
Characterizing and Understanding Software
Developer Networks in Security Development

Song Wang∗ and Nachi Nagappan$

∗York University; $Microsoft Research
wangsong@eecs.yorku.ca, nachin@microsoft.com

Abstract—To build secure software, developers often work to-
gether during software development and maintenance to find,
fix, and prevent security vulnerabilities. Examining the nature of
developer interactions during their security activities regarding
security introducing and fixing activities can provide insights for
improving current practices.

In this work, we conduct a large-scale empirical study to char-
acterize and understand developers’ interactions during their se-
curity activities regarding security introducing and fixing, which
involves more than 16K security fixing commits and over 28K
security introducing commits from nine large-scale open-source
software projects. For our analysis, we first examine whether
a project is a hero-centric project when assessing developers’
contribution in their security activities. Then we study the inter-
action patterns between developers, explore how the distribution
of the patterns changes over time, and study the impact of de-
velopers’ interactions on the quality of projects. In addition, we
also characterize the nature of developer interaction in security
activities in comparison to developer interaction in non-security
activities (i.e., introducing and fixing non-security bugs).

Among our findings we identify that: most of the experimental
projects are non hero-centric projects when evaluating develop-
ers’ contribution by using their security activities; there exist
common dominating interaction patterns across our experimental
projects; the distribution of interaction patterns has correlation
with the quality of software projects. We believe the findings from
this study can help developers understand how vulnerabilities
originate and fix under the interactions of software developers.

Index Terms—security analysis, social network analysis, devel-
oper network, developer interaction

I. INTRODUCTION

Building reliable and security software becomes more
and more challenging in modern software development. As
vulnerabilities can have catastrophic and irreversible impacts,
e.g., the recent Heartbleed (CVE-2014-0160) cost more than
US$500 million to the global economy [1].

Developing secure software is a team effort, developers
work together to find, fix, and prevent security vulnerabilities
and during which they form implicit collaborative developer
networks [2]–[18]. Understanding the structure of developer
interaction in security assurance practices can be helpful
for building more secure software. Along this line, many
developer network-related analyses have been proposed to
deal with problems in real-world security practice such as
vulnerabilities prediction [2], [7], exploring the impact of
human factors on security vulnerabilities [3], [5], [19], and
monitoring vulnerabilities [10], [12].

Fig. 1: An example developer security network.

Most of the existing approaches to exploring developer co-
operation in security activities construct developer social net-
work based on a single type of developer interaction, e.g.,
developers have co-changed/co-commented files that contain
security vulnerabilities [2], [3], [5], [7], [10], [12], [19]. How-
ever, security vulnerabilities are introduced and fixed by devel-
opers. During the life cycle of a security vulnerability, devel-
opers interact with each other via multiple ways. For example,
as shown in Figure 1, developers d1 and d2 introduced the
security vulnerability s1 via commit c1 and c2; s1 was later
fixed by developer d3 and d4 via commit f1 and f2. The
security vulnerability s2, was introduced via commit c3 and
fixed via commit f3 by the same developer d5. Examining the
nature of developer interactions during their security activities
including both introducing and fixing security vulnerabilities
can provide insights for improving current security practices.

In this paper, we propose the first study to characterize
and understand developers’ interactions in introducing and
fixing security vulnerabilities by analyzing the developer
networks built on their security activities. Our experiment
dataset involves more than 16K security fixing commits and
over 28K security introducing commits that ever appeared
in nine large-scale open-source software projects including
operation systems, compilers, PHP interpreter, Android
platform, and JavaScript engine, etc. For our analysis, we
first examine the heroism of software project when assessing
developers’ contribution in developers’ security activities.
As recent studies [20]–[25] showed that most software
projects are hero-centric projects where 80% or more of the
contributions (i.e., number of commits) are made by around

ar
X

iv
:1

90
7.

12
14

1v
1

 [
cs

.S
E

]
 2

8
Ju

l 2
01

9

20% of the developers. Then we explore whether there
exist dominating interaction patterns between developers
across our experimental projects, after that we study how
the distribution of developers’ interaction patterns changes in
different projects over time. Finally we explore the potential
impact of the developer interaction patterns on the quality
of software projects by measuring the correlation between
the changes of developer interactions and security density
(i.e., dividing the number of security vulnerability by the
number of submitted commits) in a given period of time.
In addition, we also characterize the nature of developer
interaction in security activities in comparison to developer
interaction in non-security activities (i.e., introducing and
fixing non-security bugs).

