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Abstract—In this paper, we present a novel resilience im-
provement system for Java applications. The unique feature
of this system is to combine automated monitoring, automated
perturbation injection, and automated resilience improvement.
The latter is achieved thanks to the failure-oblivious computing,
a concept introduced in 2004 by Rinard and colleagues. We
design and implement the system as agents for the Java virtual
machine. We evaluate the system on two real-world applications:
a file transfer client and an email server. Our results show that
it is possible to automatically improve the resilience of Java
applications with respect to uncaught or mishandled exceptions.

Index Terms—fault injection, dynamic analysis, exception-
handling, software resilience

I. INTRODUCTION

In modern software, resilience capabilities are engineered

through error-handling code, in particular exception handling

code in managed languages such as Java and C#. This re-

silience capability is manually engineered by developers, who

write the error-handling code. For example, part of their coding

activity is to write try-catch blocks to handle exceptions. The

problem is that exception-handling code is notably hard to

write and to test [10]. As a result, there often exists corner-

cases where resilience is not provided by developer-written

code. In production, when those corner cases are activated,

the software system may simply stop providing its function

because it crashes after an unhandled exception [36].

In order to improve error handling, two kinds of techniques

are being researched: fault injection [24], [38] and failure-

oblivious computing [30]. Fault injection is about injecting

failures to trigger a system’s error handling code and to ana-

lyze the abnormal behaviour [32]. Failure-oblivious computing

is about adding fully generic error-handling code with auto-

mated code transformation [30]. In the context of exceptions,

failure-oblivious computing means automatically adding catch

blocks with a default exception-handling strategy [9]

In this paper, our goal is to automatically improve the

exception-handling code of software applications. This is made

by first finding weaknesses in resilience and then instrument-

ing the application with automated exception handling. To

achieve our goal of automatically improving resilience, we

design a novel system, called TRIPLEAGENT, made of three

components, called “agent” in this paper1. Those three agents,

automated monitoring, automated perturbation injection, and

automated failure-oblivious method validation [30] are orches-

trated by an agent controller. The controller analyzes all the

monitored data and reveals both weaknesses and suggested

improvements in the resilience capabilities.

To the best of our knowledge, TRIPLEAGENT is the first

system which actively injects exceptions during execution in

order to, after analysis, automatically detect failure-oblivious

methods.

We evaluate TRIPLEAGENT on two real-world Java applica-

tions. One is TTorrent, a file transfer client which implements

the BitTorrent protocol. The other one is HedWig, an email

server. In both cases, we consider a production workload:

respectively downloading a large file from the Internet, and

sending and receiving emails from the server. By apply-

ing TRIPLEAGENT, we observe that exceptions thrown from

257(21%) perturbation points do not lead to failures anymore,

which shows an automatic resilience improvement.

To sum up, our contributions are the following.

• The concept of joint usage of fault injection and failure-

oblivious code instrumentation to evaluate and improve

resilience against uncaught or mishandled exceptions. We

propose a corresponding novel algorithm for automatic

improvement of software resilience.

• A system called TRIPLEAGENT that combines moni-

toring, perturbation injection and failure-oblivious com-

puting in Java, implemented with agents for the Java

Virtual Machine. The system is publicly-available for

future research in this area at http://bit.ly/tripleagent-repo.

• An empirical evaluation of TRIPLEAGENT on two real-

world applications of 20.3K lines of code in total. By

performing 9968 fault injection experiments under a real-

istic, production-like workload, it shows TRIPLEAGENT’s

effectiveness for improving software resilience.

The rest of the paper is organized as follows: Section II

introduces the background. Section III and Section IV present

the design and evaluation of TRIPLEAGENT. Section VI dis-

cusses the related work, and Section VII summarizes the

paper.

1Here, an agent refers to the Java terminology, where it is a component
that is attached to the Java Virtual Machine [14].
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II. BACKGROUND

TRIPLEAGENT is founded on techniques from the fault

injection and failure-oblivious computing [30]. This section

presents a basic introduction to the core concepts.

A. Fault Injection

Fault injection is a popular research topic in software

testing and dependability evaluation. Fault injection techniques

actively inject different kinds of errors into a target system

in order to assess its dependability [24], [32], [38]. This can

happen in several phases: 1) during unit testing, fault injection

generates more test cases so that corner cases are detected, and

the coverage of testing is improved. 2) during integration, fault

injection can trigger different failure scenarios so that devel-

opers gain more confidence in their system’s error-handling

design. 3) when done in production, fault injection is usually

called “chaos engineering” [2].

The kinds of failures that can be injected vary depending

on the considered dependability aspect. For example, injecting

processor errors or hardware-based errors is often done for

evaluating the dependability of operating systems [16], [25].

Injecting connection errors between different micro-services

supports to test a service’s retry logic and its robustness of

interacting with other services [6]. Injecting an exception in a

certain method is useful for validating an application’s error-

handling capability [37].

In this paper, we focus on fault injection in the context of

Java applications, which means rather high-level, application-

level fault injection.

B. Failure-oblivious Computing

In order to improve the resilience of an application, dif-

ferent techniques can be applied to prevent the application

from crashing when an error occurs [23]. Failure-oblivious

computing [30] is one of these approaches to overcome

software failures at runtime. The main idea of failure-oblivious

computing is to discard certain failures in a principled way.

For example, if a method tries to write data into an invalid

memory address, with failure-oblivious computing, the writing

operation would be ignored. It has been shown that failure-

oblivious computing is able to increase availability [9], [29],

[30], eg to serve requests to more users despite errors.

In this paper, we use the concept of failure-oblivious com-

puting for the Java programming language. In Java, there

is no invalid memory addresses, but the biggest reason for

crashing are exceptions thrown at runtime. Thus, we do failure-

oblivious computing for uncaught and mishandled exceptions.

III. DESIGN OF TRIPLEAGENT

This section presents the design of TRIPLEAGENT, includ-

ing relevant definitions, algorithms and its architecture.

