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ABSTRACT
Fault localization is a popular research topic and many techniques
have been proposed to locate faults in imperative code, e.g. C and
Java. In this paper, we focus on the problem of fault localization
for declarative models in Alloy – a �rst order relational logic with
transitive closure. We introduce AlloyFL, the �rst set of fault local-
ization techniques for faulty Alloy models which leverages multi-
ple test formulas. AlloyFL is also the �rst set of fault localization
techniques at the AST node granularity.We implements in AlloyFL
both spectrum-based and mutation-based fault localization tech-
niques, as well as techniques that are based on Alloy’s built-in un-
sat core. We introduce new metrics to measure the accuracy of Al-
loyFL and systematically evaluate AlloyFL on 38 real faultymodels
and 9000mutantmodels. The results show that themutation-based
fault localization techniques are signi�cantly more accurate than
other types of techniques.

1 INTRODUCTION
Writing declarative models and speci�cations has numerous ben-
e�ts, ranging from automated reasoning and correction of design-
level properties before systems are built [16, 26], to automated test-
ing and debugging of their implementations after they are built [36].
However, correctly writing declarative models that represent non-
trivial properties is not easy, especially for practitioners who are
not well-versed with the intricate syntax and semantics of declara-
tive languages. Our focus in this paper is declarative models writ-
ten in Alloy [16] – a �rst-order relational logic with transitive clo-
sure. We choose Alloy because of its expressive power and use in
numerous domains like security [33, 41], networking [50], UML
analysis [34, 35], etc. The Alloy Analyzer provides an automatic
analysis engine for Alloy based on o�-the-shelf SAT solvers [10]
and it is able to generate valuations for the relations in the models
such that the properties modeled hold or are refuted as desired.

Existing Alloy users typically write formulas and commands to
check if the model complies for a set of expected properties. For
example, Pamela Zave invokes a set of Alloy predicates and as-
sertions in her model [1] to check the expected properties of the
Chord [54] distributed hash table protocol. We refer to these Alloy
predicates, functions and assertions that check the expected model
properties as Alloy "tests" in the rest of this paper. These tests can
help capture modeling errors and regression errors analogous to
tests in imperative languages like Java. Existing debugging tech-
niques in Alloy, e.g. MiniSat solver with unsat core [53], highlight
suspicious code snippets for a single test.

To improve the debugging process, we introduce AlloyFL, the
�rst set of fault localization (FL) techniques that leverage multiple
tests for declarative models written in Alloy. While our focus is

Alloy, our techniques can be generalized to other languages that
do not have imperative notions of control �ow or statements. Our
key insight is that a test-driven approach inspired by traditional FL
based on passing and failing tests for imperative code [4, 6, 15, 17,
19, 20, 24, 39, 40, 44, 46, 51, 62, 66, 67] can also lay the foundation
for e�ective localization of faults in declarative models. Alloy’s
expressions/formulas are analog to statements in imperative lan-
guages, except that they are hierarchical, i.e. expressions/formulas
may contain other expressions/formulas.

AlloyFL locates faults at the AST node granularity and can lo-
cate any faulty expression, formula or paragraph (i.e. signature,
predicate, function, fact and assertion) in an Alloy model. An Alloy
test is typically invoked with an Alloy command (i.e. run or check)
with an optional "expect" keyword, where expect 1 and expect 0

indicate satis�ability and unsatis�ability of the formula being in-
voked, respectively. If the invocation of a command for a test is
satis�able (or unsatis�able) but the expected result is unsatis�able
(or satis�able), then we say the test fails. The Alloy run commands
invoke Alloy predicates or functions while the check commands in-
voke Alloy assertions. If a run command does not have the expect

keyword, then we would expect its invocation to be satis�able. On
the contrary, we expect the invocation of a check command with-
out the expect keyword to be unsatis�able.

AUnit [55, 57] is a recent testing framework for Alloy and it
provides the notion of test predicates (which are also ordinal Alloy
predicates) that represent Alloy instances. MuAlloy [56, 61] is a re-
cent mutation testing framework for Alloy that can automatically
generate mutant killing AUnit test predicates. In this paper, since
the availability of real faulty Alloy models (with manually written
tests) is rather limited, we use Alloy run commands that invoke
automatically generated test predicates to locate faults and evalu-
ate AlloyFL. However, users can use AlloyFL with any test suite as
long as some test fails.

AlloyFL contains 5 techniques: AlloyFLco , AlloyFLun , AlloyFLsu ,
AlloyFLmu and AlloyFLhy . AlloyFLco implements the spectrum-
based FL (SBFL) technique [4, 15, 20, 40] for Alloy. Since Alloy does
not have control-�ow and execution traces, all expressions/formulas
in the same paragraph are either executed together or not executed
at all. AlloyFLco statically analyzes Alloy paragraphs that are tran-
sitively used in each test. Then, AlloyFLco ranks the Alloy para-
graphs based on the number of passing/failing tests that invoke the
paragraphs and a suspiciousness formula. AlloyFLun implements
a SAT-based technique, which leverages the unsat core [53, 58, 59].
AlloyFLun collects all AST nodes that are highlighted by the un-
sat core for each unsatis�able failing test, and nodes highlighted
more often are more likely to be faulty. AlloyFLun is designed to
simulate howAlloy users would debug a faultymodel manually us-
ing the unsat core. AlloyFLsu is similar to AlloyFLun except that
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it uses both satis�able and unsatis�able failing tests to rank the
AST nodes. AlloyFLsu collects the nodes transitively used in sat-
is�able failing tests and nodes returned by unsat core in unsatis-
�able failing tests. Nodes covered more often are ranked at the
top. AlloyFLmu implements the mutation-based FL (MBFL) tech-
nique [39, 44] for Alloy. AlloyFLmu mutates Alloy AST nodes, e.g.
"a&&b" to "a||b", to create non-equivalent mutants and check if the
test results di�er compared to the original model. AlloyFLmu uses
a suspiciousness formula to compute the suspiciousness score for
each mutant based on the number of passing/failing tests that kill
the mutant. A test kills a mutant if its satis�ability changes com-
pared to that of the original model. The nodewhosemutation gives
the highest suspiciousness score, e.g. mutations on the node make
almost all failing tests pass while preserving the results of pass-
ing tests, ranks at the top. The suspiciousness score of the mutated
node conceptually propagate to all its descendants until mutations
on its descendant nodes overwrite the corresponding suspicious-
ness scores. AlloyFLhy is a hybrid technique of both SBFL and
MBFL. It takes the average of suspiciousness scores obtained from
both AlloyFLco and AlloyFLmu and assign the score to the corre-
sponding AST node. If an AST node is not mutable and does not
have a suspiciousness score from AlloyFLmu , then the suspicious-
ness score from AlloyFLco is used. Finally, if multiple nodes have
the same suspiciousness score, then AlloyFL prioritizes the nodes
with less descendants.

AlloyFL does not rank all AST nodes because Alloy does not
have the notion of control �ow and many AST nodes are equally
suspicious. Additionally, previous studies have shown that users
are unlikely to inspect more than a few candidates [23, 45]. To
reduce the number of returned AST nodes, AlloyFL returns the
root node of the AST subtree that contains the highest number of
equally suspicious AST nodes compared to the root node. Many ex-
isting metrics, e.g. LIL [39], T-score [30], Expense [19], EXAM [64]
and AWE [7], may not capture the proximity between the returned
AST nodes and the faulty nodes. For example, AlloyFL may return
a suspicious node that is the direct parent of a faulty node but the
faulty node itself does not appear in the ranked list. In this case
none of the above metrics re�ect the closeness between the re-
turned suspicious node and the faulty node. In this paper,we follow
the spirit of the nearest neighbor distance metric (NN ) in program
dependence graphs (PDG) [48] to quantitatively measure the close-
ness between the ranked nodes and the faulty nodes. Speci�cally,
we view the Alloy AST as PDG and adapt the NN distance metric
on the AST. We design 3 distance metrics following NN and use
the existing top-k metrics [65, 69], i.e. the number of faulty nodes
in the top k returned nodes, to evaluate AlloyFL. The results on
38 real faults and 9000 mutant faults show that AlloyFLmu and
AlloyFLhy are signi�cantly more accurate than the baseline tech-
niques, i.e. AlloyFLco , AlloyFLun and AlloyFLsu .

This paper makes the following contributions:

• We propose, AlloyFL, the �rst set of AST node level FL tech-
niques for Alloy that leverage multiple tests.
• We follow the spirit of an existing nearest neighbor distancemet-
ric [48] and de�ne 3 new distance metrics at the AST level to
measure the accuracy of AlloyFL.

• We evaluate AlloyFL using 38 real faults and 9000 mutant faults
derived from 18 existing models. The subject models all con-
tain 1 or more faults and our experimental results show that
MBFL techniques are signi�cantly more accurate than the base-
line SBFL techniques and SAT-based techniques.
• We plan to release AlloyFL as well as 38 real faults and 9000
mutant faults so researchers can use and reproduce our results.