This paper makes the following contributions:
• We conduct the first study to analyze developer interac-

tions in security networks built on developers’ security
activities including both introducing and fixing security
vulnerabilities.

• We confirm that all experimental projects are hero-
centric projects when assessing developers’ contribution
with non-security activities. However, we also find
that most (eight out of nine) experimental projects are
non hero-centric projects when assessing developers’
contribution by using security activities.

• We show that there exist dominating interaction patterns
in both security and non-security activities across our
experimental projects, while the distribution of develop-
ers’ interaction in security and non-security activities are
significantly different.

• We examine that developers’ interaction is correlated with
the quality of a software project regarding security vul-
nerability density.

The rest of this paper is organized as follows. Section II
presents the background. Section III describes the methodol-
ogy of our approach. Section IV shows the experimental setup.
Section V presents the evaluation results. Section VI discusses
the threats to the validity of this work. Section VII presents
related studies. Section VIII concludes this paper.

II. BACKGROUND

A. Version-Control Systems

Version-control systems (VCS) are widely used in modern
software development to coordinate developers’ incremental
contributions to a common software system. A VCS stores
the entire source-code change history in the form of atomic
change sets, called commits, which contain information about
the changed code, the committers, and the timestamp of com-
mits, etc. Git is one of the most popular VCSs, which has
been adopted by more than 57M open-source projects and
used by more than 20M developers1 globally. Git’s unique
features make it especially appropriate for mining invaluable
information to better understand software process [26], [27].
For example, Git can track the history of lines as they are

1https://en.wikipedia.org/wiki/GitHub

modified. By using the git blame feature, we can track the
modification history of each line in a commit.

In this work, we collect software security history data from
nine projects that are maintained by Git to explore the de-
veloper interaction structures during their security activities,
details are showed in Section III.

B. Developer Security Network

Developers interactions during their security activities in-
cluding security fixing and introducing enable us to identify
collaborative relationships between developers. The developer
relationships can be described by a network, in which nodes
represent developers and edges represent interactions between
developers, in which nodes represent developers and edges
represent interactions between developers.

In this study, a network can be formalized as a graph G =
(V,E), where V is a set of vertices and E is a set of edges,
denoted by V (G) and E(G), respectively. An edge e ∈ E
is denoted as e = v, u, where v is the origin node and u is
the destination node from V . Graph edges are directed with
different meanings.

Different from most of existing developer social network
studies [28]–[65], in which v ∈ V is a developer, and e ∈ E
represents a particular form of developer interactions, e.g.,
fixed bugs together [40], [43], [48], [66], co-changed files [2],
[3], [5], [7], [10], [12], [19], [38], [44], worked on the same
project [46], or have communicated via email [50], etc., we
consider a v ∈ V in a developer security network may have
three different types, i.e., developer, security-fixing commit,
and security-introducing commit. Consequently, a e ∈ E has
also have three different types of meanings, i.e., a developer
introduces a security vulnerability via a security-introducing
commit, a developer fixes a security vulnerability via a
security-fixing commit, a security-fixing commit fixes the
vulnerability introduced by a security-introducing commit.

III. DATA COLLECTION METHODOLOGY

A. Subject Projects

We selected nine open-source projects from existing stud-
ies [23], [28], [67]–[69], listed in Table I, to explore developer
interaction in security activities. The projects vary by the fol-
lowing dimensions: (a) size (lines of source code from 20
KLOC to over 17 MLOC, number of developers from 604
to 19K), (b) age (days since first commit), (c) programming
language (C/C++, Java, PHP, and JavaScript), (d) application
domain (operating system, compiler, PHP interpreter, Android
platform, and JavaScript engine, etc.), and (e) VCS used (Git,
Subversion). For each project, we extracted its code repository,
and all the historical code commits hosted in GitHub on Nov.
5th 2018. Details of our approach to collecting the commits
that introduce or fix security vulnerabilities and non-security
bugs are as follows.

B. Finding Public Vulnerabilities

1) Collecting Security Vulnerability Fixing Commits:
Our data collection of security vulnerability fixing commits

https://en.wikipedia.org/wiki/GitHub

TABLE I: Experimental projects in this study. Dev is the number of developers. Fix is the number of commits that fixed
security or non-security issues. Intro is the number of commits that introduced security or non-security issues.