A. Definitions

a) Exception: All major programming languages provide

a way to signal problems through so-called exceptions. In

some statically typed languages such as C# and Java, ex-

ceptions are typed, and some of them are statically verified

at compile-time (e.g., checked exceptions in Java). For these

checked exceptions, developers need to either handle them at

the call site or explicitly declare them in the method signature

(with the keyword throws in Java [15])

b) Perturbation point: In this paper, a “perturbation

point” is a unique location in code where a fault can be

injected. In TRIPLEAGENT, the considered perturbations are

injected exceptions, which means that a perturbation point is

defined as a statement that potentially throws an exception.

A perturbation point is noted < m, l, e >. m describes the

method where this point is located. l is the line number before

which the exception is thrown. e is the type of this exception.

c) Fault model: In this paper, we consider two fault

models: 1) injecting only one exception, when the perturbation

point is reached for the first time and 2) always injecting

exceptions when the perturbation point is reached.

d) Perturbation search space: We define the “perturba-

tion search space” as the Cartesian product of all possible

perturbation points and all fault models with respect to a

workload [8], [9]. The size of the search space is the number

of workload executions required to have an exhaustive picture

of the behavior under perturbation.

e) Exception handling method: When an exception e is

handled in a method, this method is called the “exception han-

dling method” for e. In a tuple <exception source, exception

type, method>, the source refers to the location where the

exception was thrown. In this paper, we make a distinction

between “default exception handling methods” and “failure-

oblivious method”: the former refers to methods with manually

written catch blocks while the latter refers to method with

automatically instrumented catch blocks.

f) Acceptability oracle: An acceptability oracle is a

mechanism for determining whether an application’s behaviour

remains acceptable under perturbation.

In order to evaluate and improve an application’s resilience,

we use oracles to describe acceptable behaviour, hence we

call them “acceptability oracle”. In this paper, an acceptability

oracle is a combination of generic oracles (like the absence of

crash) and domain-specific ones. For example, in the context

of a file downloading client, an acceptability oracle could be

that 1) the client does not crash and exits normally 2) the client

successfully downloads the file with a correct checksum.

g) Failure-oblivious method: A method fo is said to be

failure-oblivious with respect to a perturbation point p if and

only if: 1) when an exception is thrown from p, it is possible

to catch and stop its propagation in fo that is upper in the

call stack; 2) the behaviour of the application verifies the

acceptability oracle if the exception thrown from p is caught in

fo. This is noted < m, l, e > 7→ fo (here 7→ denotes “thrown

exception e in method m before location l and caught at fo”).

h) Fault injection experiment: Given an application a

and a workload w, injecting an exception during the execution

of a under w is called an “experiment”. TRIPLEAGENT is

2



designed to conduct experiments in order to evaluate and

improve an application’s error-handling capability.

Example. Let us assume an invocation chain across three

methods: m2 → m1 → m0. Method m0 can throw an

IOException before line number l, and the developers write a

try-catch block to handle it in m2 (the method upper in the

stack). Consequently, m2 is the default exception handling

method for this exception. If the exception is caught and

silenced in method m1 and the application behaviour is still

acceptable according to the oracle, method m1 is considered

as a failure-oblivious method for < m0, l, IOException >.

B. Goals of TRIPLEAGENT

TRIPLEAGENT aims at improving the exception-handling

capabilities of Java applications. The main goals of

TRIPLEAGENT are: 1) to give developers feedback about

the effectiveness of their exception-handling design; 2) to

automatically identify improvements of exception handling.

The former is about detecting the weakness points of the

system under consideration and the latter is about finding

new failure-oblivious methods that improve the application’s

resilience.

Input to TRIPLEAGENT: TRIPLEAGENT takes arbitrary

software written in Java as input and a workload. No manual

change is required from the developer. Neither source code nor

test suite are required for improving an application’s resilience.

TRIPLEAGENT also takes as input an acceptability oracle,

which will be explained below in Section III-A.

Output for the developer: The output of TRIPLEAGENT

is a report for developers. The report gives three pieces of

information: 1) the perturbation points and their classification

as defined next; 2) the verified failure-oblivious methods, i.e.

the resilience improvements; 3) a log file which contains all

the monitored information for the purpose of further analysis.

TRIPLEAGENT classifies the perturbation points into three

categories as follows:

Definition 1. Fragile points: A fragile point is a statement in

a method before which injecting one exception results in the

application crashing or freezing.

Definition 2. Sensitive points: A sensitive point is a statement

in a method before which injecting one single exception

does not influence the application in the workload under

consideration. But, continuously injecting exceptions results

in the application to crash or freeze.

Definition 3. Immunized points: An immunized point is a

statement in a method before which no matter how many ex-

ceptions are injected, the application still behaves acceptably.

C. Core Algorithm

The whole procedure of TRIPLEAGENT to identify failure-

oblivious methods could be split into 3 steps:
1) Define acceptability oracles and detect perturbation

points. TRIPLEAGENT executes the application normally, in

order to monitor and record the application’s normal be-

haviour. With this execution, the perturbation agent goes

Algorithm 1 Detection of Perturbation Points

Input:

An application A;

A repeatable workload for this application W ;

Output:

P , a set of perturbation points;

1: Execute the application A normally under W ;

2: for each method m loaded into the JVM do

3: for each checked exception e thrown from m do

4: for each location l ∈ m do

5: P ← P ∪ {< m, l, e >};
6: end for

7: end for

8: end for

9: return P ;

Algorithm 2 Automated Classification of Perturbation Points

Input:

An application A;

A repeatable workload for this application W ;

A set of perturbation points P ;

An acceptability oracle O;

Output:

F a set of fragile points points;

S a set of sensitive points;

I a set of immunized points;

1: for each point < m, l, e >∈ P do

2: Execute the application under W ;

3: if m is executed for the first time then

4: Inject the exception e before location l;

5: b1← application behaviour;

6: end if

7: Execute the application under W ;

8: Always inject exceptions e before location l;

9: b2← application behaviour;

10: if b1 not meet O and b2 not meet O then

11: F ← F ∪ {< m, l, e >}
12: else if b1 meet O and b2 not meet O then

13: S ← S ∪ {< m, l, e >}
14: else if b1 meet O and b2 meet O then

15: I ← I ∪ {< m, l, e >}
16: end if

17: end for

18: return F, S, I;

through all classes loaded into JVM and locates every pertur-

bation point, based on method signature, which is described

in Algorithm 1.

