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Abstract—Dealing with the evolution of operating systems is
challenging for developers of mobile apps, who have to deal
with frequent upgrades that often include backward incompatible
changes of the underlying API framework. As a consequence
of framework upgrades, apps may show misbehaviours and
unexpected crashes once executed within an evolved environment.

Identifying the portion of the app that must be modified to
correctly execute on a newly released operating system can be
challenging. Although incompatibilities are visibile at the level of
the interactions between the app and its execution environment,
the actual methods to be changed are often located in classes
that do not directly interact with any external element.

To facilitate debugging activities for problems introduced by
backward incompatible upgrades of the operating system, this pa-
per presents FILO, a technique that can recommend the method
that must be changed to implement the fix from the analysis of
a single failing execution. FILO can also select key symptomatic
anomalous events that can help the developer understanding the
reason of the failure and facilitate the implementation of the fix.

Our evaluation with multiple known compatibility problems
introduced by Android upgrades shows that FILO can effectively
and efficiently identify the faulty methods in the apps.

Index Terms—Debugging, Android, API upgrades.

I. INTRODUCTION

To continuously release new and advanced features that
exploit the latest hardware and software upgrades, the oper-
ating systems of mobile devices must evolve at a dramatic
speed. For instance, the Android API framework evolves at
the average rate of 115 API updates per month [1] and a
new release is produced every two months in average [2].
Such a fast evolution is not problem-free. For example, in
their study Wei et al. found that more than one third of the
compatibility issues affecting popular Android apps are due to
API evolution [3]. Note that these problems rarely consist of
faults in the framework, but they rather consist of backward
incompatible changes that require the apps to be fixed to run
correctly. This is also confirmed in the study by Mostafa et al.
who found that the large majority of backward compatibility
problems are fixed in the client code of the apps [4].

Migrating an app to a new API can be painful. Once a prob-
lem in the app is discovered, developers have to investigate the
behaviour of the app to understand the cause of the problem,
identify a suitable location for the fix, and implement it. This
whole process is demanding and makes developers reluctant
to adopt new APIs. For instance, McDonnell et al. [1] reported
an average migration time of 16 months, in contrast with an
API release interval of few months only.

Simplifying the migration process is thus extremely impor-
tant to let developers quickly adapt their apps to newly released
operating systems. In this paper, we focus on the challenge
of assisting the problem resolution task by automating the
identification of the code region that must be modified to fix an
app that is incompatible with a newer version of the underlying
framework. This can be seen as an instance of spectrum-based
fault localization (SBFL) [5], [6], but contrarily to SBFL that
requires a full test suite with passing and failing test cases,
our approach, namely FILO, requires only a single failed test
case to be applied. This has three important benefits: (i) it
is applicable to the many cases where an extensive unit test
suite is not available, (ii) it can be straightforwardly applied to
those cases where the failure is exposed with a system-level
interaction, such as an automatic system test derived from a
bug report entered by a user, and (iii) it is extremely cheap to
execute since it avoids the execution of large test suites.

In contrast with SBFL techniques that can only localize
suspicious code regions, FILO also isolates information about
the anomalous events that are the consequence of the incom-
patibility between the app and the newly released framework,
providing further information potentially useful to the devel-
opers to understand the failure and implement a proper fix.

The intuition behind FILO is twofold:
Interactions between the framework and the app are likely to
contain an evidence of the failure: Since the incompatibility
is between an app and its API framework, the problem should
intuitively be visible by observing their interactions (i.e.,
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calls from the app to the framework, and vice versa). The
comparison of the interactions observed when the app interacts
with the compatible (older) and the incompatible (newer)
versions of the framework can be used to identify suspicious
interactions that are in turn useful to identify the part of the
behavior of the app that must be modified to obtain the fix.

The method that must be fixed is likely responsible for a
large and coherent set of suspicious interactions: The detailed
analysis of the full failed execution, not only limited to
interactions between the app and its framework, can reveal
the methods internal to the app that control the execution of a
significantly large and coherent set of suspicious interactions.
These methods should include the one that must be changed
to fix the program. Based on this strategy, FILO generates a
ranking that can be exploited by the developers to identify
the fix location. Each method can also be associated with the
suspicious interactions under its influence to provide insights
about the rationale of the selection.

We empirically assessed FILO with multiple incompatibili-
ties between Android apps and various versions of the Android
framework. Results show that FILO can efficiently identify the
method where the fix should be implemented from the analysis
of a single failing test case: it ranked the method that must
be modified in the top 5 positions in the large majority of the
cases, with several cases where the method occurred at the top
of the ranking. We also compared FILO to SBFL, confirming
its higher effectiveness in addition to its higher applicability.

In a nutshell, the main contributions of this paper are:
• FILO, a technique that can address incompatibilities be-

tween an app and an updated framework by producing a
ranked list of suspicious methods that must be changed,
associated with supporting evidence about their selection,
from a single system-level failed execution;

• the empirical evidence that FILO can operate efficiently and
effectively;

• a freely available implementation of our tool and a replica-
tion package (https://gitlab.com/learnERC/filo) that can be
used to replicate the results reported in the paper.
The rest of the paper is organized as follows. Section II

presents a running example that is used throughout the paper
to illustrate our approach. Sections III and IV describe and
empirically evaluate FILO, respectively. Section V discusses
related work. Finally, Section VI provides finale remarks.

II. RUNNING EXAMPLE

In this section, we describe an actual Android app that
suffers from an upgrade issue common to many others Android
apps. The issue is due to the backward incompatible change
implemented between the Android API 22 and the Android
API 23 that forces apps to explicitly request for a permission
when accessing resources for the first time. The opensource
Good Weather application [7] is one of the applications
affected by this backward incompatibility problem, due to
an incomplete implementation of support to API 23. The
application exploits the location services to produce a weather

forecast about the current location of the user. This application
has been installed by more than 5,000 Android users according
to Google Play. We used this app both in the empirical
evaluation and in Section III to illustrate how FILO works.