Project Language LastCommitDate #Commit #Dev #CVE Security Vulnerability Non-Security Bugs
Fix Intro Dev Fix Intro Dev

FFmpeg C/C++ 2018/11/05 92,349 1,713 308 810 1,007 199 (11.62%) 16,024 26,592 1,138 (66.43%)
Freebsd C/C++ 2018/11/05 255,969 766 341 2,640 4,086 386 (50.39%) 35,776 66,490 604 (78.85%)
Gcc C/C++ 2018/11/05 165,475 604 6 575 1,341 200 (33.11%) 15,836 29,975 506 (83.77%)
Nodejs JS 2018/11/05 24,401 2,640 48 252 402 105 (3.98%) 4,792 10,571 1,302 (49.32%)
Panda C/C++ 2018/11/05 52,580 1,220 24 557 1,072 230 (18.85%) 9,133 17,125 838 (68.69%)
Php C/C++ 2018/11/05 109,461 911 588 979 1,292 165 (18.11%) 25,610 48,296 663 (72.78%)
Qemu C/C++ 2018/11/05 64,840 1,459 261 789 1,459 263 (18.03%) 12,139 23,954 1,023 (70.12%)
Linux C/C++ 2018/11/05 796,003 19,362 2,207 10,316 17,126 3,686 (19.04%) 174,687 313,804 14,046 (72.54%)
Android Java 2018/11/05 377,801 2,938 1,763 2,439 2,521 496 (16.88%) 70,157 128,893 2,132 (72.57%)

starts from the National Vulnerability Database (NVD) [70],
a database provided by the U.S. National Institute of
Standards and Technology (NIST) with information
pertaining to publicly disclosed software vulnerabilities.
NVD contains entries for each publicly released vulnerability.
These vulnerabilities are identified by CVE (Common
Vulnerabilities and Exposures) IDs [71]. When security
researchers or vendors identify a vulnerability, they can
request a CVE Numbering Authority to assign a CVE ID
to it. Upon public release of the vulnerability information,
the summarization the vulnerability, links to relevant external
references (such as security fixing commits and issue reports),
list of the affected software, etc., will be added to the CVEs.
We first extracted all the public CVEs of each experimental
subject on Nov. 5th 2018. We then crawled the Git commit
links to identify and clone the corresponding Git source code
repositories and collected security fixes using the commit
hashes in the links. Note that, we also find that some of
the external references only contain the bug/issue report
links, e.g., the external reference of security vulnerability
CVE-2018-146092 does not contain the security fixing
commits instead it shows the bug report ID3. For these
security vulnerabilities, we used the fixing commits of these
bugs as the security fixing commits. To collect the fixing
commits of these bugs, we consider commits whose commit
messages contain the bug report ID as the fixing commits by
following existing studies [69], [72].

As reported in existing studies [73], [74], not all security
vulnerability have CVE identifiers, around 53% of vulnerabil-
ities in open source libraries are not disclosed publicly with
CVEs [75], [76]. To cover all possible vulnerabilities, we used
the heuristical approaches proposed by Zhou et al. [75], to
identify the security fixing commits. Specifically, we used the
regular expression rules listed in their Table 1, which included
possible expressions and keywords related to security issues.

2) Grouping Security Fixing Commits: In the above section
we have described how to collect security fixing commits. We
found that some of the security fixing commits are made for
fixing the same security vulnerability. For example, to fix se-
curity vulnerability CVE-2018-10883 4, developers have made

2https://nvd.nist.gov/vuln/detail/CVE-2018-14609
3https://bugzilla.kernel.org/show bug.cgi?id=199833
4https://nvd.nist.gov/vuln/detail/CVE-2018-10883

Algorithm 1 Grouping fixing commits algorithm

Require:
Fixing commit set C;
Query fixing commit q;
Commit message similarity threshold thress;
Fixing location overlap rate threshold modifo;

Ensure:
A list of grouped fixing commit D;

1: for each commit r in C and q do
2: Extract commit messages and compute the similarity messages;
3: Extract modified files and compute the overlap rate modifo;
4: if messages > thress and modifo > 0 then
5: put r in D
6: end if
7: end for