2 EXAMPLE MODEL
This section presents a real-world faulty Alloy model to introduce
key concepts for AlloyFL. We brie�y describe the basics of Alloy
and AUnit as needed.

Figure 1a shows a faulty Alloymodel of the well-known "farmer
river-crossing" puzzle where the goal is to allow a farmer to trans-
port a chicken, fox, and grain from one river bank to the other on
a boat. However, the farmer can only carry one belonging on the
boat at a time, and if left unattended, the fox will eat the chicken
and the chicken will eat the grain. The model contains a model-
ing error which prevents the "eating" from happening while the
farmer is away, and instead requires the farmer to be back. Fig-
ure 1b shows an AUnit test that fails.

The signature (sig) declaration, "sig Object", introduces a set
of object atoms; abstract means the Object signature cannot have
atoms of its own type, but its subsignatures can have atoms. eats is
a relation thatmaps an Object atom to a set of Object atoms. Farmer,
Fox, Chicken and Grain are declared as singleton subsignatures of
Object. The fact eating states that the fox eats the chicken and
the chicken eats the grain. Note that any fact in Alloy is enforced
to be true. Signature State models the objects in both the near
and far banks after every farmer’s cross-river movement. The open
declaration linearly orders the State atoms. The fact initialState
constrains that initially everything is on the near bank and noth-
ing is on the far bank. The predicate crossRiver de�nes the river
crossing action. It takes four parameters (2 pairs of pre and post
states): the set of objects on the bank where the farmer starts at
(pre-state:from and post-state:from’) and crosses to (pre-state:to
and post-state:to’) before and after the cross-river movement. The
predicate states that either the farmer takes nothing or the farmer
takes one item not including himself to the other side of the river.
For the case when the farmer takes nothing the model uses a con-
junction formula: "from’ = from - Farmer && to’ = to - to.eats

+ Farmer" which means that after the farmer crosses the river from
bank, say A to bank, say B, the farmer is removed from the set
of objects on bank A and added to the set of objects on bank B.
When moving, the objects on bank B could change because an
object may eat another object before the farmer’s arrival. For the
case when the farmer takes an item, themodel uses an existentially
quanti�ed formula: "some item: from - Farmer | ...". The fact
stateTransition states that for every two consecutive states, if the
farmer is on the near bank in the pre-state, then he would cross
the river to the far bank. Otherwise, he would cross the river from
the far bank to the near bank. The predicate solvePuzzle restricts
that in the last state, everything should be on the far bank.

The faults are in the predicate crossRiver and are colored in or-
ange. The predicate considers eating to happen in "to" instead of
"from", which stops the farmer from leaving and letting the fox eat
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open util/ordering[State] as ord

abstract sig Object { eats: set Object }

one sig Farmer, Fox, Chicken, Grain extends Object {}

fact eating {

eats = Fox->Chicken + Chicken->Grain }

sig State { near,far: set Object }

fact initialState {

let s0 = ord/first | s0.near = Object && no s0.far }

pred crossRiver[from,from',to,to': set Object] {

(from' = from - Farmer && to' = to - to.eats + Farmer )

|| (some item: from - Farmer {

from' = from - Farmer - item && to' = to - to.eats + Farmer + item }) }

fact stateTransition {

all s: State, s': ord/next[s] {

Farmer in s.near => crossRiver[s.near, s'.near, s.far, s'.far]

else crossRiver[s.far, s'.far, s.near, s'.near] }

}

pred solvePuzzle { ord/last.far = Object }

(a) Faulty Farmer Model in Alloy 4.1 release

pred test1 {

some disj F0: Farmer | some disj X0: Fox |

some disj C0: Chicken | some disj G0: Grain |

some disj F0, X0, C0, G0: Object |

some disj S0, S1, S2, S3: State {

Farmer = F0

Fox = X0

Chicken = C0

Grain = G0

Object = F0 + X0 + C0 + G0

eats = X0->C0 + C0->G0

State = S0 + S1 + S2 + S3

near = S0->F0 + S0->X0 + S0->C0 + S0->G0 + S1->X0 + S2->F0 + S2->X0 + S3->X0

far = S1->F0 + S1->G0 + S2->G0 + S3->F0 + S3->G0

ord/first = S0

ord/next = S0->S1 + S1->S2 + S2->S3

crossRiver[F0 + X0 + C0 + G0, C0, none, F0 + X0] } }

run test1 for 4 expect 1

// More tests ...

(b) MuAlloy Generated Tests

Figure 1: Faulty Farmer Example and MuAlloy Generated Tests.

the chicken without the farmer coming back. The correct formula
should be: "from’ = from - Farmer - from’.eats && to’ = to

+ Farmer" and "from’ = from - Farmer - item - from’.eats

&& to’ = to + Farmer + item". This modeling error is intro-
duced in Alloy release 4.1 and �xed in release 4.2. An automatically
generated AUnit test that reveals the fault is shown in Figure 1b.
Predicate test1 encodes the valuation of each signature type in the
farmer model in Figure 1a. Each relation is assigned some atoms,
e.g. Farmer contains a single atom F0. The invocation of crossRiver
predicate states that all objects are on the near bank in the pre-state
and nothing (none) is on the far bank. In the post-state (after the
farmer crosses the river with the fox), only the chicken is left on
the near bank (because the chicken is supposed to eat the grain)
and both the farmer and the fox are on the far bank. The com-
mand "run test for 4 expect 1" runs the test with a scope of at
most 4 atoms for each signature type and expects the existence of
a solution. However, the faulty farmer model does not have any so-
lution with respect to this test, which contradicts the expectation
and causes a test failure.

We use a test suite that contains some failing tests (e.g. test1)
to locate the fault using AlloyFL. AlloyFLco assigns all Alloy para-
graphs equal suspiciousness scores (except the fact solvePuzzle as
it is never covered by any failing tests) because all tests implicitly
invoke facts and the stateTransition fact invokes the crossRiver

predicate. The most suspicious AST nodes are highlighted in red
(including yellow and green) in Figure 1a. Both AlloyFLun and
AlloyFLsu report the entire body of the crossRiver predicate as
the most suspicious AST node which is highlighted in yellow (in-
cluding green) . AlloyFLmu and AlloyFLhy report the node "from’
= from - Farmer - item && to’ = to - to.eats + Farmer + item" as
themost suspicious node becausemutating the root node &&makes
the most failing tests pass compared to mutating other AST nodes.
Thus, the most suspicious node && and its descendants are high-
lighted in green.We can see that themost suspicious node returned
by AlloyFLmu and AlloyFLhy is closest to the faulty node. Thus,
the MBFL techniques are most accurate among all techniques in
this example.

Name Formula

Tarantula [19]
f ailed (e )

total f ailed
f ailed (e )

total f ailed +
passed (e )

totalpassed

Ochiai [2] f ailed (e )√
total f ailed×(f ailed (e )+passed (e ))

Op2 [40] f ailed (e ) − passed (e )
totalpassed+1

Barinel [3] 1 − passed (e )
passed (e )+f ailed (e )

DStar [63] f ailed (e )∗
passed (e )+(total f ailed−f ailed (e ))

totalfailed: the total number of test cases that failed.
totalpassed: the total number of test cases that pass.
failed(e): the number of failed test cases that cover or kill e.
passed(e): the number of passed test cases that cover or kill e.

Figure 2: Suspiciousness Formulas in AlloyFL.

3 TECHNIQUE
In this section, we describe the formulas to compute suspicious-
ness scores (Section 3.1) and all techniques in AlloyFL (Section 3.2).

3.1 Suspiciousness Formulas
Figure 2 shows the formulas that AlloyFLco , AlloyFLmu andAlloyFLhy
support to compute the suspiciousness score. For AlloyFLco , the
code elements (e) are AST nodes. For AlloyFLmu and AlloyFLhy ,
killed mutants are treated as covered code elements while live mu-
tants are treated as uncovered code elements. totalfailed and total-
passed are the number of test cases which failed and passed w.r.t.
the original model. failed(e) and passed(e) are the number of test
cases which failed and passed that cover the AST node or kill the
mutant e.