The method whose implementation is incompatible with
API 23 can be obtained from Listing 1 by ignoring the
red code, which is the code added to obtain the fix, and
including the code with the strikethrough font, which is the
code removed to obtain the fix. In the faulty implementation,
when the gpsRequestLocation method is invoked, the per-
missions to access to the fine and coarse grained locations are
checked. If the permissions are granted (as it happens with API
22), the location is regularly updated executing the method
requestLocationUpdates(). Otherwise, if the permissions are
not granted (as it happens with API 23), the method returns
without updating the location, resulting in the application
hanging forever. The hang is due to the code responsible for
the elimination of the progress bar (not shown in the listing)
that is executed only once the location has been updated.

Listing 1. The Fix for the Good Weather application.
p u b l i c boolean o n O p t i o n s I t e m S e l e c t e d ( MenuItem i t em ) {

sw i t ch ( i t em . g e t I t e m I d ( ) ) {
...
case R . i d . m a i n m e n u d e t e c t l o c a t i o n :

requestLocation();
gpsRequestLocation(); ...

}
...

}

private void requestLocation() {
...
detectLocation();
...

}

private void detectLocation() {
...
gpsRequestLocation();
...

}

p u b l i c vo id g p s R e q u e s t L o c a t i o n ( ) {
if (checkSelfPermission(this, ACCESS FINE LOCATION) ==

PERMISSION GRANTED) {
if (VERSION.SDK INT >= VERSION CODES.M){

if (checkSelfPermission(this, ACCESS FINE LOCATION) !=
PERMISSION GRANTED && checkSelfPermission(this,
ACCESS COARSE LOCATION) != PERMISSION GRANTED){

return;
}
l o c a t i o n M a n a g e r . r e q u e s t L o c a t i o n U p d a t e s (

Loca t ionManager . GPS PROVIDER , 0 , 0 ,
m L o c a t i o n L i s t e n e r ) ;

}
}

In order to fix the program it is necessary to ask the user
to grant the access to the location information before in-
voking the requestLocationUpdates method. The developers
obtained the fix by modifying the onOptionsItemSelected

and the gpsRequestLocation methods, making them to in-
voke new methods designed to acquire the required per-
missions. A proper analysis of a failing interaction with
the app should report the gpsRequestLocation and the
onOptionsItemSelected methods as the methods to be mod-
ified to obtain the fix.

In this case, FILO successfully reported the
gpsRequestLocation and onOptionsItemSelected methods
at the top of the ranking. In addition FILO can isolate and
report anomalous interactions that happened in the failed
execution about both permission checking and access to the

https://gitlab.com/learnERC/filo


location service to the developers. These anomalous events
are well representative of what the problem is, that is, the
app lacks the permission to access the location service.

Finally, note that the failure per se is not explicative of the
fact that the problem is about permissions: the user can only
see the hang and the app does not log any error message. This
is why the output produced by FILO can be extremely helpful
to quickly fix this app.

III. FILO

The purpose of FILO is to automatically recommend the
likely locations of fixes for problems caused by upgrades of
the Android framework to developers. FILO requires three
inputs: an automatic test case, which is used to reproduce
the problem, and the access to two Android environments, one
running the app with the compatible API and the other running
the app with the incompatible API. The output produced by
FILO is a ranked list of methods corresponding to the possible
fix locations, associated with a set of suspicious interactions
that motivate the ranking and that can be used by the developer
to investigate the problem and implement a fix.

FILO works in three main phases as shown in Fig. 1: the
Test Execution phase runs the test case that reproduces the
failure and collects the interactions between the app and the
framework from the two available environments; the Anomaly
Detection phase identifies blocks with suspicious interactions
by comparing the collected traces; the Fix Locus Candidates
Identification phase identifies and ranks the places where a fix
is likely to be implemented and associates the corresponding
evidence. We describe these three phases in details below.

A. Test Execution

The test execution phase collects the interactions between
the app and the framework for both the base environment,
which runs the target app with a compatible version of the
framework API, namely v1; and the upgraded environment,
which runs the same target app with an incompatible version
of the framework API, namely v2. The collected interactions
consist of all the calls to methods of the framework produced
by the app, and all the calls to methods of the app produced by
the framework. While the rest of the calls, that is, calls internal
to the framework and calls internal to the app, are ignored.
This is because incompatibilities must be observable while
looking at the interactions between the app and its framework.

More formally, a framework method is a method defined in
the Android framework or in a standard library (e.g., java.*);
an application method is a method implemented in the app.
An API call is a call to a framework method originated by an
application method. Vice versa a callback is a call to a method
of the app originated by a framework method. All the other
cases are internal method calls that are ignored in this step
(note that calls internal to the app are on the contrary relevant
to the third step for the identification of the fix locus).

The trace files recorded by FILO only include API calls
and callbacks. We refer to the union of the API calls and
callbacks as the boundary calls. To collect this information

FILO instruments the app and executes the automatic test case
on both the base and upgraded environments.

The output of this phase consists of two traces containing
an interleaved sequence of API calls and callbacks. The
baseline trace is obtained by running the test case within
the base environment and represents how the app and the
framework interact when the execution is correct. The failure
trace is obtained by running the test case within the upgraded
environment and represents how the app and the upgraded
framework interact when the app fails.

Listing 2. Excerpt of the Good Weather baseline trace.
MainActivity.onCreate()#b
AppCompatAct iv i ty . o n C r e a t e ( ) #b
AppCompatAct iv i ty . o n C r e a t e ( ) # e
AppCompatAct iv i ty . g e t S u p p o r t A c t i o n B a r ( ) #b
AppCompatAct iv i ty . g e t S u p p o r t A c t i o n B a r ( ) # e
AppCompatAct iv i ty . s e t C o n t e n t V i e w ( . . . ) #b
AppCompatAct iv i ty . s e t C o n t e n t V i e w ( . . . ) # e
AppCompatAct iv i ty . f indViewById ( . . . ) #b
AppCompatAct iv i ty . f indViewById ( ) , r e t u r n V a l u e : . . . # e
AppCompatAct iv i ty . s e t S u p p o r t A c t i o n B a r ( . . . ) #b
AppCompatAct iv i ty . s e t S u p p o r t A c t i o n B a r ( . . . ) # e
MainActivity.onCreate()#e

An excerpt of a baseline trace is shown in Listing 2. Note
that FILO traces when the execution of every boundary call
both starts and ends (marked with #b and #e in the sample
trace). If a boundary call produces a return value, FILO also
records it in the trace (such as for findViewById() in the sam-
ple file): if the return value is of primitive type FILO directly
records it, if the return value is non-primitive FILO records the
value returned by method toString() if overridden, otherwise
FILO only records the dynamic type of the return value. In the
example trace we indicate callbacks in italics: only the call to
MainActivity.onCreate() is a callback since the method is
invoked from a method of the framework (not shown in the
trace). All the other calls are API calls, that is, they are
calls to the framework (AppCompatActivity is a class of the
framework) generated by the app (MainActivity.onCreate()
is implemented in the app).