two commits. Identifying fixing commits that belong to the
same security vulnerability could provide us valuable infor-
mation about how vulnerabilities are fixed through developer
interactions. To group fixing commits, first, for fixing com-
mits that have CVE identifiers in their commit messages, we
consider fixing commits that contain the same CVE identifiers
belong to the same security vulnerabilities. Second, for fixing
commits that do not have CVE identifiers in their commit
messages, we propose a heuristical algorithm to group them,
which is described in Algorithm 1. Specifically, given two fix-
ing commits, we group them together if the similarity of their
commit messages is larger than a threshold (i.e., messages)
and the modification location has overlaps. Following exist-
ing study [77]–[80], we use the Cosine similarity to measure
the similarity between two commit messages. We employ tf-
idf [81], stop words removal (e.g., “is”, “are”, and “in” since
these words are used in most commit messages and thus have
little discriminative power) and stemming (e.g., “groups” and
“grouping” are reduced to “group”.) to extract string vectors
from the commit messages. For the threshold thress, we as-
sume the ratios of collaborative fixing commits (i.e., fixing the
same vulnerability) are similar between commits which have
CVEs and commits that do not have CVEs. Thus for each
project, we use the ratio of the collaborative fixing commits
among the fixing commits that have CVEs to specify its thresh-
old thress. In addition, we set the maximum interval between
two collaborative fixing commits as six months, which is the
typic length of fixing a security vulnerability [82].

https://nvd.nist.gov/vuln/detail/CVE-2018-14609
https://bugzilla.kernel.org/show_bug.cgi?id=199833

FFmpeg Freebsd Gcc Nodejs Panda Php Qemu Linux Android

0

5

10

15

Sec
Non-Sec

Fig. 2: The ratios (in percentage) of collaborative fixing commits
grouped from security fixing and non-security fixing commits.

3) Collecting Security Vulnerability Introducing Commits:
With the above security-fixing commits, we further identify
the security-introducing commits by using a blame technique
provided by a Version Control System (VCS), e.g., git or SZZ
algorithm [72]. Following existing studies [83]–[86], we as-
sume the deleted lines in a security-fixing commit are related
to the root cause and considered as faulty lines. The most
recent commit that introduced the faulty line is considered a
security-introducing commit.

Note that, different from security-fixing commits, we did
not group security-introducing commits. This is because the
security-introducing commits are identified by security-fixing
commits. Since we have already grouped security-fixing com-
mits, these security-introducing commits are grouped accord-
ingly. The details of the security-introducing commits as listed
in Table I. The average number of security-introducing com-
mits of a security-fixing commit ranges from 1.03 (Android)
to 2.41 (Nodejs).

C. Finding Non-Security Bugs

In addition, to explore the difference of developer inter-
action structures between developers’ security activities and
non-security activities, we also collect general bugs (i.e., non-
security).

Typically software bugs are discovered and reported to an
issue tracking system such as Bugzilla and later on fixed by
the developers. A bug report usually records the description,
the opening and fixing date, type (bug, enhancement, feature,
etc.), etc. We consider a bug report in the Bugzilla database
that is labelled as a “bug” to be a general bug. However, not
all the projects have well-maintained bug tracking systems, in
this work, following existing studies [84]–[86] if a projects bug
tracking system is not well maintained and linked, we consider
changes whose commit messages contain the word “fix” and
“bug” as bug-fixing commits. If a projects bug tracking system
is well maintained and linked, we consider commits whose
commit messages contain a bug report ID as bug-fixing com-
mits. For each of the bug-fixing commit, we adopt the same
approach as we used to identify security-introducing commits
in Section III-B3. Note that, if any of the non-security fixing
commit appears in the security-fixing commit dataset, we will
remove it from the non-security fixing commit dataset. The
details of non-security fixing commits and their corresponding
non-security introducing commits are showed in Table I. The
average number of non-security introducing commits of a non-
security fixing commit ranges from 1.66 (FFmpeg) to 2.21
(Nodejs).

FFmpeg Freebsd Gcc Nodejs Panda Php Qemu Linux Android

0

2

4

6

8

Fig. 3: The overlap rate (in percentage) of non-security introducing
commits and security introducing commits.

In Section III-B2, we group security-fixing commits that fix
the same security vulnerability. For non-security bugs, we also
found the same phenomenon, i.e., some of the non-security
fixing commits are made for fixing the same non-security
bugs. For grouping these non-security fixing commits, we
reuse Algorithm 1. As described in In Section III-B2,
for grouping security fixing commits, we use the ratio of
collaborative fixing commits (i.e., fix the same security
vulnerability) that have CVE identifiers to set the threshold
thress of a specific project. However, for non-security fixing
commits, not all projects have well-maintained bug tracking
systems, for some projects (e.g., Linux), we cannot use bug
report ID to specify thress. Thus, we randomly pick and
manually check 100 pairs of collaborative fixing commits on
each the subject project, we use the average Cosine similarity
value to set thress in Algorithm 1 to group non-security
fixing commits.

