90 100 93 83 92 74 90 91 86 91 93 100 92 100 90 100 86 100 

print_tok2 98 75 97 87 95 81 90 81 98 100 97 100 94 100 90 100 98 75 97 81 95 81 90 81 98 100 97 100 95 100 91 100 

schedule 98 56 97 50 94 75 89 75 97 50 97 50 94 68 89 81 97 75 96 75 94 87 88 87 97 81 96 81 93 81 88 100 

schedule2 98 68 97 81 93 93 86 100 98 68 97 87 93 87 86 93 98 81 96 81 93 93 85 100 98 75 96 81 93 93 86 100 

tcas 98 45 97 50 96 44 94 55 98 50 97 44 95 44 93 50 98 35 97 35 96 25 94 35 98 50 97 50 95 50 93 44 

Table 9 – Complementary rd% and df% computed given a single failure per defect  

 

 



Zimmerman and Zeller [59] modeled memory as a graph that 
captures program state. Values are represented as vertices and 
references between values as edges. One approach for state 
profiling would be to capture memory graphs following the 
execution of definition statements, another would be to capture 
them at the end of program execution. However, the former is 
clearly infeasible, and the latter will likely miss states relevant 
to failure. Our approach attempts to strike the right balance 
between these two extreme forms of state profiling. 

Xie and Notkin [55] profiled the values of global variables 
and function parameters at the entry and exit of functions in 
order to collect and compare state profiles, which they termed 
“value spectra”, for the purpose of regression testing. The goal 
of the comparison is to detect internal behavior deviations 
between two program versions even when program outputs are 
the same. We ran part of our experiments (using JTidy and 
Xerces) while only considering static variables and formal 
parameters. We observed a measurable improvement in regard 
to reduction, but a major deterioration with respect to the number 
of bugs revealed. 

Xie et al. [54] minimized unit test suites by collecting the 
state of objects at the entry of unit test functions; a test initiated 
with a previously observed state is deemed redundant. Their 
proposed framework, Rostra, was successfully used to minimize 
test suites generated by test case generation tools such as JTest 
and JCrasher. Substate Profiling has a wider scope, in regard to 
applications and the level of testing. 

Gyori et al. proposed PolDet [19], a technique that detects 
polluting unit tests; i.e., tests that might cause subsequently 
executed tests to fail as a result of erroneously modifying data 
they share with them. Given a unit test t, PolDet captures the 
program's heap-state before t's setup and teardown code. The 
two captured states are compared in order to determine whether 
or not their differences are potentially harmful for subsequently 
executing tests. For example, t is deemed non-polluting if the 
captured states are isomorphic, even if the recorded objects field 
values are different. Also, private fields and local variables are 
not considered when capturing the states, since they cannot be 
accessed by other tests and thus cannot be harmful. PolDet’s 
approach to capturing and comparing states appears to be 
relevant to our work, however it is not useful for general state 
profiling since it operates at a level of abstraction that is too high 
for its purposes. Specifically, state behaviors occurring during a 
test run might not always be reflected in the final captured state, 
and uncaptured state behaviors involving local variables and 
private fields might be relevant to failure. 

Francis [16] collected object states to enable test suite 
reduction. However, their empirical results were not as favorable 
as ours. The JTidy subject program we used is identical to the 
one they used. As presented in [16], their approach revealed 71% 
of the defects with an rd% of 77, whereas Substate Profiling 
revealed roughly 96% for the same rd%, and 100% for an rd% of 
75 (see the results for k@1.5% and k@2% in Table 6). We also 
used the same version of Xerces they used, but with a slightly 
different set of defects. Their approach revealed all the defects 
with an rd% of 50, whereas ours revealed all the defects with an 
rd% of 80. We believe that object-state profiling [16] does not 
perform as well because it might miss many object states that 

could be relevant to failure. This might happen for two reasons: 
1) the object states are only collected at the exit points of 
functions; and 2) only samples of them are actually collected 
[16]. 

Elbaum et al. [15] presented a framework for creating and 
replaying tests that are hybrid of unit and system tests, which 
they termed Differential Unit Tests. Their approach involves 
analyzing program states acquired before and after the execution 
of a given unit test. Since they recognize that recording raw 
program states is impractical, they adopted several strategies to 
approximate them. For example, they considered a single 
representative of each equivalence class of program states. They 
also considered only the values of reference fields and discarded 
scalar fields, which would maintain the heap shape of a program 
state. The framework was subsequently extended [27] to create 
Aggregated Differential Unit Tests. In future work, we intend to 
explore adopting their approach for identifying equivalence 
classes of program states. 

Jaygarl et al [25] proposed OCAT to improve the coverage 
performance of the random testing tool Randoop. OCAT 
operates as follows: 1) It captures objects with non-isomorphic 
states for each class type. State isomorphism of objects is 
checked following Rostra [54]. 2) The objects are used as seeds 
for Randoop to generate more object instances, which entails 
randomly generating method sequences. 3) It mutates the objects 
in order to cover the not-yet-covered branches, which involves 
applying an SMT solver.  

In relation to model-based testing, Mouchawrab et al. [43] 
compared testing techniques that are based on structural 
coverage to those based on UML state diagrams. Their results 
showed that there is no significant difference in terms of fault 
detection effectiveness, and that the two techniques are 
complementary. Asoudeh and Labiche [3] used a genetic 
algorithm to generate minimal cost test suites from finite state 
machines. Gao et al. [17] and Turner et al. [50] treated program 
objects as each having a set of states with transitions between 
them; the transitions are considered to be triggered when the 
objects’ methods are invoked. They proposed test generation 
techniques based on such models. It is worth noting that Elbaum 
et al. [15] also modeled objects as state machines. 

VII. CONCLUSIONS AND FUTURE WORK 

We presented a new state profiling approach, termed 
Substate Profiling, which is fine grained and suitable for profile-
based dynamic analysis techniques. We empirically evaluated 
our approach using greedy test suite reduction by comparing its 
effectiveness to that of commonly used structural profiles. Our 
results showed that, in most cases, Substate Profiling is more or 
equally effective in regard to defect detection, and that it is 
comparable in regard to cost and to the sizes of the reduced test 
suites. Also, Substate profiles were found to be complementary 
to structural profiles in many cases. 

In future work we will investigate ways to estimate a 
recommendable value of k by analyzing the structure of the 
programs under test and by mining their bug repositories. We 
will also apply Substate Profiling to other suitable techniques, 
such as test suite prioritization and fault localization. 
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