2) Classify all the perturbation points into fragile, sensitive

or immunized ones (as defined in Section III-B). For each

perturbation point, TRIPLEAGENT conducts two experiments:

only injecting one exception when the point is reached for the

first time, and always injecting exceptions when the point is

reached. Based on the observation of the application behaviour

3



Algorithm 3 Detection of Failure-oblivious Methods

Input:

An application A;

A repeatable workload for this application W ;

A set of perturbation points P ;

An acceptability oracle O;

Output:

A set of failure-oblivious methods R;

1: // Find candidate failure-oblivious methods to be assessed

2: Q← ∅ // Worklist for candidate methods;

3: for each point < m, l, e >∈ P do

4: Execute the application under W ;

5: if m is executed for the first time then

6: Inject the exception e before location l;

7: for each method n in the call stack do

8: Q← Q ∪ {< m, l, e > 7→ n};
9: end for

10: end if

11: end for

12:

13: // Assess all candidate failure-oblivious methods

14: for each perturbation point < m, l, e >∈ P do

15: for < m, l, e > 7→ n ∈ Q do

16: Execute the application under W twice as specified

in Algorithm 2;

17: When e is thrown, catch the exception e in n;

18: if the behaviour meets O then

19: R← R ∪ (< m, l, e > 7→ n);
20: end if

21: end for

22: end for

23: return R;

under perturbation, the perturbation point is classified using

Algorithm 2.

3) Identify candidate failure-oblivious methods and evaluate

each of them as described in Algorithm 3. TRIPLEAGENT

detects candidate failure-oblivious methods with call stack

analysis: every method in the stack before the default handling

method is identified as a candidate failure-oblivious method.

Then two fault injection experiments are conducted (only

inject one exception, inject several exceptions). The difference

is that all the thrown exceptions are caught in a catch block

instrumented in candidate failure-oblivious methods. By ana-

lyzing the behavior once the exception is caught in this catch

block, TRIPLEAGENT confirms whether the method under

evaluation is indeed failure-oblivious or not.

D. Architecture of TRIPLEAGENT

Figure 1 shows the general architecture of TRIPLEAGENT.

TRIPLEAGENT considers a Java application in a JVM, such

as a backend web application or a Java micro-service.

When an application is loaded into the JVM, TRIPLEAGENT

attaches to it three different agents: a monitoring agent, a

perturbation agent and a failure-oblivious agent. The mon-

itoring agent is responsible for collecting the information

needed by TRIPLEAGENT to evaluate the system’s resilience

capabilities. The perturbation agent injects exceptions into

the application in order to trigger its error-handling logic.

The failure-oblivious agent tries to improve the application’s

resilience by catching and silencing exceptions before they are

handled by default exception handling methods.

All the agents are controlled by a controller which makes

two kinds of decisions: 1) given an application under some

specific workload, which perturbation point should be acti-

vated, 2) whether the point’s corresponding failure-oblivious

method should be switched on. Finally, the controller generates

a report for the developer based on data gathered from a series

of fault injection experiments.

1) Monitoring agent: In order to study the influence of

perturbations and evaluate all possible failure-oblivious meth-

ods in a software system, it is necessary to collect different

kinds of monitoring information. For this, we propose to use

a monitoring agent that is attached to the runtime process.

Our monitoring agent works as follows. For each method

in the code loaded in the JVM, the agent collects static and

dynamic information.

The static information is: 1) its position in the code, 2)

whether it declares checked exceptions to be thrown.

The collected dynamic information is: 3) the number of

method executions over an fault injection experiment, 4) each

time an exception is caught, the agent collects the stack

information, including the stack distance between the method

raising the exception and the method catching it. This includes

both exceptions caught in default exception handlers and in

failure-oblivious methods (as defined in Section III-A).

The TRIPLEAGENT monitoring agent also collects the fol-

lowing information:

• The set of classes that have been loaded into the JVM.

• Whether the application has exited normally or crashed

due to an unhandled exception.

2) Perturbation agent: The perturbation agent injects spe-

cific perturbations at a specific point in time. The perturbation

commands come from the agent controller.

The perturbation agent detects every method with a throws

keyword and attaches itself into this method by rewriting the

bytecode. In order to explore the entire perturbation search

space, the agent injects different perturbation points before

each statement in the method. In this way, the agent is able to

throw such an exception anywhere in the method and compare

the difference.

1 // a perturbation point in Class1

2 void exampleMethod() throws ExceptionA, ExceptionB {

3 // code injected with code transformation

4 PAgent.throwExceptionPerturbation(key1);

5 PAgent.throwExceptionPerturbation(key2);

6 // a statement

7 PAgent.throwExceptionPerturbation(key3);

8 PAgent.throwExceptionPerturbation(key4);

9 }

Listing 1. The Perturbation Strategy in TRIPLEAGENT
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Fig. 1. The components of TRIPLEAGENT

Listing 1 gives an example of how this perturbation agent

works. When a method like exampleMethod() throws multiple

exceptions, corresponding perturbation points are automati-

cally injected with code transformation. The perturbation agent

controls every perturbation point separately. When a specific

point is activated, it throws an exception at the beginning of

the method.