Executing exactly the same test in both environments and
restricting the observations to boundary calls reduce the risk of
having incidental differences in the traces, which implies that
the large majority of the observed differences are relevant to
the problem under analysis. If non-deterministic interactions
are present in the traces, they can be filtered out by executing
the same test multiple times and eliminating the changing
portion of the trace from the analysis. We however never
observed such case in our evaluation.

Note that although the scope of the observation is limited to
boundary calls, the size of the traces might be significant. For
instance, the baseline trace collected for the running example
includes 14,245 method calls and has a size of ∼41MB, while
the size of the traces in the experiments reached 617,427
method calls and ∼1.8GB for the MapDemo application [8].

B. Anomaly Detection

The anomaly detection phase compares the two traces
produced in the test execution phase and isolates a number
of invocation blocks that look suspicious. An invocation block
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Fig. 1. Overview of the FILO technique.

is a contiguous sequence of boundary calls extracted from
the traces generated during test execution. More formally,
given a recorded trace e1, . . . en, an invocation block is any
subsequence ei, ei+1, . . . ei+k, s.t., i ≥ 1 and i+ k ≤ n.

The anomaly detection phase identifies, groups, and assigns
weights to the differences between the baseline trace and the
failure trace. Since the two traces show the boundary calls
collected while running exactly the same test case, most of
the differences are likely due to changes in the underlying
framework and their impact on the app, specifically in the
case of the failure. FILO identifies these differences by running
diff [9], which returns the invocation blocks in the failure trace
with no counterpart in the baseline trace. Since these blocks
represent differences that may characterize the failure, we refer
to them as the Suspicious Invocation Blocks (SIBs).

The set of differences contained in the SIBs can still be
large. Indeed a different behavior of the framework may
produce several differences in the return values of the API calls
and on the generated callbacks. As a consequence the app may
react differently than with the older version of the framework
and produce unexpected boundary calls. For instance, in the
running example there are thousands of differences between
the baseline and failure traces.

To analyze the content of the SIBs, FILO performs two
operations: it associates the block with its first boundary call,
since that call is likely to be the cause of all the differences
reported in the block; in addition, considering that spurious
interactions not related to the failure are often due to short
SIBs of length 1, FILO weights the relevance of each block
based on the number of boundary calls that it contains.

For example, Listing 3 shows an excerpt of a SIB detected
for the running example. The block starts with a call to method
MainActivity.onLocationChanged, which is representative of
the entire stream of anomalous interactions that follow. Since
the block includes 30 boundary calls, this is also the weight
of the block, which is shown on the first row of the listing.

The output of this phase is thus a number of weighted SIBs
that FILO uses to identify how and where to change the app to
fix the compatibility problem. Note that the anomaly detection
step typically identifies several blocks. For instance, the num-
ber of SIBs in the running example are 98. However, not all of
them have the same relevance based on our heuristics, indeed

many of them are short spurious anomalies. For example, 70
SIBs have a weight of 1 (i.e., they include a single boundary
call) and only 23 SIBs have a weight higher than 3.

Note that the set of SIBs often does not contain the method
that should be modified to fix the program but only the
methods that misbehave due to the upgrade. For instance, one
of the methods that must be modified in the running example
is gpsRequestLocation() and this method never occurs in the
baseline and failure traces. This is confirmed in our empirical
evaluation, where for 50% of the cases the recorded traces do
not include the method with the fix.

Listing 3. Excerpt of a Suspicious Invocation Block
MainActivity.onLocationChanged(...)#b Weight 30
a n d r o i d . app . D ia lo g . c a n c e l ( ) #b
a n d r o i d . app . D ia lo g . c a n c e l # e
a n d r o i d . l o c a t i o n . L o c a t i o n . g e t L a t i t u d e ( ) #b
a n d r o i d . l o c a t i o n . L o c a t i o n . g e t L a t i t u d e , r e t u r n V a l u e : . . . # e
. . .

C. Fix Locus Candidates Identification
The fix locus candidates identification phase is the last phase

of the FILO technique. It takes the set of weighted SIBs as
input and produces a ranked list of methods that represent
the locations where the fix should be likely implemented
as output. Each method in the ranking is associated with
supporting evidence that consists of the set of SIBs that
might be affected by the method. Intuitively, the suspicious
invocations associated with a method represent the symptoms
of the failure that can be removed by implementing a proper
fix in the method. This information can be useful for the
developers who can benefit from contextual information and
insights about the failure, in addition to information about the
location where a fix should be implemented, when working
on the app to produce a fix.

Since the fixes must be often implemented in methods
that are not part of the SIBs, which in fact represent the
symptoms of failures and not their causes, FILO considers
any method executed in the failing execution as a potential
target for the fix. In particular, FILO creates the failure call
tree, which is a tree that includes all the methods present
in the stack trace at the time each SIB has been detected
(this information is collected when executing the failing test).
Nodes represent the invoked methods and direct edges repre-
sent calls between methods. More formally, for each SIB sibi



with weight wi and representative call ci, FILO collects its
stacktrace 〈m1, . . . ,mni , ci〉, where m1 is always the method
ZygoteInit.main. The failure call tree is a triple (N,E, r),
where N = {m1, . . . ,mni

, ci|∀sibi} is the set of nodes,
E = {(mni

, ci), (mi,mi+1), i = 1, . . . ni − 1|∀sibi} is the
set of edges, and r = ZygoteInit.main is the root of the tree.