3.2 AlloyFL
AlloyFL locates faults at the AST node granularity, which allows it
to locate faulty expressions or formulas that are hierarchical. We
present AlloyFLco as the �rst baseline technique and expect it to be
inaccurate because of the non-existence of control �ow in theAlloy
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(a) No hit (b) 1st hit (c) 2nd hit
Figure 3: Illustration of AlloyFLun and AlloyFLsu

language. We next present two baseline techniques, i.e. AlloyFLun
and AlloyFLsu which simulate what Alloy users can achieve by
using the unsat core. Finally, we present two more advanced tech-
niques AlloyFLmu and AlloyFLhy which de�ne a diverse set of mu-
tation operators and are shown to be more accurate.
AlloyFLco . Since Alloy does not have control-�ow and execution
traces, every code element in the same paragraph will be either ex-
ecuted together or not executed at all by a given test. This means
nodes declared in the same paragraph would share the same sus-
piciousness score. To implement AlloyFLco , we build a static an-
alyzer which analyzes the entire AST and binds a variable usage
or a predicate/function call to its signature or predicate/function
declaration. The static analyzer is used to �nd all Alloy paragraphs
transitively used by a test. However, the analyzer ignores depen-
dencies that are never used. For example, if a test uses a formula
"all s: S, t: T | some s && p[s]" where variable "t" is not used
and "p[s]" is a predicate invocation, then the test only depends
on signature "S" and predicate "p". By default, all facts are implic-
itly used, and all paragraphs transitively invoked in the facts and
the test predicate are covered by the test. AlloyFLco computes a
suspiciousness score for each Alloy paragraph based on the num-
ber of passing/failing tests that cover it and a formula shown in
Figure 2. Finally, all paragraphs are ranked in descending order of
suspiciousness score. In case of a tie, the paragraph which has a
smaller number of descendants is prioritized.
AlloyFLun . To implement AlloyFLun , we modify the standard Al-
loy toolset to return AST nodes when the MiniSat solver with un-
sat core is used [58, 59]. We con�gure the solver such that it is
guaranteed to return a local minimum core and all formulas are
fully expanded (pushing negations in as much as possible, remov-
ing existential quanti�ers using skolemization and expanding uni-
versal quanti�ers given the bounds on the signatures) to make the
returned core as �ne-grained as possible. AlloyFLun constructs a
hit-map for the entire AST and every node in the AST has a count
initially set to 0. If a node is returned by the unsat core, then the
count for the node itself and each of its descendant increases by
1. To illustrate, Figure 3 shows how the hit-map is built. Initially,
each node has a count of 0 (Figure 3(a)). In Figure 3(b), a node de-
noted by the square is returned by the unsat core and AlloyFLun
increases the counts of all the a�ected descendants. This process
applies for all the subsequently returned nodes. For example, sup-
pose the square node in Figure 3(c) is returned next, the count of
each descendant is increased to 1 and the count of each previously
hit node is increased to 2. Note that a child node always has a count
greater than or equal to its parent’s count. AlloyFLun collects every
node whose count is greater than its parent’s count, e.g. the gray

Algorithm 1: Sat-Unsat Based Fault Localization
Input: Faulty Alloy model M, test suite T.
Output: Ranked list of suspicious AST nodes L.
L← [], L’ ← [], R = runTests(M, T )
foreach r ∈ R do

if r.isPassed() then continue
if r.isSatis�able() then L’.add(staticAnalyze(r))
else L’.add(unsatCore(r))

hitmap← <Node,Int>{} // Default value is 0
foreach nodes ∈ L’ do

foreach n ∈ nodes do
foreach d ∈ n.getDesc() do hitmap[d] += 1

foreach n ∈ hitmap do
if hitmap[n.getParent()] < hitmap[n] then L.add(n)

L.sortByHitAndSize(hitmap, reverse=True)
return L

nodes in Figure 3(c). AlloyFLun does not collect the root node as
we set the root’s parent to null. The collected nodes are ranked
in descending order of the corresponding count. In case of a tie,
nodes with a smaller number of descendants are prioritized. Note
that AlloyFLun only works for unsatis�able tests and cannot be
used if the model is strictly underconstrained, in which case no
unsatis�able failing test exists.
AlloyFLsu . Similar to AlloyFLun , AlloyFLsu also constructs a hit-
map for the entire AST. The di�erence is that AlloyFLsu uses nodes
reported from both unsatis�ble and satis�able failing tests. The
nodes reported from the unsatis�ble failing tests are the same as
for AlloyFLun , and the nodes reported from the satis�able failing
tests are from the static analyzer described for AlloyFLco . We give
the o�cial algorithm for AlloyFLsu in Algorithm 1. The algorithm
takes as input a faulty model M and a test suite T, and returns the
ranked list of the suspicious AST nodes L. L’ keeps the nodes re-
turned by the static analyzer and the unsat core. Both L and L’ are
initialized to empty lists. The algorithm collects the test results R
by invoking T over M. For each individual test result r, we skip if
r is passed. If r fails and is satis�able, then we collect all transi-
tively used nodes of the corresponding test by invoking the static
analyzer and add those nodes to L’. If r fails and is unsatis�able,
we collect all nodes returned by the unsat core and add them to L’.
Note that L’ is a list of sets of nodes. To sort the nodes, we �rst
initialize a hitmap as an empty map with a default value of 0. For
every set of nodes in L’, we increase the counts of each individual
node n in nodes and n’s descendants in the hitmap. Then, for each
node n whose count is bigger than its parent’s count, we add it to
L. Finally, we sort L in descending order of the number of times a
node is hit and prioritize nodes with a smaller number of descen-
dants in case of a tie. Algorithm 1 boils down to AlloyFLun if we
do not collect nodes when the test is satis�able. The intuition of
the algorithm is that nodes covered by more failing tests are more
likely to be faulty, and we use nodes returned by the unsat core if
possible because the core typically gives �ner grained nodes com-
pared to the static analyzer.
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Mutation Description
Operator
MOR Multiplicity Operator Replacement
QOR Quanti�er Operator Replacement
UOR Unary Operator Replacement
BOR Binary Operator Replacement
LOR Formula List Operator Replacement
UOI Unary Operator Insertion
UOD Unary Operator Deletion
LOD Logical Operand Deletion
PBD Paragraph Body Deletion
BOE Binary Operand Exchange
IEOE Imply-Else Operand Exchange

Figure 4: Mutation Operators.

AlloyFLmu . AlloyFLmu implements a wide variety of mutation op-
erators as shown in Figure 4. MOR mutates signature multiplicity,
e.g. "one sig" to "lone sig".QORmutates quanti�ers, e.g. some to all.
UOR, BOR and LOR de�ne operator replacement for unary, binary
and formula list operators, respectively. For example, UORmutates
a.ˆb to a.∗b; BOR mutates a<=>b to a=>b; and LOR mutates a||b to
a&&b. UOI inserts an unary operator before expressions, e.g. a.b
to a.∼b. UOD deletes an unary operator, e.g. a.ˆ∼b to a.ˆb. LOD
deletes an operand of a logical operator, e.g. a&&b to b. PBD deletes
the body of an Alloy paragraph. BOE exchanges operands for a
binary operator, e.g. a-b to b-a. IEOE exchanges the operands of
imply-else operation, e.g. "a => b else c" to "a => c else b".

Algorithm2 shows the details ofAlloyFLmu . The algorithm takes
as input a faulty Alloy model M, a test suite T, a set of mutation
operators Ops and a suspiciousness formula F. The output of the
algorithm is a ranked list of suspicious AST nodes (L) sorted in the
descending order of suspiciousness. Initially, L is set to an empty
list. S keeps the set of nodes covered by failing tests and is initial-
ized as an empty set. AlloyFLmu runs T against M and the results
are stored in R. n2s keeps the mapping from a node to its suspi-
ciousness score and it is initialized to an empty map with a default
value of 0. For each test result r in R, AlloyFLmu collects nodes and
their descendants covered by all failing tests. Then, AlloyFLmu it-
erates over each node n inM. If n is not covered by any failing test,
i.e. n < S, then AlloyFLmu skips it. For each n covered by the failing
tests, AlloyFLmu tries to apply every mutation operator in Ops to
the node, one at a time. If the mutation operator is not applicable,
it is skipped. Otherwise, AlloyFLmu mutatesM toM’. IfM’ leads to
a compilation error or is equivalent toM, then AlloyFLmu skipsM’.
Otherwise, AlloyFLmu runs T against the mutant M’ and collects
the result as R’. Function computeSusp computes the suspicious-
ness score of the mutant based on the formula F (Figure 2), and
test results R and R’. n2s keeps the maximum suspiciousness score
for each node n. After AlloyFLmu exhausts all mutation operators
that are applicable to n, n is added to L if its suspiciousness score
n2s[n] is greater than 0. Finally, after all AST nodes are exhausted,
L is sorted in descending order of suspiciousness and returned.
AlloyFLhy . Inspired by [47], AlloyFLhy assigns the average of sus-
piciousness scores calculated from both AlloyFLco and AlloyFLmu
to each AST node. If a node is not mutable, then AlloyFLhy uses the
same suspiciousness score asAlloyFLco . The intuition ofAlloyFLhy
is that AlloyFLmu sometimes perform badly for omission errors in

Algorithm 2: Mutation-Based Fault Localization
Input: Faulty Alloy model M, test suite T, mutation operators

Ops, suspiciousness formula F.
Output: Ranked list of suspicious AST nodes L.
L← [], S ← ∅, R = runTests(M, T )
n2s← <Node, Double>{} // Default value is 0.0
foreach r ∈ R do

if r.isPassed() then continue
foreach n ∈ staticAnalyze(r) do S.addAll(n.getDesc())

foreach n ∈ M.getNodes() do
if n < S then continue
foreach op ∈ Ops do

if !isApplicable(op, n) then continue
M’ = applyOp(op, n, M)
if isValid(M’) && !isEquivalent(M, M’) then

R’ = runTests(M’, T )
n2s[n] = max(n2s[n], computeSusp(F, R, R’))

if n2s[n] > 0 then L.add(n)
L.sortByScore(n2s, reverse=True)
return L

which case AlloyFLco performs relatively well. So AlloyFLhy is de-
signed to combine the strengths of both AlloyFLco and AlloyFLmu .