Figure 2 shows the ratios of collaborative fixing commits
in the security fixing and non-security fixing commits. As
we can see from the table, the ratios in non-security fixing
commits are slightly higher than that of security fixing com-
mits in most projects. On average, the ratio for security fixing
commits is 7.2% and the ratio for non-security fixing commits
is 8.3%, which is consistent with the finding from an existing
study [87], that 9% of bug fixes were bad across three Java
projects.

As we mentioned above, we have removed the non-security
fixing commits from the security fixing commit dataset, while
for non-security introducing commits and security introducing
commits, we do not handle the overlaps, since it’s possible that
a security vulnerability and non-security bug can be introduced
by the same introducing commit. In this work, we use overlap
rate to measure the overlap level between two datasets. We
define the overlap rate between datasets A and B as A∩B

A∪B .
Figure 3 shows the overlap rates of non-security introducing
commits and security introducing commits in the experimental
projects. As we can see from the figure, the overlap rates of
all experimental projects are lower than 10%, which suggests
that security vulnerability and non-security bugs usually have
different introducing commits.

D. Identifying Distinct Developers

To build the developer security network, we need to ob-
tain the developer information of security-fixing and security-
introducing commits. In Git, for every pushed commit, Git
maintains the user who did the commit, i.e., committer. Git

computes the committer out of the Git configuration parame-
ters ‘user.name’ and ‘user.email’. Thus, by retrieving a com-
mit, we can easily obtain its committer information. However,
Git also allows users to change their profiles, which introduces
the alias issue of developers in mining open-source [50], [88],
i.e., a developer may have different emails/names. To solve this
challenge, we use the aliases unmasking algorithms proposed
in [50] to identify distinct developers.

In total, we have around 45K distinct developers from the
nine experimental projects, details are listed in Table I. Over-
all, the percentage of developer that involved in security ac-
tivities ranges from 3.98% to 50.39%, while the percentage of
developer that involved in non-security activities ranges from
49.32% to 83.77%.

IV. RESEARCH QUESTION

Our experimental study is designed to answer the following
research questions.

RQ1. What are the distributions of developers in security
and non-security activities?

Software security vulnerability and bugs are introduced and
fixed by developers, in this RQ, we aim to explore the basic
distribution of developers in security and non-security activ-
ities regarding fixing and introducing. For example, what is
the overlap rate between developers that have ever involved
in security activities and developers that have ever involved in
non-security activities? What is the overlap rate between de-
velopers that have fixed security vulnerabilities and developers
that have introduced security vulnerabilities?

RQ2. How common are hero-centric projects regarding
software security activities?

Recent studies [20]–[25] show that most software projects
are hero-centric projects where 80% or more of the contri-
butions (e.g., the number of commits) are made by the 20%
of the developers. While the above studies assess developers’
contribution from broad aspects, e.g., Agrawal et al. [20] used
the number of commits made by each developer to represent its
contribution to a project. Majumder et al. [21] built a social
interaction graph from developers’ communication and used
the node degree to represent a developer’s contribution. Most
of existing studies explore the heroism of projects from devel-
opers’ code contribution and social communication perspec-
tives. In this RQ, we aim to explore the heroism of a project
when assessing developers’ contribution by using a specific
type of commits, e.g., security fixing, security introducing,
non-security fixing, non-security introducing.

RQ3. What are the common interaction patterns be-
tween two developers in security activities?

Developers interact with each other during the development
of a software project. In software development, the social and
organizational aspects have an impact on the individual and
collective performance of the developers [89]. Along this line,
in this RQ, we aim to explore the common interaction struc-
tures among developers during their security and activities

regarding security fixing and security introducing across dif-
ferent projects, which we believe can help us gain insight into
distinct characteristics of developers’ security activities.

RQ4. Are the distributions of developer interaction pat-
terns in security and non-security activities different?

In this RQ, we aim to characterize the nature of developer
interaction in security vulnerabilities in comparison to other
non-security bugs. Specifically, we compare the distributions
of interaction structures among developers in security vulner-
abilities and non-security bugs.

RQ5. How do interaction structures among developers
evolve over time?

Software team organization evolves over time [40], [41], i.e.,
developers may leave a project and new developers may join
during the life cycle of a project, which causes the evolution
of developer community. Along this line, in this RQ, we aim
to explore whether the interaction structure among developers
changes over time and how it evolves during the life cycle of
a project.

RQ6. Does the change of interaction structures have an
impact on the quality of software?

Developer social network and its evolution information have
been examined could be used to predict new vulnerabilities
and bugs [2], [7]. Along this line, in this RQ, we investigate
whether the change of interaction structure has a correlation
with the quality of software regarding the density of security
vulnerabilities.