3) Failure-oblivious agent: The failure-oblivious agent in-

struments the code with try-catch blocks during a fault injec-

tion experiment. For reasoning about resilience with respect

to uncaught exceptions, the failure-oblivious agent injects a

try-catch wrapper in all methods. Basically, the whole method

body is wrapped with a try-catch block which handles all types

of exceptions (catch Exception in Java). By default, the

catch block simply throws again the exception which makes it

semantically equivalent to the original code. When the failure-

oblivious method is activated, the injected catch block silences

the exception and prevents it from propagating (note that the

exception may come from this method or from other methods

transitively called from this method).

When an exception is caught by the injected catch block,

there are three possible outcomes: 1) the application runs

normally; 2) the application runs in a gracefully degraded

mode; 3) the application crashes.

1 // a candidate failure-oblivious method in Class2

2 void callExampleMethod() throws ExceptionA,

ExceptionB {

3 try {

4 new Class1().exampleMethod();

5 } catch (Exception a) {

6 if (!FOAgent.modeIsOn(key2)) {

7 throw a;

8 } else { // nothing, the exception is silenced }

9 }

10 }

Listing 2. Automated Code Instrumentation for Identifying Failure-oblivious
Methods in TRIPLEAGENT

Listing 2 illustrates how this is done. In method

callExampleMethod, exampleMethod is invoked. The

failure-oblivious agent detects it as a possible failure-oblivious

method. So the whole method body of callExampleMethod

is wrapped with a try catch block. When the agent controller

activates this failure-oblivious method, it silences all excep-

tions coming from exampleMethod. Otherwise it throws the

caught exception so that it is propagated as usual.

4) Agents controller: The agent controller is responsible

for conducting a series of experiments (see Section III-A).

It controls every agent and gathers all the information to

analyze the system resilience. Additionally, the controller is

configurable. For example, developers can define a filter to

focus on resilience improvement for a specific package.

E. Implementation

There are different kinds of agents in the JVM. The moni-

toring agent is implemented on top of the JVM Tool Interface

(JVMTI) 2. The perturbation agent and failure-oblivious agent

are implemented as JVM agents, using the ASM library

for binary code transformation 3. The agents controller is a

standalone service, it communicates with the JVM and the

agents through local files.

For sake of open-science, the code is made publicly avail-

able at http://bit.ly/tripleagent-repo.

IV. EVALUATION

For evaluating this contribution, we apply a case-based eval-

uation methodology: this methodology consists of an in-depth

analysis of relevant cases selected in a principled way [11]. In

our research domain, it has been shown appropriate in Rinard

et al’s original paper on failure-oblivious computing [30].

We select two case studies according to the following

three criteria: 1) the case should be a real-world application

(i.e., not a toy example) 2) it should be medium-sized in

order to be appropriate for the computing power available

in the laboratory 3) it is possible to define a production-

like workload. Those criteria yield two cases: TTorrent and

HedWig. TTorrent is a file transferring tool which implements

the BitTorrent protocol. HedWig is an email server for the

IMAP, SMTP and POP3 protocols. They are also exemplary

of applications with high resilience requirements: an email

server must not crash, a file download on the dynamic internet

must succeed regardless of unexpected network events, peer

failures, or local machine issues.

The analysis of TRIPLEAGENT requires several executions.

For each perturbation point, its classification requires 2 execu-

tions under the workload (as discussed in Algorithm 2). For

2See https://docs.oracle.com/javase/8/docs/platform/jvmti/jvmti.html
3See http://asm.ow2.org
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Fig. 2. Category of Perturbation Points after 2092 Fault Injection Experiments
on TTorrent

each candidate failure-oblivious method, its evaluation also

needs 2 executions under the workload (see Algorithm 3).

For both cases, an execution takes no more than 1 minute

in our testing environment. In total, the cost of the exper-

iments presented in this section is upper-bounded by 2 ×
1 × (1046 + 2844 + 372 + 722) = 9968 minutes. Note that

some experiments lead applications to a crash. It actually takes

TRIPLEAGENT around 3 days to finish all the experiments.

A. Evaluation on TTorrent

1) Experiment Protocol: We apply Section III-C to TTor-

rent, version 2.0.
The workload W for TTorrent consists of downloading a

large file (debian-9.9.0-amd64-netinst.iso, a Debian distribu-

tion installer of 292.0MB). Since BitTorrent is a peer-to-peer

protocol, this workload involves other machines on the internet

which serve (aka "seed") the file. To that extent, the workload

is a production one. We perform a series of fault injection

experiments, as described in Section III-A.

For TTorrent, we consider the following definition of

acceptable behaviour to evaluate candidate failure-oblivious

methods: the behaviour is considered acceptable if an end-user

can successfully download a file with a correct checksum.
2) Experimental Results: Per Section III-C, the first step of

TRIPLEAGENT is to execute TTorrent normally and to monitor

all possible perturbation points. It detects 1046 points in total

within the package com/turn/ttorrent.

Then, TRIPLEAGENT performs two series of experiments:

1) it injects one exception per perturbation point and compares

the behaviour between these experiments and the normal

execution, 2) it always injects exceptions when a perturbation

point is reached and also compares the behaviour against the

reference one.
As a result, all perturbation points get classified in the

3 categories defined in Section III. In total, TRIPLEAGENT

identifies 642 fragile points, 296 sensitive points and 108
immunized points. Figure 2 shows the distribution of these

perturbation points, which are used as a base line for the

following experiments.

The next step of TRIPLEAGENT’s main algorithm is to

compute and assess the possible failure-oblivious methods.

As explained in Algorithm 3, for a perturbation point, a set

of failure-oblivious methods is identified. In our experiment,

TRIPLEAGENT detects 2844 possible failure-oblivious meth-

ods, summed over all the perturbation points. The minimum,

median and maximum number of candidate failure-oblivious

methods per perturbation point is respectively 0, 2, 10.

a) Fragile stays fragile, b) Fragile to sensitive, c) Fragile to immunized

d) Sensitive stays sensitive, e) Sensitive to immunized, f) Immunized stays immunized

Fig. 3. Resilience Improvement on TTorrent: Fragile points, sensitive points
and immunized points are respectively shown in blue, orange and green. The
area of bubbles are corresponding to the numbers of perturbation points under
consideration.