4 DISTANCE METRICS
To quantitatively measure how close the ranked nodes are to the
real faulty nodes, we follow the spirit of the nearest neighbor dis-
tance metric (NN ) in the program dependence graph (PDG) [48].
Since there is no notion of control dependences in declarative lan-
guages like Alloy, we view the Alloy AST as a PDG and adapt the
NN distance metric on the AST.

The original nearest neighbor distance metric quanti�es the per-
centage of nodes not needing inspection by the programmer using
the formula 1 − |S (R ) ||G | , where R = {n1,n2, ...,nk } is the top k re-
turned suspicious nodes (ni , 1 ≤ i ≤ k), S (R) is a sphere of all nodes
in the graph G such that the maximum distance of any node in S
to its closest suspicious node is smaller or equal to the minimum
distance of any suspicious node in R to its closest faulty node. Con-
ceptually, the user does a breadth-�rst search starting with the sus-
picious nodes, and increasing the distance until a defect is found.
The formula computes the percentage of nodes that need not be ex-
amined. However, previous studies show that: (1) the percentage of
nodes needing inspection is a better estimate than the percentage
of nodes not needing inspection [30, 64]; and (2) fault localization
techniques should focus on improving absolute rank rather than
percentage rank [45]. Therefore, we enhance the NN metric to use
the absolute number of nodes needing inspection (|S (R) |). Tech-
niques which give smaller distance metric values are more accu-
rate. We next describe 3 distance metrics used to evaluate AlloyFL.
Nearest Neighbor Up-Down (NNUD). NNUD sets R to thek most
suspicious nodes returned. It allows traversing upward (parent)
and downward (children) from the suspicious nodes in the AST un-
til a faulty node is found. Figure 5(a) shows the number of nodes
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(a) NNUD k = 2 (b) NND (c) NNDW
Figure 5: Distance Metrics Examples

one needs to explore from the top two suspicious nodes. The num-
ber in the circle represents the position of the node in the ranked
list, e.g. 1 means it ranks at the top. "F" shows the faulty node and
squares are irrelevant nodes. Circles colored in gray estimate the
nodes users need to inspect under NNUD metric with k = 2. Since
the minimum distance between any of the two suspicious nodes
and the faulty node is 1, all nodes that are reachable from the sus-
picious nodes within a distance of 1 are included. Thus, the metric
reports 6, i.e. the size of the gray nodes. NNUD assumes that the
programmer may look at the parent or children when inspecting
the top k suspicious nodes until a faulty node is found.
Nearest Neighbor Down (NND). NND does not allow traversing
upward from the suspicious node and it processes suspicious nodes
one at a time. Figure 5(b) shows how the metric works. From the
top 1 suspicious node, we can only traversing downward. Since no
faulty node is found, we mark all inspected nodes in gray. Then,
NND does a breadth-�rst search for the second top suspicious node.
In this case, a faulty node is found and all descendants within the
same distance, i.e.6 1, are included (3 circles colored in white), ex-
cluding already visited nodes colored in gray. Finally, NND reports
6, i.e. the size of the inspected nodes in circle. This metric assumes
that the users only inspect the children and never reinspect already
visited nodes. However, it is possible that the faulty nodes never
appear as the descendants of any suspicious node. To avoid this
scenario, we append the root node of the entire AST to the end of
the ranked suspicious node list returned by AlloyFL. This makes
sure that the metric always terminates with a faulty node found.
Nearest Neighbor Down Worst (NNDW). NNDW is similar to
NND (only allows traversing downward) except that it assumes
the user is unlucky and would inspect all non-faulty nodes before
�nding the fault. Figure 5(c) shows how the metric works. Inspect-
ing the top suspicious node is similar to NND, with the di�erence
occurring when inspecting the second top suspicious node. In this
case, we traverse downward and include all non-faulty nodes that
have not been visited before (white circles without the faulty node).
If a faulty node can be reached from the current suspicious node,
then we stop traversing and include all such faulty nodes. In this
case, two faulty nodes appear as the children of the second top
suspicious node, so we include both faulty nodes. Finally, NNDW
returns 10, i.e. all circle nodes. Similar to NND, we append the root
node of the entire AST to the end of the suspicious node list.

5 EVALUATION
We evaluate AlloyFL on 38 real faults collected from Alloy release
4.1, Amalgam [42] and graduate student solutions. These faulty
models contain various types of faults, including overconstraints,
underconstraints and amixture of both. In addition,We also extend

MuAlloywith the ability to generate higher ordermutants [18] and
evaluate AlloyFL on 9000 mutant models with exactly two mutant
faults. All experiments are performed on Ubuntu 16.04 LTS with
2.4GHz Intel Xeon CPU and 8 GB memory.

In this section, we address the following research questions for
both real faults and mutant faults:

• RQ1. What is the accuracy and time overhead of AlloyFL?
• RQ2. How does the suspiciousness formula a�ect AlloyFL?

5.1 Experiment Setting
Table 6 gives an overview for the 18 correct models used to gener-
ate mutant faults in the evaluation. Address book (addr), Dijkstra
mutex algorithm (dijkstra), farmer cross-river puzzle (farmer),
and Halmos handshake problem (hshake) are from Alloy’s exam-
ple set. Bad employee (bempl), grade book (grade), and other groups
(other) are Alloy translations of access-control speci�cations used
to benchmark Amalgam [42]. Binary tree (bt), colored tree (ctree),
full tree (fullTree), n-queens problem (nqueens) and singly-linked
list (sll) are from MuAlloy [61]. Array model (array), balanced bi-
nary search tree (bst), class diagram (cd), doubly-linked list (dll),
�nite state machine (fsm), and singly-linked list with sorting and
counting functions (stu) are homework questions we assigned to
graduate students.

Model ast 1st test 2nd scptot sat uns
addr 124 62 30 19 11 2.0k 3
array 68 51 36 14 22 1.3k 3
bst 175 167 110 50 60 21.1k 4

bempl 57 35 25 11 14 594 3
bt 61 74 34 20 14 3.4k 3
cd 52 46 24 9 15 1.6k 3

ctree 76 83 22 9 13 4.8k 3
dijkstra 410 183 120 44 76 19.7k 3

dll 92 81 48 22 26 3.6k 3
farmer 180 106 56 33 23 6.5k 4

fsm 85 63 15 3 12 3.0k 3
fullTree 85 100 44 24 20 6.5k 3
grade 77 44 41 23 18 978 3

hshake 136 107 33 10 23 10.3k 4
nqueens 110 101 75 36 39 5.3k 4

other 40 32 21 9 12 558 3
sll 38 31 22 14 8 574 3
stu 201 143 87 40 47 14.2k 3

Sum 2.1k 1.5k 843 390 453 106.0k

Figure 6: Correct Models Information.

For each subject,
Figure 6 shows the
number ofAST nodes
(ast), the number of
nonequivalent �rst-
order mutants (1st),
the number of tests
automatically gener-
ated (tot), the num-
ber of tests that are
expected to be satis-
�able (sat) and un-
satis�able (uns), the
number of nonequiv-
alent second-ordermu-
tants (2nd), and the
scope used to run
tests or equivalence
checks (scp). Prior
works shows that test
cases generated by
MuAlloy are e�ec-
tive in detecting real faults [56, 61], so we use MuAlloy to gen-
erate �rst-order non-equivalent mutants and the corresponding
tests that kill the mutants. We choose to generate second-order
mutants for the injected faults because (1) it quickly becomes time
consuming to generate mutants with an order higher than 2; and
(2) we want to enhance the credibility of our results by using mod-
els with more than 1 fault. We �lter out second-order mutants that
cannot be killed by the generated test suite to make sure at least
one fault can be revealed by the test suite. For real faults, we man-
ually inspect all of the faults and try to �x them without changing
the model structure. For example, if the model has a fault in the
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Model nnud1 nnud5 nnud10 nnd nndw
Co Un Su Mu Hy Co Un Su Mu Hy Co Un Su Mu Hy Co Un Su Mu Hy Co Un Su Mu Hy