V. ANALYSIS APPROACH AND RESULTS

A. RQ1: Distributions of Developers in Security and Non-
Security Activities

To answer this RQ, we obtain unique developers from dif-
ferent activities, i.e., fixing security vulnerabilities, introducing
security vulnerabilities, fixing non-security bugs, and intro-
ducing non-security bugs. Given the developer sets of two
activities, we calculate their overlap rates via dividing the over-
lapping data points by all the unique data points. Table II
shows the basic overlaps between developers that have been
involved in different activities. As we can see from the table,
in all the projects, developers from secFix and secIntro have
higher overlap rates, i.e., range from 60.0% to 89.0% and on
average is 71.1%, which indicates that most of the security
vulnerabilities are introduced and fixed by a core group of
developers. We can also see that the overlap rates of developers
from security activities and non-security activities are lower,
e.g., the overlap rate of developers from secFix and nonSecFix
ranges from 5.0% to 30.2% and is 16.9% on average, the
overlap rate of developers from secIntro and nonSecIntro
ranges from 19.6% to 38.4% and on average is 28.8%. Overall,
the overlap rate from sec and nonSec is 18.6% on average,
which indicates that most of the developers that are involved
in security activities are different from developers that are in-
volved in non-security activities. This may be because security
issues are critical to software that require non-trivial domain
expertise. Thus only a small group of developers is capable

TABLE II: The overlap rates between developers that have been involved in different activities. secFix denotes developers
that have made security fixing commits, secIntro denotes developers that have made security introducing commits, nonSecFix
denotes developers that have made non-security fixing commits, nonSecIntro denotes developers that have made non-security
introducing commits, sec denotes developers that have made security fixing or introducing commits, and nonSec denotes
developers that have made non-security fixing or introducing commits. secFix-secIntro means the overlap rate between secFix
and secIntro. The higher values with statistical significance (p-value < 0.05) are shown with an asterisk (*).

Project secFix-secIntro (*) secFix-nonSecFix secFix-nonSecIntro secIntro-nonSecFix secIntro-nonSecIntro sec-nonSec
FFmpeg 60.0 10.7 10.4 14.9 19.6 10.7
Freebsd 89.0 30.2 32.2 49.1 43.2 40.2
Gcc 88.1 25.6 24.5 38.8 38.4 25.6
Nodejs 63.0 5.0 5.8 7.6 10.5 5.0
Panda 65.9 17.0 18.9 21.5 32.1 17.0
Php 70.5 15.5 16.9 21.7 29.3 15.5
Qemu 67.1 16.6 18.1 20.6 28.9 16.6
Linux 66.6 16.1 18.0 21.6 29.6 16.1
Android 69.6 15.6 18.1 19.9 27.1 15.6
Average 71.1 16.9 18.1 24.0 28.8 18.0

TABLE III: The percentages of developers involved when
contributing 80% of a specific type of commits. Values with a
red diamond (�) indicate that a project is non hero-centric
project. All denotes the combination of the four types of
commits.

Project secFix secIntro nonSecFix nonSecIntro All
FFmpeg 20.1 (�) 17.1 3.6 5.5 3.5
Freebsd 32.1 (�) 26.0 (�) 13.4 11.3 11.1
Gcc 33.1 (�) 21.1 (�) 17.5 16.3 15.6
Nodejs 34.0 (�) 24.7 (�) 13.5 6.6 5.1
Panda 36.5 (�) 25.8 (�) 10.6 10.1 7.5
Php 21.6 (�) 23.7 (�) 6.3 8.2 5.7
Qemu 30.1 (�) 22.3 (�) 8.6 9.8 6.8
Linux 30.9 (�) 21.6 (�) 11.0 11.4 8.5
Android 32.7 (�) 21.3 (�) 11.5 11.0 8.3

of handling security vulnerabilities, which makes the overlap
rates of developers from security activities and non-security
activities lower. We further conduct the Wilcoxon signed-rank
test (p < 0.05) to compare the overlap rates among different
pairs. The results suggest that the overlap rates of secFix and
secIntro are significantly higher than those of other pairs.

Developers that are involved in security and non-security
activities are different and have low overlap rates. For
non-security activities, developers that introduced and fixed
bugs have low overlap rates. However, for security activi-
ties, developers that introduced and fixed security vulnera-
bilities have higher overlap rates.

B. RQ2: Heroism in Security and Non-Security Activities

Following existing studies [20], [21], we define a project to
be hero-centric when 80% of the contributions are done by
about 20% of the developers in this study. In addition, if the
percentage of developers involved when contributing 80% of
a specific type of commits is larger than 20%, we treat the
project as non hero-centric projects.