Then, 2844 × 2 = 5688 executions are made to assess

the failure-obliviousness of the candidate points (one per

injection mode). Hopefully, the added catch blocks inserted by

TRIPLEAGENT will increase the number of immunized points.

Let us now consider Figure 3. The fragile, sensitive and

immunized perturbation points are respectively shown in blue,

orange and green. The area of bubbles corresponds to the num-

bers of perturbation points under consideration. For example,

the bubble e represents the 155 sensitive points transformed

into immunized ones with failure-oblivious computing. Over-

all, TRIPLEAGENT successfully transforms 13 fragile points

into sensitive ones, 70 fragile points into immunized ones

and 155 sensitive points into immunized ones. The original

108 immunized points remain immunized. This means that

resilience of the TTorrent has been automatically improved.
Table I presents a sample of perturbation points. Every row

describes 1) a perturbation point (the class name, method

name and its line number), the thrown exception type, and the

corresponding default exception handler written by developers;

2) the failure-oblivious improvement (failure-oblivious method

and concrete change of the perturbation point’s category). For

example, row 1 and row 2 show that TRIPLEAGENT verifies

failure-oblivious methods which improve the original fragile

perturbation points into sensitive ones. Row 7 and row 8

also describe the case that TRIPLEAGENT is able to detect

multiple failure-oblivious methods for the same perturbation

point. For original immunized perturbation points, alternative

failure-oblivious methods which provide the same resilience

are verified as well, which is shown in the last two rows.
3) Case Studies: In the following, we detail 3 case studies

where the resilience is improved.

1 void send(PeerMsg m) throws IllegalStateException {

2 if (this.isConnected()) {

3 ...

4 } else {

5 // perturbation point here

6 unbind(true);

7 }

8 ...

9 }

Listing 3. IllegalStateException in SharingPeer/send

a) Failure-oblivious Method as Alternative to Normal

Resilience: First, Listing 3 shows a failure-oblivious method

6
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0 Perturbation Point Exception Type Default Handling Method Failure-oblivious Method Improvement

1 BEValue/getNumber@122 InvalidBEnException ClientMain/main BEValue/getLong fragile - sensitive
2 HTTPTrackerC/encodeAnnoToURL@187 AnnoException TrackerClient/annoAllInterfaces HTTPTrackerC/announce fragile - sensitive
3 CommuManager/addTorrent@229 IOException ClientMain/main CommuManager/addTorrent fragile - immunized
4 TorrentParser/getStringOrNull@121 InvalidBEnException ClientMain/main TorrentParser/getStringOrNull fragile - immunized
5 HTTPTrackerC/sendAnnounce@235 ConnectException HTTPTrackerClient/announce HTTPTrackerC/sendAnnounce fragile - immunized
6 SharedTorrent/init@226 InterruptedException SharedTorrent/initIfNecessary SharedTorrent/init sensitive - immunized
7 SharedTor/handlePieceCompleted@671 IOException SharingPeer/handleMessage SharedTor/handlePieceCompleted sensitive - immunized
8 SharedTor/handlePieceCompleted@671 IOException SharingPeer/handleMessage SharingPeer/firePieceCompleted sensitive - immunized
9 WorkingReceiver/processAndGetNext@64 IOException ConnWorker/processSelectedKeys ReadableKeyProcessor/process sensitive - immunized

10 SharingPeer/send@352 IllegalStateException CommuManager/validatePieceAsync SharingPeer/send alternative resilient method
11 PeerMessage/parse@176 ParseException ConnWorker/processSelectedKeys PeerMessage/parse alternative resilient method

TABLE I
SAMPLE OF PERTURBATION POINTS AND THE CORRESPONDING FAILURE-OBLIVIOUS METHODS IN TTORRENT

with respect to exception IllegalStateException. This

method is executed only 1 time during normal download of the

file. Under perturbation, TRIPLEAGENT identifies that if one

single exception is thrown from this method, the application

is still able to download the file correctly. By analyzing

the stack, TRIPLEAGENT detects another two methods as

candidate failure-oblivious methods: SharingPeer/send

and SharingPeer/notInteresting.
By activating a failure-oblivious try-catch block in these two

methods (i.e. the method body is wrapped with a try-catch

block which blocks the exception), TTorrent still succeeds in

downloading the file. It means that TRIPLEAGENT success-

fully detects 2 alternative methods in the stack that provide the

same resilience as the original manually-written catch block.

1 DataProcessor processAndGetNext(ByteChannel sc)

throws IOException {

2 ...

3 // perturbation point here

4 if (this.pstrLength > MAX_MESSAGE_SIZE) {

5 return new ShutdownAndRemovePeerProcessor(...).

processAndGetNext(socketChannel);

6 }

7 }

Listing 4. IOException in WorkingReceiver/processAndGetNext

b) Improving Resilience under a High Number of Ex-

ceptions: Listing 4 shows method processAndGetNext in

class WorkingReceiver. This method is executed 34304
times during the reference execution. If TRIPLEAGENT injects

one single exception in this method when it is called for the

first time, the application still downloads the file correctly.

However, when the perturbation agent keeping injecting excep-

tions when downloading the file, the application gets stalled.
After analyzing the call stack, TRIPLEAGENT

detects 4 candidate failure-oblivious methods, namely

WorkingReceiver/processAndGetNext,

OutgoingConnectionListener/onNewDataAvail,

ReadableKeyProcessor/process and

ConnectionWorker/processSelectedKey. After

two fault injection experiments per candidate failure-oblivious

method, TRIPLEAGENT observes that the last three methods

are failure-oblivious, the application downloads the file

successfully, no matter how many exceptions are thrown in

processAndGetNext.
In this case, TRIPLEAGENT succeeds in detecting 3 failure-

oblivious methods that provide better resilience compared to

the normal error-handling code written by the developer.