addr1 78 24 24 1 1 78 57 48 5 5 73 57 61 10 10 50 10 10 1 1 57 15 15 1 1
arr1 51 20 20 14 14 51 56 56 38 34 51 61 61 38 49 32 61 61 8 8 41 64 64 15 15
arr2 29 1 1 1 1 26 2 2 4 5 26 2 2 4 8 22 1 1 1 1 52 3 3 3 3
bst1 32 32 32 5 5 58 55 55 5 5 65 55 55 6 10 5 5 5 5 5 5 5 5 5 5
bst2 3 3 40 4 1 15 15 53 14 5 28 15 23 10 10 2 2 64 7 1 6 6 76 7 5
bst3 19 68 68 1 1 47 34 32 5 5 62 34 40 10 10 6 14 14 1 1 9 17 17 1 1

bempl1 19 19 19 3 3 7 19 7 10 10 17 19 18 17 19 6 19 6 2 2 6 48 6 2 2
cd1 23 45 45 4 4 38 45 40 5 5 45 45 45 10 10 9 45 15 3 3 14 58 21 5 5
cd2 16 34 34 1 1 25 34 31 4 5 25 34 31 4 6 6 34 12 1 1 9 47 16 2 2

ctree1 18 18 18 39 39 5 18 9 56 56 8 18 17 21 21 4 18 5 61 47 4 67 5 71 51
dll1 6 4 4 4 4 30 16 16 19 14 33 16 16 19 26 4 3 3 3 3 7 6 6 6 6
dll2 6 4 4 1 1 30 16 14 5 5 36 16 22 10 10 4 3 3 1 1 8 7 7 1 1
dll3 1 31 31 2 2 5 26 38 5 5 7 26 22 10 10 1 11 11 2 2 1 13 13 2 2
dll4 6 4 4 1 1 30 16 16 4 5 33 16 16 4 8 4 3 3 1 1 8 7 7 1 1

farmer1 90 17 17 9 9 90 94 94 26 26 79 94 94 40 43 54 13 13 7 7 74 30 30 12 12
fsm1 50 4 4 1 1 49 19 15 5 5 50 19 25 10 10 71 3 3 1 1 91 7 7 1 1
fsm2 59 59 59 1 1 59 59 59 5 5 59 59 59 10 10 69 59 44 1 1 78 87 52 1 1

grade1 1 19 19 23 4 5 19 27 15 5 7 19 18 25 10 1 19 21 42 18 1 56 29 71 18
other1 27 27 27 28 28 28 27 28 5 5 17 27 23 7 10 14 27 15 8 8 18 60 19 9 9
stu1 7 4 4 11 11 21 18 18 8 9 41 18 18 24 19 4 3 3 5 5 12 11 11 11 11
stu2 9 4 4 4 4 26 18 10 5 5 47 18 26 10 10 4 3 3 4 4 6 11 11 5 5
stu3 3 1 1 3 3 9 4 5 13 11 24 4 10 10 10 2 1 1 2 2 10 4 4 10 10
stu4 7 4 4 11 11 21 18 18 8 9 42 18 18 24 19 4 3 3 5 5 12 11 11 11 11
stu5 7 4 4 11 11 21 18 18 8 9 42 18 18 24 19 4 3 3 5 5 12 11 11 11 11
stu6 32 10 10 1 1 38 45 45 5 5 9 45 45 7 10 35 5 5 1 1 51 7 7 1 1
stu7 3 1 1 1 1 9 5 5 5 5 24 5 10 10 10 2 1 1 1 1 10 7 7 7 7
stu8 7 4 4 4 4 22 19 19 23 9 47 19 19 23 21 4 3 3 3 3 7 6 6 6 6
stu9 9 66 66 1 1 36 66 66 5 5 47 66 60 10 10 4 66 86 1 1 5 166 98 1 1
stu10 7 4 4 11 11 22 19 19 8 9 47 19 19 25 19 4 3 3 5 5 12 11 11 11 11
stu11 23 8 8 11 11 41 38 38 10 10 70 38 38 27 19 7 6 6 9 9 17 16 16 15 15
stu12 7 90 90 11 11 31 29 17 5 5 46 29 27 10 10 4 11 11 3 3 13 20 20 3 3
stu13 45 116 116 1 1 63 116 116 5 5 98 116 102 10 10 11 116 28 1 1 18 204 39 1 1
stu14 34 9 9 1 1 40 46 46 5 5 10 46 46 7 10 40 5 5 1 1 52 7 7 1 1
stu15 7 4 4 11 11 21 22 22 8 9 43 22 22 24 19 4 3 3 5 5 12 11 11 11 11
stu16 1 32 32 60 1 5 32 38 56 5 10 32 25 64 10 1 32 47 63 1 1 94 55 94 1
stu17 32 4 4 11 11 38 22 22 11 9 9 22 22 9 19 55 3 3 5 5 69 11 11 11 11
stu18 74 17 17 4 4 53 4 5 5 5 76 4 10 10 10 12 8 8 9 9 14 10 10 9 9
stu19 3 1 1 1 1 12 5 5 5 5 24 9 10 10 10 2 1 1 1 1 4 1 1 3 3
Avg 22.4 21.5 22.4 8.2 6.1 31.7 30.8 30.8 11.4 9.1 38.9 31.1 31.4 15.9 14.6 14.9 16.5 14.0 7.5 4.7 21.7 32.2 19.6 11.5 7.1
Med 12.5 9.5 13.5 4.0 3.5 29.0 20.5 22.0 5.0 5.0 41.5 20.5 22.5 10.0 10.0 4.0 5.0 5.0 3.0 2.5 12.0 11.0 11.0 5.5 5.0
Std 23.0 26.4 26.4 11.8 7.8 20.2 24.1 24.6 12.6 9.6 22.7 24.2 22.2 11.9 8.9 19.9 23.9 19.7 14.5 7.8 24.4 43.9 21.6 20.4 8.7

Win 6 16 16 23 25 5 5 4 26 26 6 11 7 21 15 5 16 16 23 25 5 13 13 31 33

Figure 7: Distance Metrics for Real Faults.

quanti�er body, then we try to �x it without replacing the entire
quanti�er formula. The expressions/formulas modi�ed due to the
�x are labeled as faulty. For mutant faults, following standard prac-
tice [24, 25, 66] the mutated nodes are labeled as faulty. We collect
5 real faults from [42], 1 real fault from Alloy release 4.1 and 32 real
faults from graduate students. Additionally, we randomly sample
500 second-order mutants for each subject (9000 in total). Themod-
els we used to generate mutants contain all correct versions of the
real faults.

To evaluate AlloyFL, we use both distance metrics, i.e. NNUD
top1 (nnud1), NNUD top5 (nnud5), NNUD top10 (nnud10), NND(nnd)
and NNDW(nndw), and the traditional top-kmetric, i.e. number of
faults in top1, top5 and top10 suspicious nodes. We pick k up to 10
because [23] showed that 98% of practitioners consider a fault local-
ization technique to be useful only if the fault appears in the top-10
suspicious elements. Techniques with smaller values of distance
metrics and larger values of top-k metrics are more accurate.

5.2 RQ1: AlloyFL Accuracy and Time Overhead
Figure 7 shows the distance metric results, i.e. the number of AST
nodes to inspect before �nding the �rst fault, of AlloyFL for real
faults.We useOchiai formula forAlloyFLco , AlloyFLmu andAlloyFLhy .
The most accurate AlloyFL techniques w.r.t. each distance metric
are highlighted in bold. For each distance metric, we show the re-
sults of all AlloyFL techniques per real fault. Avg, Med and Std
show the average, median and standard deviation of the correspond-
ing distance metric for each AlloyFL technique over all real faults.
Win shows the number of times the corresponding AlloyFL tech-
nique gives the best distance metric result among all techniques.
Co,Un, Su,Mu andHy represent AlloyFLco , AlloyFLun , AlloyFLsu ,
AlloyFLmu andAlloyFLhy , respectively.We can see that AlloyFLhy
has the smallest distance metric result in terms of both Avg and
Med, indicating that AlloyFLhy is the most accurate technique in
terms of distance metrics for real faults. Moreover, AlloyFLhy is
more stable because it has the smallest Std. Out of 38 real faults,
AlloyFLhy is the most accurate technique in 25 times under NNUD
when k = 1, 25 times under NND, and 33 times under NNDW. For
NNUD when k = 5, 10, AlloyFLhy gives the best results in 26 and
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Model top1 top5 top10
Co Un Su Mu Hy Co Un Su Mu Hy Co Un Su Mu Hy

addr1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1
arr1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
arr2 0 1 1 1 1 0 1 1 1 1 0 1 1 1 1
bst1 0 0 0 0 0 0 0 0 1 1 0 0 0 1 1
bst2 0 0 0 0 1 0 0 0 0 1 0 0 0 1 1
bst3 0 0 0 1 1 0 0 0 2 1 0 0 0 5 1

bempl1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
cd1 0 0 0 0 0 0 0 0 2 2 0 0 0 3 2
cd2 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1