In this RQ, we first examine whether a project is a hero-
centric project with only considering a specific type of com-
mits, e.g, security fixing, security introducing, non-security
fixing, and non-security introducing. To assess the contribution

of a developer, following Agrawal et al. [20], we count the
number of a specific type of commits (i.e., security fixing, se-
curity introducing, non-security fixing, non-security introduc-
ing) made by each developer to represent his/her contribution
to a project. We then rank developers ascendingly based on
their contributions. Finally, we accumulate developers’ con-
tributions and record developers involved until 80% of the
contributions are done. In addition, we also evaluate a devel-
oper’s contribution via the combination of the four types of
commits.

Table III shows the percentages of developers involved when
contributing 80% of a particular type of commits. As we can
see from the table, all the projects are hero-centric projects,
i.e., the percentages of developers involved are smaller than
20%, when assessing developers’ contribution by using non-
security fixing or non-security introducing commits or all com-
mits together. However, most of the experimental projects are
non hero-centric projects when assessing developers’ contribu-
tion by using security fixing or security introducing commits,
e.g., the percentage of developers involved are 36.5%, when
evaluating developers’ contribution by using security fixing
commits in project Panda. Our finding indicates that although
software development has “heroes”, i.e., a small percentage
of the staff who are responsible for most of the progress on a
project, software security does not have typical “heroes”.

We further calculate the overlap rates of “core developers”
(i.e., contribute 80% of a specific type of commits) between
different types of commits, which are shown in Table IV. Note
that we use “core developers” since a project can be a non
hero-centric project when assessing developers’ contribution
by using security activities. As we can see, the “core develop-
ers” from security fixing and security introducing have high
overlap rates that range from 47.7% to 71.1% and on average
is 63%, which is consistent with our findings in Sec V-A.
The overlap rates of the “core developers” from security com-
mits and non-security commits, i.e., “core developers” from
secFix and nonSecFix, “core developers” from secIntro and
nonSecFix are lower than that of “core developers” only from
security activities. This indicates that the “core developers” of

TABLE IV: The overlap rates of “core developers” (i.e.,
contribute 80% of a particular type of commits) between
different types of commits. The higher values with statistical
significance (p-value < 0.05) are shown with an asterisk (*).

Project secFix-secIntro (*) secFix-nonSecFix secIntro-nonSecIntro
FFmpeg 71.1 50.0 68.9
Freebsd 69.9 55.6 67.8
Gcc 69.2 32.9 43.5
Nodejs 66.7 24.4 29.2
Panda 67.0 48.0 62.5
Php 48.5 54.3 66.7
Qemu 64.6 50.0 63.8
Linux 64.8 38.0 45.3
Android 47.0 34.3 45.8
Average 63.2 43.0 55.0

TABLE V: The distribution of developer interaction patterns during
security activities (in percentage).

Project CoIntro CoFix IntroFix SelfIntroFix SelfIntro SelfFix
FFmpeg 52.3 1.9 36.6 5.2 3.0 1.0
Freebsd 66.1 0.2 28.8 3.1 1.6 0.1
Gcc 58.0 10.4 18.7 9.9 2.8 0.1
Nodejs 50.9 7.4 23.4 10.7 7.3 0.3
Panda 70.3 0.7 19.6 5.1 4.0 0.3
Php 73.1 1.4 18.0 3.8 3.3 0.4
Qemu 68.0 1.8 19.3 6.6 3.9 0.5
Linux 67.1 0.5 21.9 5.8 4.5 0.2
Android 55.4 8.1 25.3 3.2 7.4 0.6
Average 62.4 3.6 23.5 5.9 4.2 0.4

security and non-security activities are different in most of the
experimental projects.

All the experimental projects are examined as hero-centric
projects in non-security activities, while most of them (8
out of 9) are non hero-centric projects in security activities.

C. RQ3: Common Developer Interaction Patterns in Devel-
oper Security Activities

In this RQ, we identify developer interactions during the se-
curity activities including both introducing and fixing security
vulnerabilities. Specifically, in order to explore developer in-
teractions, we capture three possible interactions between two
developers, i.e., two developers introduce the same security
vulnerability (CoIntro), two developers fix the same security
vulnerability (CoFix), a security vulnerability is introduced
by a developer and fixed by another developer (IntroFix),
which are showed in Figure 4 from 4a to 4c. In addition,
we also collect the interactions of a single developer, i.e., a
security vulnerability is introduced and fixed by a single devel-
oper (SelfIntroFix), a security vulnerability is introduced
by multiple commits of a single developer and fixed by other
developers (SelfIntro), and a security vulnerability is fixed
by multiple commits of a single developer and is introduced by
other developers (SelfFix), which are showed in Figure 4
from 4d to 4f.