Note that the root of the failure call tree is the
ZygoteInit.main method, which is the initial method that
handles the forking of every application launched in Android.
The leafs are the representative methods of the SIBs, returned
by the anomaly detection phase. Each leaf node has a weight
corresponding to the weight of the SIB that originated the
node. Leaf nodes with high weights are more relevant to the
analyzed failure than the other leaf nodes.

FILO scores each node of the tree, that is, each method
call, based on its degree of influence on the SIBs, represented
by the weighted leaf nodes of the failure call tree. Intuitively
a high score indicates a method that can directly affect the
execution of several blocks of non-trivial weight. This score
is the suspiciousness of the method and is used to produce the
final ranking. More formally, we compute the suspiciousness
of a method m as a linear combination of two attributes based
on the following formula:

Susp(m) = k1ImpBlocks(m) + k2Depth(m)

The sum k1+k2 is 1. Each attribute measures a characteristic
that should be taken into account in the attempt of identifying
the method that is likely the locus of the fix and its value
ranges between 0 and 1. We discuss these two attributes below.

ImpBlocks(m) measures the number of SIBs that can be
affected by a specific method. It is computed by summing
the weights of the SIBs (leaf nodes) that can be reached
from m following a path in the failure call tree. The value
is normalized with respect to the sum of the weights of all the
SIBs in the tree. Note that by definition the root of the failure
call tree can affect all the SIBs, thus ImpBlocks(rootnode) = 1.
Similarly a node sib representing a SIB with weight w can
only influence itself and thus ImpBlocks(sib) = w

W , where W
is the sum of the weights of all the SIBs in the tree.

Depth(m) measures the position of the node with respect to
the height of the failure call tree, that is, it measures how close
a selected method is to the SIBs. The score is normalized with
respect to the height of the tree. Thus, Depth(rootnode) = 0
and Depth(sib) = 1 for the deepest SIB sib.

These two attributes suitably interact one with the other to
identify the methods that with the highest probability must
be changed to fix the failure. The ImpBlocks(m) attribute
privileges the choice of nodes at the top of the tree selecting
methods that control the execution of a significant number of
SIBs. This intuitively satisfies the criterion that the method that
must be changed to implement the fix must have an impact
on a significant number of the SIBs that have been detected.

The Depth(m) attribute privileges the choice of nodes close
to the leafs of the tree, discouraging the selection of methods
that have been executed too early during the failure. The
interaction of this attribute with the ImpBlocks(m) attribute
favours the selection of nodes that influence the execution

TABLE I
RANKING RETURNED BY FILO.

MethodName Susp

org.asdtm.goodweather.MainActivity.gpsRequestLocation 0.72
org.asdtm.goodweather.MainActivity.onOptionsItemSelected 0.69
org.asdtm.goodweather.MainActivity$1.onLocationChanged 0.53
org.asdtm.goodweather.MainActivity.preLoadWeather 0.45
org.asdtm.goodweather.MainActivity.onResume 0.43
org.asdtm.goodweather.BaseActivity.configureNavView 0.42
org.asdtm.goodweather.MainActivity.onPause 0.39
org.asdtm.goodweather.BaseActivity.setupNavDrawer 0.39
org.asdtm.goodweather.BaseActivity.onPostCreate 0.36

of a cohesive set of SIBs with relevant weights. In fact,
starting from the selection of a leaf node (i.e., a SIB), it is
worth selecting an ancestor node, that is, a method executed
earlier in the failure, only if the loss in the Depth attribute
is compensated by the gain in the ImpBlocks attribute. In
particular, it is convenient to consider methods that can control
the execution of a higher number of SIBs only if these blocks
have a relevant weight.

Since the failure call tree represents method calls and the
same method might be invoked in multiple places, while
FILO ranks methods based on their suspiciousness, the final
ranking is obtained by considering each method only once
using the occurrence with the highest suspiciousness for the
ranking. Before returning the ranking to the user, all the
methods belonging to the framework are removed because
the adaptation must necessarily target the app. In the running
example, the resulting ranking is shown in Table I. Note that
the methods that require the fix, that is gpsRequestLocation

and onOptionsItemSelected, are ranked at the top, they are
thus the first methods that a developer would inspect.

Since SIBs with just one call, that is, blocks of weight 1, in
the large majority of the cases correspond to noisy differences
unrelated with the failure, FILO uses only blocks of minimal
weight 2, unless all the blocks have weight 1.

Note that in the running example the top ranked method
identified by FILO never occurs in the set of boundary calls
and thus a trivial comparison of the log files could not produce
a precise recommendation to the developer.

Finally, FILO cannot address faults that occur in methods
that are not part of the stacktraces collected when the SIBs
are detected. Although this may sometime happen, a failing
execution produces several SIBs and thus a number of stack-
traces, and consequently a number of methods are added to
the failure call tree during the analysis. The possibility that the
faulty method is not part of the tree is small, as also confirmed
in our evaluation where this happened only in 1 case out of
12. We thus decided to design FILO to be fast and effective,
at the cost of potentially missing a small percentage of faults.

IV. EMPIRICAL EVALUATION

The empirical evaluation answers to three research questions
concerning the information captured in the SIBs, the quality
of the ranking, and the comparison to naive trace analysis and
spectrum based fault localization (SBFL).



RQ1: Are the suspicious invocation blocks capturing in-
formation about the symptoms of failures? This research
question investigates if the SIBs really capture the symptoms
of the failures and thus can be reliably used to build the rest of
the analysis. To answer this research question we compare the
content of the SIBs to the set of method calls actually related
to the incompatibility between the framework and the app.
RQ2: How well the ranking returned by FILO identifies
the method that must be modified to implement the fix?
This research question investigates if FILO is able to produce
rankings where the method that must be modified to fix the
program occurs at the top positions of the ranking, possibly
within the first 10 positions, and ideally within the first 5 [10].
RQ3: How does FILO compare to both naive trace analysis
and SBFL techniques? This research question compares
FILO to two competing approaches. Naive trace analysis
consists of identifying the method that must be changed simply
comparing the baseline and failure traces one to the other. This
comparison has the objective to assess the importance of the
third phase of the technique, which goes beyond the content
of the trace files for the localization. We also compare FILO
to SBFL techniques, Ochiai [5] in particular, in terms of the
ability to identify the faulty method. Although FILO operates
under weaker assumptions than SBFL, for instance FILO does
not require the availability of a full test suite with passing test
cases to be applied, we compared them to study how their
effectiveness relate one to the other.