ctree1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0
dll1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
dll2 0 0 0 1 1 0 0 0 2 1 0 0 0 2 2
dll3 1 0 0 0 0 1 0 0 2 2 1 0 0 5 4
dll4 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1

farmer1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
fsm1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1
fsm2 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1

grade1 1 0 0 0 0 1 0 0 0 1 1 0 0 0 1
other1 0 0 0 0 0 0 0 0 1 1 0 0 0 2 2
stu1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
stu2 0 0 0 0 0 0 0 0 1 2 0 0 0 2 2
stu3 0 1 1 0 0 0 2 2 0 0 0 2 2 1 1
stu4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
stu5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
stu6 0 0 0 1 1 0 0 0 2 1 1 0 0 2 2
stu7 0 1 1 1 1 0 2 2 2 2 0 2 2 3 2
stu8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
stu9 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1
stu10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
stu11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
stu12 0 0 0 0 0 0 0 0 2 2 0 0 0 2 2
stu13 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1
stu14 0 0 0 1 1 0 0 0 2 1 1 0 0 2 1
stu15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
stu16 1 0 0 0 1 1 0 0 0 1 3 0 0 0 1
stu17 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0
stu18 0 0 0 0 0 0 1 1 1 1 0 1 1 1 1
stu19 0 1 1 1 1 0 2 2 2 2 0 2 2 3 3
Sum 3 4 4 14 16 4 8 8 30 30 9 8 8 44 37
Win 3 4 4 14 16 3 5 5 20 20 4 3 3 23 18

Figure 8: Top-k Metrics for Real Faults.

15 times, respective, which is close to AlloyFLmu . AlloyFLmu is
slightly less accurate than AlloyFLhy in terms of Avg and Med.
AlloyFLco , AlloyFLun and AlloyFLsu perform almost equally bad
in terms of Avg under NNUDmetrics, andAlloyFLun is even worse
than AlloyFLco and AlloyFLsu under NND and NNDW metrics.
All of AlloyFLco , AlloyFLun and AlloyFLsu are signi�cantly worse
than AlloyFLmu and AlloyFLhy . AlloyFLco is accurate for omis-
sion faultswhich happen at the level of paragraph bodies, e.g. when
users leave the entire predicate body empty (stu16) or miss some
conjunct/disjunct constraints at the body of a predicate (grade1).
On the contrary, AlloyFLmu is not accurate for omission errors be-
cause no mutation operator is applicable for an omitted faulty ex-
pression/formula. As a consequence, we design AlloyFLhy to lever-
age the bene�ts from both AlloyFLco and AlloyFLmu . AlloyFLun
prioritizes AST nodes that are highlighted the most number of
times by the unsat core across all unsatis�able failing tests and
is designed to be comparable or more accurate than using a sin-
gle unsatis�able failing test, i.e. the traditional way an Alloy user
would debug a faulty model using the unsat core. Our experiments
show that the unsat core’s accuracy in highlighting suspicious Al-
loy code is comparable to SBFL (AlloyFLco ) and signi�cantly worse
than MBFL (AlloyFLmu and AlloyFLhy ).

Figure 8 shows the traditional top-k metric results, i.e. the num-
ber of top k suspicious nodes that exactly match the faulty nodes,
of AlloyFL for real faults. We highlighted the most accurate Al-
loyFL techniques w.r.t. each top-k metric in bold. Sum shows the
total number of faults that exactlymatch the top-k suspicious nodes
for each AlloyFL technique over all real faults. Win shows the
number of times the corresponding AlloyFL technique gives the
best top-k metric result among all techniques. Similar to the ob-
servation for distance metrics, AlloyFLmu and AlloyFLhy perform
equally well and are signi�cantly more accurate than AlloyFLco ,
AlloyFLun and AlloyFLsu . AlloyFLhy locates 2 more faulty AST
nodes than AlloyFLmu for top-1 metric but it locates 7 less faulty
AST nodes than AlloyFLmu for top-10 metric. Both AlloyFLhy and
AlloyFLmu locate the same number (but di�erent set) of faulty
AST nodes in total for top-5 metric. AlloyFLco , AlloyFLun and
AlloyFLsu are comparable to each other and they locate more or
less the same number of faulty AST nodes for top-kmetrics (except
that AlloyFLun and AlloyFLsu locate 4more faultyAST nodes than
AlloyFLco for top-5 metric).

Figure 9 shows the distance metric results of AlloyFL for mu-
tant faults. We use Ochiai formula for AlloyFLco , AlloyFLmu and
AlloyFLhy . The most accurate techniques w.r.t. each distance met-
ric are highlighted in bold. Avg, Med and Std show the average,
median and standard deviation of the corresponding distance met-
ric for each AlloyFL technique over all 9000 mutant faults. Each
row shows the distance metric results for various AlloyFL tech-
niques on average over 500 second-ordermutant faults. AlloyFLmu
is the most accurate technique in terms of Avg, Med and Std un-
der the NNUD metrics (k = 1, 5, 10). AlloyFLhy is the most ac-
curate technique in terms of Avg, Med and Std under the NND
and NNDW metrics. Both AlloyFLmu and AlloyFLhy signi�cantly
outperformAlloyFLco , AlloyFLun and AlloyFLsu . AlloyFLco is the
least accurate technique in terms of Avg under NNUD metrics
(k = 1, 5, 10), and AlloyFLun is the least accurate technique under
NND and NNDW metrics.

Figure 10 shows the traditional top-k metric results of AlloyFL
for mutant faults. We highlighted the most accurate AlloyFL tech-
niques w.r.t. each top-k metric in bold. Sum shows the sum of
the average faults (over 500 mutants) that exactly match the top-
k suspicious nodes for each AlloyFL technique over all 18 unique
models. Win shows the number of times the corresponding Al-
loyFL technique gives the best top-k metric result among all tech-
niques. Similar to the observation for distance metrics, AlloyFLmu
and AlloyFLhy are equally accurate and signi�cantly better than
AlloyFLco , AlloyFLun and AlloyFLsu . AlloyFLco is the least accu-
rate technique for top-1 metric and AlloyFLun is the least accurate
technique for top-5 and top-10 metric.

Overall, both AlloyFLmu and AlloyFLhy are signi�cantly more
accurate than AlloyFLco , AlloyFLun and AlloyFLsu for both real
faults and mutant faults. AlloyFLsu is comparable or more accu-
rate than bothAlloyFLco andAlloyFLun . AlloyFLco andAlloyFLun
are the least accurate techniques and they are comparable to each
other. AlloyFLun gives better result for NNUD metrics and worse
result for NND and NNDWmetrics, compared to AlloyFLco . All of
AlloyFLco , AlloyFLun and AlloyFLsu are comparable in terms of
top-k metrics.
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Model nnud1 nnud5 nnud10 nnd nndw
Co Un Su Mu Hy Co Un Su Mu Hy Co Un Su Mu Hy Co Un Su Mu Hy Co Un Su Mu Hy

addr 32.3 32.0 32.0 5.5 10.0 30.4 31.9 30.5 7.4 13.2 27.5 28.6 28.4 10.4 12.7 21.1 21.0 19.7 5.6 12.5 22.9 38.4 31.7 8.3 13.7
array 19.4 7.0 7.5 2.4 3.2 18.1 8.1 8.8 5.7 6.1 18.8 8.1 9.6 7.7 9.6 14.7 6.9 5.9 2.7 2.9 21.0 16.4 7.8 5.1 4.2
bst 59.8 43.6 42.4 4.3 7.5 64.1 50.9 47.9 6.8 7.2 71.9 50.7 51.4 10.8 10.9 23.5 25.5 19.1 4.4 3.7 31.1 51.7 27.7 6.4 4.3

bempl 13.0 19.2 17.2 5.7 7.7 8.8 16.6 12.6 6.5 7.7 11.3 16.6 14.1 7.0 9.8 4.7 16.3 10.2 3.4 3.9 5.1 46.7 20.8 4.6 4.6
bt 23.8 12.9 12.3 3.1 3.5 28.3 17.0 17.6 5.8 5.7 28.3 17.0 17.8 8.8 9.4 12.5 9.4 8.8 2.7 2.5 17.5 16.5 12.8 3.8 3.3
cd 13.0 13.6 13.5 3.1 1.8 16.0 16.4 15.3 5.6 5.0 17.1 16.4 16.2 8.1 8.4 4.9 10.3 6.1 3.0 1.5 6.0 20.9 9.6 4.4 1.7

ctree 29.1 17.9 17.8 5.9 9.2 24.2 24.6 22.8 7.3 11.1 27.4 24.6 24.7 9.6 11.9 16.1 13.5 10.7 4.7 6.8 19.0 28.3 16.4 6.3 7.9
dijkstra 46.5 49.5 53.0 6.6 5.1 58.6 46.1 44.0 9.6 7.1 71.0 48.9 46.2 13.3 11.8 18.0 37.5 23.9 12.0 6.8 59.8 127.2 62.2 26.1 12.6