1 String getStringOrNull(Map<...> m, String k) throws

InvalidBEncodingException {

2 // perturbation point here

3 BEValue v = dictionaryMetadata.get(key);

4 if (v == null) return null;

5 return v.getString();

6 }

Listing 5. InvalidBEncodingException in TorrentParser/getStringOrNull

c) Improving Resilience from Crashing to Resilient:

Let now us consider Listing 5. With a fault injection

experiment in method getStringOrNull before

line 3, TRIPLEAGENT identifies that an exception

InvalidBEncodingException thrown at this location

crashes the whole process. Hence, the perturbation point

is a fragile one. After analyzing the stack information,

ClientMain/main is the default handling method. There

are 7 methods including getStringOrNull itself before

this default handling method, which are all considered as

candidate failure-oblivious methods by TRIPLEAGENT.

Then, TRIPLEAGENT performs 2 fault injection experiments

for each method according to Algorithm 3, that is 2× 7 = 14
experiments in total. The first experiment assesses whether

the candidate failure-oblivious methods could handle only one

injected exception. The second assesses whether they could

handle as many as injected exceptions. Indeed, TRIPLEAGENT

observes that when a catch block is automatically injected

in getStringOrNull, the application does not crash any-

more, and even better, the resulting behaviour is correct (the

file is correctly downloaded, its content is the expected one,

bit-per-bit). In this case, TRIPLEAGENT has automatically

transformed a crashing exception into acceptable behaviour.

Insights from the TTorrent experiment

Under a realistic workload of downloading a 200MB+ file

from the internet, TRIPLEAGENT performs 7780 exper-

iments to evaluate 1046 perturbation points spread over

6.5kLOC. TRIPLEAGENT identifies 642 fragile points,

296 sensitive points and 108 immunized points. After

analyzing all 2844 candidate failure-oblivious methods,

TRIPLEAGENT confirms that there are 238 failure-oblivious

methods in the application. This shows that it is feasible to

automatically improve resilience by combining perturbation

injection and failure-obliviousness analysis.
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Fig. 4. Category of Perturbation Points under 744 Fault Injection Experiments
on HedWig

B. Evaluation on HedWig

1) Experiment Protocol: HedWig is an email server written

in Java, a typical server side application. The main process

of HedWig is a perpetual loop, which creates sub-threads to

handle different user requests. HedWig relies on a MySql

database to store email metadata and saves the email contents

as files on the disk. In this experiment, we consider the latest

version of HedWig (v0.7).

The considered workload is as follows. First, HedWig is

deployed on a server. Then TRIPLEAGENT sends a specific

email with a unique content to a testing email address using

the SMTP protocol. Finally, TRIPLEAGENT logs in with the

corresponding account and fetches the same email to do the

comparison. The acceptable behaviour is that TRIPLEAGENT

both successfully sends and fetches the email, and that the

content of this email after final fetching is totally correct.

The experiments are performed sequentially. We note that

some of the perturbation experiments crash the email server.

In this case, the server is automatically restarted. Some per-

turbation experiments put it in a corrupted state: to detect this,

TRIPLEAGENT adds a checking point after each experiment.

All the perturbation agents are switched off and an email is

sent and fetched as usual. If the server works correctly the next

experiment goes on, otherwise TRIPLEAGENT runs a restart

script to bring the server back to normal state.

2) Experimental Results: Within the package

com/hs/mail TRIPLEAGENT detects 372 perturbation

points. Each perturbation point is evaluated by two fault

injection experiments: 1) only one exception is injected during

the email sending and fetching process, when the point is

reached for the first time and 2) exceptions are always injected

when the point is reached. Based on these 744 experiments

TRIPLEAGENT classifies all the perturbation points using the

classification algorithm described in Algorithm 2. Overall,

TRIPLEAGENT finds in Hedwig 264 fragile points, 14
sensitive points and 94 immunized points, which are shown

in Figure 4

The next step for TRIPLEAGENT is to identify the candidate

failure-oblivious methods. By summing over all perturbation

points, TRIPLEAGENT detects 722 candidate methods. The

minimum, median, maximum number of candidate failure-

oblivious methods per perturbation point is respectively 0, 2,

10.

Similar to classifying perturbation points, each candidate

failure-oblivious method also needs two fault injection exper-

a) Fragile stays fragile, b) Fragile to sensitive, c) Fragile to immunized

d) Sensitive stays sensitive, e) Sensitive to immunized, f) Immunized stays immunized

Fig. 5. Resilience Improvement on HedWig

iments to be evaluated. Finally, 1444 executions are made to

evaluate all the candidate failure-oblivious methods based on

Algorithm 3. By silencing exceptions in the candidate failure-

oblivious methods, TRIPLEAGENT shows that 23 fragile per-

turbation points can be improved into sensitive ones. 31 fragile

points are transformed to immunized ones. It upgrades 1
sensitive perturbation point to an immunized one as well. All

those improvements are shown in Figure 5.
Table II shows a sample of interesting perturbation points.

It shows different levels of automatic resilience improvement.

Similar to Table I, every row describes one perturbation point

and one of its corresponding failure-oblivious methods. For

example, the first row gives details about perturbation point

queryForLong in class AbstractDao, line number 100.

When a DataAccessException is thrown from this point,

by default it is handled by a try-catch block written by de-

velopers in TransactionTemplate/execute. But this

catch block does not prevent the exception from failing user

requests. If the same exception is caught earlier in the stack, in

AnsiMessageDao/getHeaderNameID, the server is able

to bear at least one exception. Note that it is possible to have

multiple failure-oblivious methods for the same perturbation

point. Such as row 3 and row 4, row 8 and row 9 in the table.
3) Case Studies: We now discuss two interesting case

studies.