In addition to the three research questions, we qualitatively
discuss the supporting evidence generated by FILO in a dis-
cussion section. In particular, we show how the SIBs isolated
by FILO for the methods in the ranking may represent a useful
support to understand the failure and possibly implement a fix,
despite the presence of noisy method calls. We conclude the
section presenting the threats to the validity of the experiment
and discussing the limitations of the approach.

A. Prototype

Our prototype implementation consists of two main compo-
nents: the tracer, which is responsible of recording the traces
with boundary calls, and the analyzer, which is responsible of
producing the ranking. Since Android represents the largest
share of smartphone operative systems (86,8% of the units
shipped in 2018Q3 are Android phones [11]), we implemented
these two components targeting the Android ecosystem. Note
that, although our implementation is specific to Android, FILO
is general and could be implemented also for other ecosystems.

To make our results reproducible by third parties we im-
plemented, for each app, the shortest interaction sequence that
reveals the incompatibility between the app and the framework
as an automatically executable Appium test case [12]. We
packaged and made our prototype implementation, the apps
studied in this paper, and the corresponding Appium test
cases available online at the following url: https://gitlab.com/
learnERC/filo.

The tracer collects the information about failures by running
the Appium test case twice. The first time the tracer exploits

the native Android Tracer to obtain the list of executed meth-
ods. These methods are then used to configure our monitor im-
plemented as an Xposed [13] module to selectively instrument
the relevant methods only, collecting additional information
that cannot be extracted with the Android Tracer, such as
the return values, and the stack-trace of the invocations. The
final trace with boundary calls only is obtained by filtering the
collected calls based on the identity of the callers.

The analyzer is a Java component analyzing the traces
as discussed in Section III. To configure the values of the
two weights k1 and k2, we empirically evaluated multiple
combinations with a subset of the apps and we ended up using
k1 = 0.25 and k2 = 0.75. FILO demonstrated to be relatively
sensitive to the choice of k1 and k2 since non-trivial variations
of their values had little impact on the results. Specifically,
values in the range 0.01 < k1 < 0.34 and 0.66 < k2 < 0.99
worsen the ranking by moving the target method only 1 place
below in average.

B. Subject Programs

To evaluate our approach we searched for Android apps
that presented issues after a framework upgrade on GitHub.
We used keywords such as ”after upgrade to Lollipop” for
the initial selection. Since our evaluation requires both the
possibility to reproduce the failures and the knowledge of
the location of the fix, we filtered out apps where it was
impossible to replicate the upgrade problem (e.g., because it
was impossible to compile the project or failure reproduction
required a specific hardware). When available we used the
official fixes, otherwise we implemented the fix ourselves. We
ended up with 12 actual upgrade problems and corresponding
Appium test cases that replicate the problem. Table II reports
information about the apps, the failures, and the correspond-
ing faults. Columns Application, Ver, and Locs indicate the
name, the version of the app (specified with the identifier of
the commit), and the number of lines of code of the app,
respectively. BossTransfer is a game app [14]. FakeGPS is a
GPS device simulator [15]. FilePicker is an app for selecting
files and folders in a device [16]. GetBack GPS is an app for
storing the location of points of interests [17]. GoodWeather
is a weather app [7]. KanjiFix is an app to fix Japanese glyph
rendering [18]. MapDemo is an app to test the setup of Google
Play services [8]. PoGoIV is an IV calculator for Pokemon
Go [19]. PrivacyPolice is an app that prevents leaking of
sensitive information via Wi-Fi networks [20]. QuotoGraph
is an app to create custom wallpapers [21]. SearchView is
a persistent search and view library in material design [22].
ToneDef is a tone dialer application [23].

Column Inc. API reports the version of the framework
API that is incompatible with the app. In most of the cases
it is API 23 since it is also the most used version of the
framework [24]. Column Failure provides a short description
of the failure caused by the incompatibility with the framework
API. Finally column Fault provides a short description of the
fault that causes the failure of the app. The * indicates that we
implemented the fix since the official fix was not available.

https://gitlab.com/learnERC/filo
https://gitlab.com/learnERC/filo


TABLE II
SUBJECT APPS.

Application Ver Locs Inc. API Failure Fault

BossTransfer 47 1.3K 23 crash when opening the details about items in a list wrong permission logic*
FakeGPS 28 3.0K 23 crash when opening the view to set the fake position missing permission logic*
FilePicker 115 5.8K 23 folders erroneously shown as empty faulty support to the new api
GetBack GPS 2133 7.0K 23 unable to retrieve current position missing permission logic
GoodWeather 745 9.7K 23 hang when refreshing meteo forecast missing permission logic
KanjiFix 46 1.3K 21 unable to fix Japanese glyph rendering fonts require a new procedure to be loaded
MapDemo 5 0.6K 23 crash when retrieving the current position missing permission logic*
PoGoIV 2328 19.2K 24 unable to perform the auto update new api requires the use of FileProvider
PrivacyPolice 153 2.5K 23 unable to connect to wifi networks api methods with changed semantics
QuotoGraph 289 8.4 K 24 crash on startup api methods with changed semantics
SearchView 746 6.1K 21 crash on startup api methods with changed semantics
ToneDef 91 6.8K 23 error message when dialling from the phone contacts list missing permission logic*

Note that some of these faults have been non trivial to
debug, requiring from 1 day to several months to be fixed.
Three of the faults also required multiple commits to be fixed
(up to 23 commits in one case).