dll 22.8 18.5 19.1 4.2 3.4 27.7 28.3 26.5 5.8 5.3 30.2 28.3 28.6 8.9 10.0 10.4 14.2 12.5 3.4 2.1 13.0 33.9 19.5 4.8 2.3
farmer 45.3 29.2 29.1 13.1 15.2 41.7 40.5 39.2 14.4 19.4 38.2 40.0 39.2 16.6 21.5 27.5 24.0 23.1 12.1 10.0 35.1 67.9 49.2 31.3 12.7

fsm 27.9 16.1 15.9 11.1 10.2 24.2 21.1 20.2 12.3 12.9 25.5 22.0 22.4 13.9 15.7 21.6 11.8 10.8 10.7 8.4 27.3 28.2 16.5 16.8 10.0
fullTree 27.5 17.8 17.6 4.1 3.4 34.5 23.5 23.6 6.3 5.5 34.8 23.5 24.1 9.6 9.7 11.2 13.0 10.6 3.6 2.3 15.6 26.7 15.9 4.8 2.8
grade 12.1 19.3 18.4 2.2 1.9 10.7 14.6 12.8 4.8 5.3 13.4 14.6 14.3 6.6 8.8 5.3 12.9 10.0 2.5 1.9 7.6 48.0 31.1 3.3 2.1

hshake 38.7 25.8 26.6 6.1 7.0 38.2 33.7 32.5 8.2 8.3 40.5 35.1 35.1 11.8 13.1 24.6 21.7 18.2 6.6 5.2 35.8 46.2 26.4 11.2 6.5
nqueens 22.5 5.0 5.1 3.0 3.5 26.4 7.5 7.6 6.0 5.7 26.4 7.6 8.5 9.4 10.0 15.8 5.2 3.8 3.8 3.4 31.4 15.2 6.1 6.9 8.9

other 10.3 10.6 11.3 2.5 2.8 8.0 11.3 9.9 4.9 5.8 10.3 11.3 11.6 6.7 9.9 4.4 10.7 8.2 2.4 1.8 4.8 24.0 14.3 3.9 1.9
sll 9.1 11.9 11.0 2.3 2.5 11.7 13.6 13.3 4.5 5.0 11.7 13.6 13.3 6.2 7.3 4.9 11.5 9.2 2.1 2.1 7.6 22.6 17.2 2.5 2.5
stu 45.9 30.8 34.9 5.2 6.0 50.1 48.4 43.8 6.7 7.6 53.8 49.9 46.5 10.8 10.4 15.1 21.9 21.4 4.8 3.4 21.1 52.9 32.5 8.1 3.8
Avg 27.7 21.2 21.4 5.0 5.8 29.0 25.2 23.8 7.1 8.0 31.0 25.4 25.1 9.8 11.2 14.2 16.0 12.9 5.0 4.5 21.2 39.5 23.2 8.8 5.9
Med 25.6 18.2 17.7 4.2 4.3 27.1 22.3 21.5 6.4 6.6 27.4 22.8 23.2 9.5 10.0 14.9 13.3 10.6 3.7 3.4 20.0 31.1 18.4 5.7 4.2
Std 14.2 11.7 12.3 2.9 3.5 16.1 13.5 12.7 2.5 3.7 18.1 13.8 13.2 2.7 3.1 7.3 7.7 6.1 3.2 3.1 13.7 25.8 14.0 7.8 4.0

Win 0 0 0 12 6 0 0 0 12 6 0 1 0 15 2 0 0 0 4 14 0 0 1 3 14

Figure 9: Distance Metrics for Mutant Faults.

Model top1 top5 top10
Co Un Su Mu Hy Co Un Su Mu Hy Co Un Su Mu Hy

addr 0.1 0.1 0.1 0.8 0.6 0.5 0.2 0.3 1.4 0.9 0.5 0.2 0.3 1.5 1.4
array 0.1 0.6 0.6 0.8 0.8 0.4 0.8 0.9 1.2 1.3 0.4 0.8 0.9 1.5 1.6
bst 0.1 0.2 0.2 0.7 0.7 0.1 0.2 0.3 1.1 1.0 0.1 0.2 0.3 1.2 1.2

bempl 0.2 0.1 0.1 0.8 0.6 0.9 0.1 0.6 1.1 1.0 1.1 0.1 0.8 1.4 1.6
bt 0.1 0.4 0.4 0.7 0.7 0.1 0.4 0.4 1.1 1.1 0.1 0.4 0.4 1.3 1.3
cd 0.2 0.2 0.3 0.8 0.8 0.4 0.3 0.4 1.3 1.3 0.4 0.3 0.4 1.4 1.5

ctree 0.1 0.2 0.2 0.7 0.6 0.4 0.2 0.3 1.0 0.9 0.4 0.2 0.3 1.1 1.2
dijkstra 0.1 0.3 0.3 0.8 0.8 0.2 0.4 0.4 1.2 1.1 0.2 0.4 0.5 1.3 1.3

dll 0.1 0.1 0.2 0.7 0.7 0.2 0.1 0.2 1.3 1.2 0.3 0.1 0.2 1.4 1.5
farmer 0.1 0.1 0.1 0.6 0.5 0.3 0.2 0.3 0.8 0.7 0.4 0.2 0.3 0.9 1.0

fsm 0.1 0.3 0.3 0.4 0.4 0.3 0.3 0.4 0.8 0.8 0.3 0.3 0.4 0.9 1.0
fullTree 0.1 0.3 0.3 0.8 0.8 0.2 0.3 0.3 1.1 1.1 0.2 0.3 0.3 1.3 1.3
grade 0.2 0.1 0.2 0.9 0.9 0.7 0.2 0.3 1.4 1.4 0.8 0.2 0.4 1.5 1.7

hshake 0.1 0.2 0.2 0.7 0.7 0.2 0.2 0.3 1.0 1.0 0.3 0.2 0.3 1.0 1.1
nqueens 0.1 0.8 0.8 0.8 0.7 0.1 1.1 1.1 1.3 1.2 0.1 1.1 1.1 1.4 1.5

other 0.2 0.2 0.2 0.9 0.9 0.9 0.3 0.6 1.2 1.4 1.1 0.3 0.8 1.3 1.7
sll 0.3 0.0 0.1 0.8 0.7 0.5 0.0 0.1 1.4 1.4 0.5 0.0 0.1 1.5 1.5
stu 0.1 0.1 0.1 0.8 0.8 0.2 0.2 0.2 1.1 1.1 0.3 0.2 0.2 1.3 1.3

Sum 2.1 4.3 4.5 13.2 12.8 6.7 5.6 7.4 20.7 20.2 7.5 5.6 8.1 23.2 24.6
Win 0 1 1 10 7 0 0 0 11 8 0 0 0 3 15

Figure 10: Top-k Metrics for Mutant Faults.

MBFL techniques (e.g. AlloyFLmu and AlloyFLhy ) are the most
accurate fault localization techniques and are signi�cantly better
than SBFL techniques (e.g. AlloyFLco ) and SAT-based techniques
(e.g. AlloyFLun and AlloyFLsu ). Importantly, our result indicates
that AlloyFLmu and AlloyFLhy can more accurately highlight sus-
picious Alloy code compared to state-of-the-art unsat core.
Because of space limit, we cannot show the time overhead of

AlloyFL for individual faults. On average, AlloyFLco , AlloyFLun
and AlloyFLsu take less than 5 sec to run for both mutant faults
and real faults. AlloyFLmu takes on average 24.2 sec for mutant
faults and 33.7 sec for real faults. AlloyFLhy takes on average 38.0
sec for mutant faults and 67.0 sec for real faults. Both AlloyFLmu
and AlloyFLhy run the test for each mutation and AlloyFLhy has
the extra overhead to run AlloyFLco and compute the average sus-
piciousness scores, thus AlloyFLhy is slower than AlloyFLmu and
both of them are slower than AlloyFLco , AlloyFLun and AlloyFLsu .

Formula nnud1 nnud5 nnud10 nnd nndw top1 top5 top10
Co

Tarantula 25.6 32.8 38.8 15.0 20.9 0.1 0.2 0.3
Ochiai 22.4 31.7 38.9 14.9 21.7 0.1 0.1 0.2
Op2 28.8 35.7 38.9 23.6 32.1 0.0 0.1 0.2

Barinel 25.6 32.8 38.8 15.0 20.9 0.1 0.2 0.3
DStar 23.4 33.0 38.9 16.5 23.5 0.1 0.1 0.2

M
u

Tarantula 10.2 15.2 19.0 8.7 13.3 0.3 0.8 1.0
Ochiai 8.2 11.4 15.9 7.5 11.5 0.4 0.8 1.2
Op2 12.6 12.8 17.4 10.4 15.4 0.3 0.7 1.0

Barinel 10.2 15.2 19.0 8.7 13.3 0.3 0.8 1.0
DStar 8.2 11.4 16.3 7.8 12.2 0.3 0.7 1.1

H
y

Tarantula 9.9 12.4 14.5 5.9 8.1 0.4 0.8 1.1
Ochiai 6.1 9.1 14.6 4.7 7.1 0.4 0.8 1.0
Op2 26.2 22.5 19.2 21.8 26.7 0.2 0.3 0.7

Barinel 10.0 12.4 14.5 6.1 8.2 0.3 0.8 1.1
DStar 6.6 9.2 15.0 5.1 7.8 0.3 0.7 0.9

Figure 11: Formula Impact on AlloyFL for Real Faults.