1 mailboxRowMapper = new RowMapper<Mailbox>() {

2 public Mailbox mapRow(ResultSet r, int n) throws

SQLException {

3 // perturbation point here

4 Mailbox mb = new Mailbox();

5 mb.setMailboxID(r.getLong("mailboxid"));

6 ...

7 return mb;

8 }

9 };

Listing 6. SQLException in AnsiMailboxDao$1/mapRow

a) A Failed Failure-oblivious Experiment: Listing 6

shows a perturbation point found by TRIPLEAGENT in Class

AnsiMailboxDao, line 3. First, TRIPLEAGENT detects that

when one SQLException is thrown from this location, the

application fails to receive and send the test email. Hence, the

perturbation point is a fragile one. By analyzing the call stack,

method mapRow is considered as a candidate failure-oblivious

method.
TRIPLEAGENT automatically wraps the method with a try-

catch block. This specific failure-oblivious operation results

8
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0 Perturbation Point Exception Type Default Handling Method Failure-oblivious Method Category

1 AbstractDao/queryForLong@100 DataAccessException TransactionTemplate/execute AnsiMessageDao/getHeaderNameID fragile - sensitive
2 ImapServerHandler/handleUpstream@56 Exception DCPipeline/sendUpstream ImapServerHandler/handleUpstream fragile - sensitive
3 CountingInputStream/read@21 IOException BodySBuilder/build BodySBuilder/simplePartDescriptor fragile - immunized
4 CountingInputStream/read@21 IOException BodySBuilder/build BodySBuilder/createDescriptor fragile - immunized
5 MessageHeader/parse@118 IOException MessageHeader/<init> MessageHeader/parse fragile - immunized
6 FlagUtils/getFlags@57 SQLException JdbcT/doInPreparedStatement FlagUtils/getFlags fragile - immunized
7 PartContentBuilder/build@63 IOException FetchRespBuilder/bodyContent PartContentBuilder/build fragile - immunized
8 MailMessage/save@88 IOException ToRepository/service MailMessage/save sensitive - immunized
9 MailMessage/save@88 IOException ToRepository/service ToRepository/saveMessage sensitive - immunized

10 AliasingForwarding/service@70 MessagingException LocalDelivery/service AliasingForwarding/service alternative resilient method
11 ToRepository/deliver@118 IOException ToRepository/service ToRepository/deliver alternative resilient method

TABLE II
SAMPLE OF PERTURBATION POINTS AND THE CORRESPONDING FAILURE-OBLIVIOUS METHODS IN HEDWIG

in inserting an incorrect record into the database, which

influences the upcoming experiments. Thanks to running the

checkpoint procedure described above, TRIPLEAGENT detects

this problem, restarts the server, definitely labels this method

as non failure-oblivious and excludes this perturbation point

for later experiments.

1 public int read() throws IOException {

2 // perturbation point here

3 int next = in.read();

4 ...

5 return next;

6 }

Listing 7. IOException in CountingInputStream/read

b) A Perturbation Point with Multiple Failure-oblivious

Methods: In Listing 7, line 2 is a fragile perturbation point

in Class CountingInputStream. If an IOException

is thrown from this location, the user is not able to

fetch any emails. By default the exception is handled

by BodyStructureBuilder/build(Date d,

Long l), 5 methods upper in the stack. It means

that methods before the default exception handler are

all candidate failure-oblivious methods. TRIPLEAGENT

evaluates them one by one and verifies 3 out of

them. In the call stack, if the exception is silenced in

BodyStructureBuilder/simplePartDescriptor,

BodyStructureBuilder/createDescriptor or

BodyStructureBuilder/build(InputStream i),

the server works properly no matter how many exceptions

are thrown. This is a strong improvement to the resilience.

Insights from the HedWig experiment

Under a production-like email task, TRIPLEAGENT performs

2188 experiments to evaluate 372 perturbation points spread

over 13.8 kLOC. 261 fragile points, 68 sensitive points and

43 immunized points are identified in the original code.

TRIPLEAGENT assesses that 60 out of 722 methods can

be transformed into failure-oblivious methods. This further

confirms that TRIPLEAGENT can improve the resilience of

a server application in an automated manner.

C. Overhead of TRIPLEAGENT

The overhead of TRIPLEAGENT varies a lot among different

perturbation points, failure-oblivious methods. Considering

that the ultimate goal of TRIPLEAGENT is to automati-

cally improve resilience, we manually evaluate the overhead

TABLE III
THE OVERHEAD OF AN EXPERIMENT ON TTORRENT

Evaluation Aspects Original Version Instrumented Version Variation

Downloading time 20.4s 21.1s 3.5%
CPU time 15.0s 18.3 22.2%
Memory usage 47M 49M 4.3%
Peak thread count 30 32 6.7%
Relevant class files size 16.7KB 16.8KB 0.6%

of failure-oblivious experiments. The overhead caused by

TRIPLEAGENT is evaluated in 3 aspects: 1) at the application

level, the execution time is compared. In TTorrent this metric

means the downloading time. In HedWig experiments this

means the time spent on sending and receiving the email. 2)

at the operating system level, the CPU and memory usage,

peak thread count are taken into consideration. 3) at the binary

code level, the code bloat due to instrumentation is evaluated.

For statistical purposes, we conduct the same measurement 30

times and calculate the average [1].

For TTorrent experiments, Table III records the

overhead of verifying failure-oblivious method

HTTPTrackerClient/sendAnnounce in Table I,

row 5. For HedWig experiments, failure-oblivious method

BodySBuilder/simplePartDescriptor in Table II,

row 3 is taken as an example. The overhead of execution

time, CPU time, memory usage, peak thread count, relevant

class files size are respectively 0%, 6.0%, 0%, 5.4%, 3.0%.