C. RQ1: Are the suspicious invocation blocks capturing infor-
mation about the symptoms of failures?

To answer this research question, we analyzed the content
of the SIBs measuring the completeness and soundness of
the reported information. To objectively identify the set of
anomalous boundary calls caused by a fault we exploited the
fixed versions of the apps. We executed both the faulty and the
fixed apps on the upgraded framework using the test case that
reproduces the problem and collected the boundary calls. We
then compared the two trace files. Differences correspond to
suppressed or novel method calls introduced by the developer
to fix the program. We refer to these calls as the fault-related
method calls (frmc). Ideally, the SIBs should be able to capture
these calls, which would be then exploited to rank methods.

To measure the soundness of the content of the SIBs we
compute the percentage of blocks that contain fault-related
method calls, that is, soundness = #SIB with frmc

#SIB . We perform
this for both all the SIBs and for the blocks with a minimum
length of 2, which are the ones used by FILO unless all the
blocks have length 1. To measure the completeness of the
content of the SIBs, we compute the percentage of fault-
related method calls that are included in the SIBs, that is,
completeness = #frmc in SIBs

#frmc . Table III summarizes the results.
We can notice that the density of SIBs that include fault-

related method calls is rather sparse when considering the full
set of blocks (column All SIBs), ranging from 1% to 100%.
However, if we exclude the blocks with a single call, which
are the blocks that contribute the least to our analysis, we can
see that the density of blocks incorporating information about
the fault increases significantly (column SIBs (lenght ≥ 2)):
at least half of the blocks are always relevant, with a density
of relevant blocks reaching 86% for FakeGPS and 100% for
QuotoGraph. There is an exception to this that is KanjiFix. In
that case all the SIBs have length 1, thus the analysis can only
be performed with the full set of SIBs. Note again that half
of the blocks carry relevant information.

TABLE III
SUSPICIOUS INVOCATION BLOCKS.

Application Soundness Completeness
All SIBs SIBs (length ≥ 2)

BossTransfer 50% 75% 77%
FakeGPS 60% 86% 79%
FilePicker 19% 52% 64%
GetBack GPS 45% 50% 40%
GoodWeather 55% 61% 49%
KanjiFix 50% - 30%
MapDemo 63% 69% 45%
PoGoIV 24% 63 % 61%
PrivacyPolice 52% 67% 32%
QuotoGraph 100% 100% 54%
SearchView 48% 50% 26%
ToneDef 1% 67% 22%

The performance of the SIBs is quite variable in terms
of their completeness. For some apps, such as BossTransfer,
FakeGPS, FilePicker, and GoodWeather, the SIBs include most
of the behaviors related to the fault, while for other apps,
such as KanjiFix, SearchView, and ToneDef, the blocks are
representative of about one fourth of the behavioral differ-
ences introduced with the fix. It is important to emphasize
two aspects. First, FILO requires to capture some relevant
differences in the executions but does not need to capture all
the differences. In fact, as discussed in RQ2, FILO managed
to be effective with KanjiFix where only 30% of the relevant
method calls have been captured. Second, low percentages do
not imply that FILO is missing information present in the
baseline and in the failure trace files (the diff procedure used
in FILO is essentially complete by construction), but typically
correspond to completely new behaviors introduced with the
fix that were not present in the previous version of the app.

In summary, although the information contained in the
blocks is not noise-free, the blocks, especially the ones with
non-negligible weights, are confirmed to carry relevant infor-
mation about the failure and can be realistically exploited to
identify the method responsible for the fault, as shown in RQ2.

D. RQ2: How well the ranking returned by FILO identifies
the method that must be modified to implement the fix?

The incompatibility problems introduced in our subject apps
required the modification of a single method, with the excep-



TABLE IV
RANKING.

Application #SIB Pos Ranking

BossTransfer 4 2*
FakeGPS 21 5
FilePicker 29 4
GetBack GPS 16 10*
GoodWeather 28 1,2
KanjiFix 6 1
MapDemo 13 8
PoGoIV 16 7
PrivacyPolice 12 1
QuotoGraph 1 1
SearchView 30 9
ToneDef 3 -

tion of GoodWeather that required changing two methods. We
do not consider the new methods introduced by developers
to organize the code of the fix since these methods were not
present in the faulty version of the app.

Table IV shows the results. Column #SIB indicates the
number of SIBs exploited by FILO in the localization, while
column Pos Ranking indicates the position of the method(s)
that must be fixed in the ranking (we never experienced tie
positions in the evaluation). Values below or equal to 5 are
reported in bold.

The number of SIBs may vary significantly based on the
failure. However, FILO has been always able to report the
method to be fixed within the top 10 positions, with the
exception of ToneDef, where FILO was unable to include the
fixed method in the ranking, since the method was not part
of the collected stack traces. The BossTransfer and GetBack
GPS apps are considered special cases. In the former case the
exact method to be fixed is not part of the failure call tree and
thus the final ranking does not include that method. However,
the method is in an anonymous class that is defined inside
another method that occurs at the second place of the ranking.
In the latter case the developers placed the fix in a method
within an abstract class, whereas FILO detected the override
of the same method in the concrete class. Because of these
special cases, we reported these results with a mark. In seven
cases the method to be changed was ranked among the top 5
positions with four perfect results, that is, the method to be
changed is ranked at the top place. This result is particularly
good. In fact, practitioners have been reported to consider
acceptable inspecting of up to 10 methods, with a preference
for techniques that require inspecting 5 methods at most [10].

E. RQ3: How does FILO compare to both naive trace analysis
and SBFL techniques?

This research question compares FILO to alternative ap-
proaches that can be used to localize the method to be fixed.
We identified two main alternatives. The first one is what
we called naive trace analysis, that is, simply comparing the
baseline and failure traces and inspecting anomalous methods
calls in the order of occurrence. This approach is included to
confirm the need of analyzing the failure in a more sophisti-
cated way, as FILO does, than simply comparing traces.

The second approach is a classic SBFL method: Ochiai [5].
Although there are several alternative formulas that can be
used [25], we selected Ochiai because it is one of the most
effective methods and a quick investigation based on alterna-
tive formulas has not revealed better results.