MBFL techniques are signi�cantly slower than SBFL techniques
and SAT-based techniques. But since all techniques �nish under
2 min on average, the time overhead are reasonable.

5.3 RQ2: Suspiciousness Formula Impact
Since AlloyFLun and AlloyFLsu do not use suspiciousness formu-
las, we answer RQ2 only for AlloyFLco , AlloyFLmu and AlloyFLhy .

Figure 11 shows the average results for both distance metrics
and top-kmetrics under di�erent suspiciousness formulas forAlloyFLco ,
AlloyFLmu and AlloyFLhy over 38 real faults. The best results for
each metric among all suspiciousness formulas are highlighted in
bold.We can see that forAlloyFLco , themetric values do not change
much for various formulas and Op2 seems to be the worst formula.
For AlloyFLmu , Ochiai and DStar outperform other formulas and
Ochiai is slightly better than DStar. For AlloyFLhy , Ochiai seems
to be comparable or better than other formulas, followed by DStar.
Although Tarantula and Barinel are sometimes the best formulas
to use, the improvement is not signi�cant over Ochiai.
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Formula nnud1 nnud5 nnud10 nnd nndw top1 top5 top10

Co

Tarantula 29.2 29.0 31.0 16.3 23.1 0.1 0.4 0.4
Ochiai 27.7 29.0 31.0 14.2 21.2 0.1 0.4 0.4
Op2 29.9 29.5 31.2 15.8 23.0 0.1 0.4 0.4

Barinel 29.2 29.0 31.0 16.3 23.1 0.1 0.4 0.4
DStar 27.8 29.1 31.0 14.4 21.4 0.1 0.4 0.4

M
u

Tarantula 10.8 9.8 11.9 8.0 12.3 0.5 1.0 1.1
Ochiai 5.0 7.1 9.8 5.0 8.8 0.7 1.2 1.3
Op2 7.3 8.5 10.6 6.6 11.0 0.7 1.1 1.2

Barinel 10.8 9.8 11.9 8.0 12.3 0.5 1.0 1.1
DStar 5.4 7.5 9.9 5.3 9.2 0.7 1.1 1.3

H
y

Tarantula 10.8 9.8 12.8 7.1 8.4 0.5 1.1 1.3
Ochiai 5.8 8.0 11.2 4.5 5.9 0.7 1.1 1.4
Op2 17.0 13.5 12.7 11.8 14.6 0.4 0.9 1.3

Barinel 11.0 9.7 12.8 7.0 8.2 0.5 1.1 1.3
DStar 6.4 8.5 11.3 5.2 6.7 0.7 1.1 1.3

Figure 12: Formulas Impact on AlloyFL for Mutant Faults.

Figure 12 shows the average results for both distance metrics
and top-kmetrics under di�erent suspiciousness formulas forAlloyFLco ,
AlloyFLmu and AlloyFLhy over 9000 mutant faults. The best re-
sults for each metric among all suspiciousness formulas are high-
lighted in bold. For AlloyFLco , all formulas give similar results. For
AlloyFLmu and AlloyFLhy , Ochiai gives the best results among all
metrics and DStar gives the second best results.

Overall, the choice of formulas does not impact the accuracy
of AlloyFLco much for both real faults and mutant faults. Ochiai
seems to be the best formula to choose forAlloyFLmu andAlloyFLhy
(followed by DStar) for both real faults and mutant faults.
Suspiciousness formulas do not have much impact on the accu-
racy of SBFL techniques (e.g. AlloyFLco ). Ochiai formula gives the
best result of most metrics for MBFL techniques (e.g. AlloyFLmu
and AlloyFLhy ).

5.4 Threats to Validity
There exists several threats to the validity of our results. The real
faultymodelswe use in the experiment are limited in the sense that
most of them are written by graduate students. So the experiment
results may not generalize to faultymodels written by experienced
developers. However, we collect our subject faulty models to the
best of our ability. The AUnit tests (e.g., the test in Figure 1b) can
require some manual e�ort to create. In this paper, all tests are
automatically generated using MuAlloy [61] and the expected be-
havior (expect 0 or 1) of each test is automatically veri�ed using
the correct model. In practice, users need to manually specify the
expected behavior but no manually e�ort is needed to write test
predicates. We choose to use automatically generated test predi-
cates to evaluate AlloyFL because we did not �nd real faulty mod-
els with enough tests. So our result may not generalize tomanually
written tests. Additionally, although our distance metrics simulate
di�erent ways users may inspect code highlighted by AlloyFL, our
result may not generalize to new metrics.

6 RELATED WORK
AlloyFL presents the �rst set of automated fault localization tech-
niques that leverage multiple test formulas and we show that it is
able to highlight suspicious Alloy code more accurate compared

to existing unsat cores, with the help of automatically generated
AUnit tests.

Automated debugging of Alloy models can be traced back to
Alloy’s early days when highlighting unsat cores in unsatis�able
Alloy formulas was introduced [53]. Moreover, for satis�able for-
mulas, Alloy’s symmetry breaking indirectly supports debugging
by allowing the user to inspect fewer instances [12, 22, 43, 52].
More recent work on Amalgam allows the user to ask questions
of the form “why a tuple is or is not in a relation” for a chosen
instance [42]. While Amalgam provides a useful tool to aid de-
bugging by allowing the user to enhance their understanding of
the model by asking a series of questions, the restricted form of
the questions limits its e�ectiveness, e.g., the user cannot ask why
certain formulas hold or not, or why certain relations are empty.
AlloyFL provided the fault localization engine for ARepair [60],
one of the most recent automated debugging techniques for Al-
loy. Speci�cally, ARepair uses themutation-based fault localization
component AlloyFLmu .

A number of approaches assist users to write correct Alloy mod-
els. Montaghami and Rayside [37, 38] enable Alloy users to more
easily provide partial instances, which are tangible, expressive ex-
ample solutions that aid in writing correct, complete models. Sul-
livan et al. [57] follow the spirit of JUnit and introduce a test au-
tomation framework for Alloy by de�ning test case, test execution
and model coverage. AUnit has enabled further test automation
e�orts for Alloy, ranging from automated test generation to muta-
tion testing [56, 61].

While our focus in this paper is on declarativemodels written in
Alloy, fault localization for imperative languages is a well-studied
area. AlloyFL implements spectrum-based,mutation-based, and SAT-
based techniques. Among these, spectrum-based techniques [2, 4,
9, 11, 19, 20, 28, 47, 49], are the most widely studied; they focus on
collecting execution information, such as statements and methods.
Mutation-based fault localization techniques [39, 44] were intro-
duced more recently. They perform mutations on the faulty pro-
gram to study their impact on the test execution results and deter-
mine likely faulty locations. SAT-based techniques use either the
minimal satis�ability [13] or the negation of maximal satis�abil-
ity [21] to identify suspicious code.

A number of other techniques have also been proposed for fault
localization. Comparing program states between passing and fail-
ing tests has shown to be highly e�ective and was pioneered by
delta debugging [67, 68], which has led to various other approaches [8,
14, 70]. Statistic-based approaches [31, 64] focus on determining
the likelihood of di�erent portions of a program being faulty. Feedback-
based debugging [27, 29] is an interactive fault localization ap-
proach that utilizes execution traces and user feedback. Program
slicing [5, 6, 32] isolates relevant program elements that can trigger
the execution traces that lead to errors.

7 CONCLUSIONS
This paper introduces AlloyFL, the a set of fault localization tech-
niques for declarative Alloy models. AlloyFL is the �rst set of tech-
niques that utilize a suite of "test" formulas (either automatically
generated or manually written) that capture the expected proper-
ties of Alloy models and locates faults at the AST node granularity.
Moreover, we propose new distance metrics to evaluate AlloyFL
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(e.g. NNUD, NND and NNDW) and evaluate AlloyFL using a suite
of Alloy models including 38 real faults and 9000 mutant faults.
We show that our mutation-based techniques (e.g. AlloyFLmu and
AlloyFLhy ) together with Ochiai suspiciousness formula signi�-
cantly outperformother baseline techniques, including the spectrum-
based technique (e.g. AlloyFLco ) and the SAT-based techniques (e.g.
AlloyFLun and AlloyFLsu ).
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