The reason why TRIPLEAGENT has such a low overhead

is that the instrumentation is small. The perturbation agent

and failure-oblivious agent only instrumented one or two class

files. Meanwhile, the monitoring agent does not cause high

overhead thanks to the JVMTI framework. By evaluating the

overhead, developers are more confident about the resilience

improvement suggested by TRIPLEAGENT.

V. DISCUSSION

Fault model. Currently TRIPLEAGENT considers two fault

models. In both models, exceptions are injected at a single

location. But there also exists common mode failures which

involve a series of different exceptions. An exception could

also be mixed with data errors. Devising and implementing

fault models that stimulate common mode failures or data

errors is an interesting direction for future work.

Workload impact. A threat to the validity of our exper-

iments comes from the workload. TRIPLEAGENT takes a

production-like workload to exercise the application code.
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When TRIPLEAGENT identifies a failure-oblivious method, it

guarantees that it works under the tested workload. But it may

break some behavior with a more comprehensive workload.

Overall, the more diverse the workload is, the more confidence

TRIPLEAGENT has in the found failure-oblivious methods.

Scalability. During our experiments, the deepest call stack

considered was composed of 39 methods. TRIPLEAGENT has

not been tested with larger applications with deeper stacks. As

such, the full scalability of TRIPLEAGENT is not yet verified.

We note that the number of candidate failure-oblivious meth-

ods to assess is linear in the depth of the stack, which means

that, in theory, TRIPLEAGENT would be scalable.

VI. RELATED WORK

Now we discuss the related work along three aspects.

1) Fault injection: Fault injection is a widely-researched

topic in software dependability. In the 1990s, the research was

mostly about hardware implemented fault injection tools. For

example, Madeira et al. [21] invented RIFLE, a pin-level fault

injector to generate processor errors. Next, more software-

based fault injection tools were invented. Kanawati et al. [18]

proposed FERRARI, a tool for the emulation of hardware

faults and control flow errors. Han et al. [16] designed

DOCTOR, a tool for injecting hardware failures and network

communication failures. Wei et al. [35] built a software-

based hardware faults injector called LLFI, and quantitatively

compared the accuracy of fault-injection with assembly code

level injector PINFI. Lee et al. [20] presented SFIDA, a tool

to test the dependability of distributed applications on the

Linux platform. Kao et al. [19] invented “FINE”, a fault

injection and monitoring tool to inject both hardware-induced

software errors and software faults. Kouwe and Tanenbaum

[34] presented HSFI, a fault injection tool that injects faults

with context information from source code and applies fault

injection decisions efficiently on the binary.

Fu et al. [12] presented an approach to measure the coverage

of recovery code with respect to operating system and I/O

hardware faults. The common idea with TRIPLEAGENT is to

inject exceptions to trigger error handling code. Yet, our and

their goal are notably different. Fu el al. use fault injection

to increase recovery code coverage. TRIPLEAGENT combines

fault injection with failure-oblivious computing to improve

resilience.

The novelty of TRIPLEAGENT is that it is designed to

inject application-level exceptions (and not hardware faults)

in Java applications. TRIPLEAGENT gives developers concrete

insights at the source code level about their exception-handling

implementation.

2) Self-healing software: Self-healing software follows the

idea that it is possible to automatically make software re-

cover from failures. Different techniques have been applied to

achieve this goal, such as automatic reboot, checkpoint-restart,

and failure-oblivious transformation.

Reboot techniques [4], [17], [33] require the system to be

able to restart, which may bring some down-time. Checkpoint-

restart techniques significantly reduce the recovery time by

saving and reloading runtime states saved at checkpoints. Qin

et al. [27] invented Rx, which enables the program to rollback

to a recent checkpoint upon a software failure, and then to

re-execute in a modified environment. Sidiroglou et al. [31]

proposed ASSURE, a system that introduces rescue points to

recover from unknown faults.
Regarding failure-oblivious computing, Rinard et al. [30]

invented a safe compiler for C to enable servers to execute

despite memory errors. Perkins et al. [26] proposed ClearView,

a system for automatically patching errors in deployed soft-

ware. It observes values of registers and memory locations

and tries to detect violations of invariants at this level. Rigger

et al. [28] presented an approach that allows C programmers

to perform explicit sanity checks and to react according to

invalid arguments or states. They also designed a C dialect

called Lenient C [29] that checks undefined behaviours in the

C standard including memory management, pointer operations

and arithmetic operations.
None of these tools combine fault injection and failure-

oblivious computing together as we do in TRIPLEAGENT.

They do not actively inject failures into the system, nor do they

conduct application-level analysis to detect valuable failure-

oblivious positions.
3) Exception analysis: Byeong-Mo et al. [5] gave a com-

prehensive review on exception analysis. Magiel Bruntink et

al. [3] proposed a characterization and evaluation method to

statically discover faults in exception handling. Fu and Ryder

[13] described a static analysis method for exception chains

in Java. Martins et al. [22] presented VerifyEx to test Java

exceptions by inserting exceptions at the beginning of try

blocks. Zhang and Elbaum [37] presented an approach that

amplifies tests to validate exception handling. Cornu et al. [7]

proposed a classification of try-catch blocks at testing time.
Those tools rely on test suites to analyze resilience with

respect to error-handling. On the contrary, TRIPLEAGENT

analyzes the system behaviour based on user-level traffic and

usages.

VII. CONCLUSION

In this paper, we have presented TRIPLEAGENT, a system

which combines automated monitoring, automated perturba-

tion injection and automated resilience improvement. By eval-

uating TRIPLEAGENT on two real-world Java applications, we

have shown that it is able to detect weaknesses in exception-

handling of Java code and to improve resilience. In the future,

we will further explore the design space of perturbation and

failure-obliviousness strategies. For instance, we would like

to inject timeout on requests and interactions in asynchronous

software. Our long-term goal is to use TRIPLEAGENT in

production, and consequently, we will also keep reducing the

overhead of TRIPLEAGENT at runtime.
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