Note that SBFL techniques have stricter requirements than
FILO to be applied and produce a more limited output. In fact,
they require a test suite with passing test cases to compute
the ranking and do not provide any additional information
that can help the developer interpreting the result produced
by the technique. On the contrary, FILO only requires a
failing execution to be applied and augments the ranking
with information about anomalous boundary calls that can
help determining the reason of the failure. Since our apps are
released without a test suite, in principle SBFL techniques
would not be applicable to our cases. To overcome this issue,
we generated a test suite of passing test cases with the Monkey
automatic testing tool [26]. We used a setting favouring the
generation of a rather extensive test suite: we generate test
cases by configuring Monkey to emit 10,000 events per test
case, which is 200 times the default value, and we run Monkey
for 10 minutes per app, which is double than the time that
has been empirically reported to produce advances in the
coverage [27]. We setup the testing environment to prevent
the generation of failures and inspected the test execution to
make sure that failing test cases have not incidentally included
in the test suite. We collected coverage data at the level of
both methods, to be consistent with the granularity of the other
approaches, and statements, to investigate the effectiveness at a
finer granularity. We then computed the ranking using Ochiai.

Table V reports the position of the method that must be
modified to implement the fix in the ranking returned by FILO,
naive trace analysis, and Ochiai (since we have two methods to
be modified, we have two positions for GoodWeather). Rows
Top-1, Top-5 and Top-10 indicate the number of times each
technique has ranked the target method in the top, top 5 and
top 10 positions, respectively. Row Not in the ranking reports
the number of times a technique has not included the target
method in the ranking (marked with a “-” in the respective
row). For each row, the best result is shown in bold.

Naive trace analysis achieved the worst results. In six cases
the method with the fix was not present in the ranking and in
the other cases the number of methods to be inspected before
reaching the target method was incredibly high, consisting of
hundreds of entries in several cases. This result confirms the
unsuitability of simple trace analysis.

Ochiai performed better than FILO only twice, with the
ToneDef and MapDemo apps. ToneDef escaped to FILO,
while could still be addressed with Ochiai. The result obtained
with MapDemo is due to the characteristic of the fault that
is systematically activated every time a specific statement is
executed. This case is favourable to SBFL techniques.

In all the other cases, FILO outperformed Ochiai. In three
cases, GetBack GPS, QuotoGraph, and SearchView, Ochiai
(both methods and statements) could not generate any ranking
since the apps failed during startup and it was impossible to



produce a suite of passing test cases. On the contrary, FILO
effectively ranked the method to be fixed at the 10st, 1st

and 9th position of the ranking. In another case, FilePicker,
Ochiai (statement) could not localize the fault because the fault
is due to missing statements, while FILO effectively ranked
the target method at the 4th position. In the remaining cases,
FILO always ranked the target method significantly better than
Ochiai (both methods and statements).

Overall, FILO was not to able to rank the fix only once (1
out of 12). When successful, FILO always ranked the target
method below position 10 (11 out of 12 cases), ranking it at
the top in four cases and in the top five positions in seven
cases. Ochiai (method) failed to include the target method in
the ranking three times, achieving a perfect ranking only twice,
and missed to rank the target method in the top 10 positions
in 9 out of 12 cases. Ochiai (statement) failed to include the
right statement in the ranking in five cases, achieved only one
perfect ranking, and missed to include the statement in the top
10 places in all the rest of the cases.

Let us remark that FILO is cheaper to execute than SBFL.
In fact it can process traces in few seconds and its cost
mainly depends on the execution of the failing test case. In
contrast, SBFL techniques require the execution of complete
test suites with programs instrumented to collect full coverage
data, which is order of magnitude more expensive.

In summary, the results show that FILO is more effective
than naive trace analysis and SBFL with problems introduced
by framework upgrades.

TABLE V
COMPARISON BETWEEN FILO, NAIVE TRACE ANALYSIS AND OCHIAI.

Application FILO Naive Trace Ochiai Ochiai
Analysis (method) (statement)

BossTransfer 2 138 4 32
FakeGPS 5 328 13 65
FilePicker 4 203 81 -
GetBack GPS 10 - - -
GoodWeather 1,2 - 1,32 5,5
KanjiFix 1 - 19 23
MapDemo 8 45 1 1
PoGoIV 7 - 48 283
PrivacyPolice 1 26 21 130
QuotoGraph 1 - - -
SearchView 9 109 - -
ToneDef - - 24 13

Top-1 4 0 2 1
Top-5 7 0 3 2
Top-10 11 0 3 2
Not in the ranking 1 6 3 4

F. Discussion

A characteristic of FILO compared to other fault localiza-
tion techniques is its capability to provide supporting evidence
of the ranking in the form of anomalous calls that capture the
symptoms of the failure. These symptoms can be conveniently
used by the tester to better understand the failure and work
on the implementation of a fix. In this section, we report

qualitative results by discussing the output produced by FILO
for four of the faults analyzed in the empirical evaluation.

In GoodWeather the fix must be implemented in
gpsRequestLocation and onOptionsItemSelected, which
are the top ranked methods. This ranking is supported
by two anomalous SIBs. Since each block is repre-
sented by the first call of the block, the information pro-
vided on the first place to the developer consists of two
calls: a call to ContextCompat.checkSelfPermission and
a call to LocationManager.requestLocationUpdates. The
provided information clearly points at a permission issue
(based on the anomalous call to checkSelfPermission)
with the location services (based on the anomalous call to
requestLocationUpdates). Notably the fix exactly consists of
adding the code to grant the permission to access the location
services from the gpsRequestLocation method.

A similar case is MapDemo where FILO associates the
method that must be modified to implement the fix with
an anomalous call to Location.getLatitude, which returns
null because of the lack of permissions and the fix consists
again of adding the code necessary to obtain this permission.

Another interesting case is PrivacyPolice. The fix is im-
plemented in method ScanResultsChecker.onReceive, which
is ranked at the top. The SIBs associated with these meth-
ods share the presence of the WifiManager.getScanResults,
which is the framework method that experienced the be-
havioural change (always returns null if the GPS is disabled)
and leads the app to a malfunction. The fix requires handling
the result produced by this method properly.

A particular case is represented by QuotoGraph, which
crashes on startup without producing a trace. The result
is the whole baseline trace treated as a single block of
suspicious invocations clearly suggesting problems with the
initialization of the app. FILO correctly pointed at the
LWQApplication.onCreate method, which in fact has been
fixed modifying the initialization procedure of the app.

G. Threats to Validity

There are two main threats affecting the validity of our
evaluation. One is an internal validity threat and is about the
comparison to Ochiai. As discussed, FILO only requires a
failing execution to be applied, while Ochiai, and other SBFL
techniques, needs a test suite of passing test cases to be ap-
plied, and such a test suite was not available for the apps used
in our evaluation. This case is quite frequent in practice, for
instance the vast majority of the apps in GitHub are developed
without having an associated test suite. This practical scenario
confirms the value of FILO being independent on suites of
passing test cases. To anyway obtain information about the
comparison of FILO to SBFL we derived a quite extensive test
suite of passing test cases for each app and then applied SBFL.
In principle, since the outcome of the localization depends on
the test suite, we cannot know if the results would be different
using another test suite. However, we worked conservatively
generating as many passing test cases as possible to obtain the
best localization from Ochiai, so this is unlikely to happen.



The second threat is an external validity threat and concerns
the generalization of the reported evidence. FILO performed
consistently good in the studied incompatibilities and the
steps of the analysis are based on general concepts, without
including any ad-hoc optimization. This provides a good
degree of confidence on the general validity of the results.

H. Limitations

Although FILO performed well with almost all the subjects,
there are cases that cannot or can be extremely hard to address
with our technique. We discuss three relevant cases below.

Faulty method outside the set of collected stack traces:
In principle a faulty method might be missing from all the
collected stack trace instances. FILO collects a number of
these instances, one for each SIB, thus it is unlikely that the
faulty method falls outside every stack trace instance. In our
evaluation happened only in 1 case out of 12.

Faulty configuration: In some cases the fix might require
changing a configuration file of the app rather than changing
the app. These faults are outside the scope of FILO.

New callback methods: Problems caused by new callback
methods, not existing in the base environment, cannot be
detected by FILO. In some cases, these problems might be
however introduced together with other faulty changes that
FILO can detect, such as in the case of GoodWeather.

V. RELATED WORK

Framework upgrades are frequent in mobile ecosystems
and Android in particular [1], [2]. Many of these upgrades
are intentionally not backward compatible and app developers
struggle adapting their apps to newer versions of the frame-
work, as witness by the many discussions opened on Stack
Overflow every time a framework upgrade is released [28].
When these upgrades are not handled properly, apps might be
affected by fragmentation-induced compatibility issues [3], as
well as maintenance and security issues [29].

Many techniques focused on the detection of the incompati-
bilities introduced with these upgrades. For instance, CiD [30]
builds API lifecycle models based on the revision history
of the Android framework and uses these models to detect
incompatibilities. In their work Mostafa et al. [4] detect
behavioral backward incompatibilities in Java libraries, in-
cluding Android, by runnning regression tests and checking
bug reports. Similarly Mora et al. [31] defined an approach
based on the lazy exploration of the behavioral space to
assess if a library update may impact on the clients. DiffDroid
detects inconsistent app behaviors across devices [32]. All
these approaches focus on the detection of misbehaviours. On
the contrary, FILO identifies the place where the fix should be
implemented and the symptoms are used to assist the work of
the developers who investigate the failures.

Some techniques can be used to reduce the compatibility
problems. For instance, ReBA [33] is a technique for the
development of libraries augmented with adapters to guarantee
backward compatibility. While this might be an option for the
developers who want to put extra effort on releasing backward

compatible components, in many practical cases developers in-
tentionally release upgrades that are not backward compatible.

Instead of detecting failure symptoms, fault localization
techniques can be used to attempt to localize faults. A number
of them use the coverage profile of the passing and fail-
ing test cases to perform the localization. These techniques
are usually referred to as spectrum-based fault localization
(SBFL) [25]. Notable examples are Tarantula [6], Ochiai [5],
and Zoltar [34]. These techniques can be potentially used to
address a broader class of faults than FILO, in fact they are
not limited to the case of framework upgrades. On the other
hand, FILO is more effective than SBFL both in terms of
its applicability, indeed FILO does not require a test suite of
passing test cases, and its effectiveness, since it produces fail-
ure symptoms and a more accurate localization, based on our
evaluation. Furthermore, SBFL has shown limitations [35]–
[37] and can hardly satisfy the requirements that a practical
fault localization approach should satisfy based on the opinion
of practitioners [10]. On the contrary, FILO can be executed
quickly, can produce accurate rankings, and can isolate symp-
toms that help understanding the failure and interpreting the
ranking, which is a key requirement already highlighted in
empirical studies [37]. Finally, API documentation could also
be exploited to facilitate the API migration process [38].

Finally, FILO exploits anomaly detection in the analy-
sis [39]. There exist a number of solutions that analyze and
compare the behaviors of programs and components to identify
anomalies that can be used to support the debugging activity.
For instance, BCT [40], RADAR [41], and the technique
by Pradel and Gross [42] perform this kind of analysis in
the context of component-based systems, regression testing,
and object-oriented software, respectively. Mimic performs a
similar analysis in the attempt to analyze reproduced field fail-
ures [43]. Differently from these techniques, FILO originally
combines fault-localization and anomaly detection, exploiting
anomalies to both perform the localization and augment the
ranking with symptomatic information about the failure.

VI. CONCLUSIONS

Timely fixing problems caused by framework upgrades is
important to make mobile apps compatible with the latest
releases of the operative systems. FILO can assist developers
when performing this task by automatically identifying the
faulty method that must be fixed to solve the compatibility
issue, and reporting selected anomalous events observed in
the failing execution, to facilitate the analysis of the problem.

The evaluation shows that FILO can be accurate and practi-
cal. Moreover it has weaker requirements and higher effective-
ness than SBFL in the domain of faults caused by framework
upgrades. As part of future work, we intend to investigate the
possibility of applying FILO to other contexts, such as library
evolution, to extend our approach with automatic program
repair capabilities [44], and to experiment with fixes that span
multiple methods and files.
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