For each subject project, we first build a security activ-
ity network, then with these interaction patterns, we further
collect the numbers and calculate the percentages of the six
patterns, which are showed in Table V. As we can see from the

figure, the six developer interaction patterns exist in each of
the experimental projects. The CoIntro and IntroFix pat-
terns are dominating (i.e., the accumulated percentage is larger
than 80%) across all the experimental projects. Other patterns
take up around 20% of developer interactions, for example,
the percentages ofSelfFix are lower than 1% in all ex-
perimental projects. Although CoIntro and IntroFix are
dominating, the percentages of them in different projects are
different, i.e., range from 74.3% (Nodejs) to 94.9% (Freebsd).
In addition, the percentage of interactions between developers
(i.e., CoIntro, CoFix, and IntroFix) is much larger than
that of interactions of the same developers (i.e., SelfIntro,
SelfFix, and SelfIntroFix), which indicates the nature
of software security development is teamwork.

The percentages of the developer interaction patterns vary
dramatically in different projects. However, CoIntro and
IntroFix patterns are dominating across all the experi-
mental projects in developers’ security activities.

D. RQ4: Comparison of Developer Interaction Patterns be-
tween Security and Non-Security Activities

In this RQ, we try to explore the difference of developer
interactions between developers’ security activities and non-
security activities, which we believe can help us gain insight
into distinct characteristics of developers’ security activities.
For each subject project, we first build a non-security activity
network, then we further collect the ratios of the six patterns.

Table VI shows the distribution of the six developer inter-
action patterns in developers’ non-security activities. As we
can see from the figure, although the six developer interac-
tion patterns also exist in each of the experimental projects,
the percentages of these patterns are different from that of
security activities showed in Table V. In Figure 5, we show
the detailed difference of interaction patterns between security
activities and non-security activities. Specifically, the percent-
ages of patterns CoIntro and CoFix, and SelfIntro vary
dramatically across the experimental projects in this work.

Different from security activities, the dominating patterns
(i.e., the accumulated percentage is larger than 80%) in
non-security activities include three patterns, i.e., CoIntro,
IntroFix, and CoFix. Note that in security activities, the
percentage of CoFix pattern ranges from 0.2% to 10.4% and
on average is 3.5%, while in non-security activities it ranges
from 4.2% to 26.1% on average is 17.2%. This may indicate
that security vulnerability fixing requires domain expertise
than fixing non-security bug fixing and most developers are
incapable to fix security vulnerabilities, thus results in less
teamwork.

In addition, we also find that the dominating patterns are
more balanced in developers’ non-security activities compared
to security activities. For example, the difference of the per-
centages of dominating patterns in security activities ranges
from 15.7% to 55.1% and on average is 38.8%, while in non-
security activities, the difference ranges from 8.3% to 35.2%
and on average is 21.2%.

(a) P1: CoIntro (b) P2: CoFix (c) P3: IntroFix (d) P4: SelfIntroFix (e) P5: SelfIntro (f) P6: SelfFix

Fig. 4: The potential interaction relationships between developers during their security activities.

TABLE VI: The distribution of developer interaction during
non-security activities (in percentage).

Project CoIntro CoFix IntroFix SelfIntroFix SelfIntro SelfFix
FFmpeg 30.4 14.8 31.5 3.2 19.7 0.4
Freebsd 40.4 11.4 30.3 2.6 15.1 0.2
Gcc 37.3 26.1 22.4 2.4 11.7 0.2
Nodejs 59.0 26.3 9.7 1.5 3.4 0.1
Panda 39.4 4.2 35.6 3.9 16.6 0.3
Php 42.7 16.2 25.3 3.7 12.0 0.1
Qemu 35.4 19.7 28.4 4.5 11.9 0.1
Linux 32.1 15.5 33.0 3.5 15.8 0.1
Android 29.1 20.8 27.9 5.7 16.4 0.1
Average 38.4 17.2 27.1 3.4 13.6 0.2

P
1

P
2

P
3

P
4

P
5

P
6

−30

−20

−10

0

10

20

Fig. 5: The difference of the percentages of interaction patterns
between security activities and non-security activities.

Developers have different dominating patterns in security
and non-security activities. In addition, the distribution
of developers’ interaction in security and non-security
activities are different.

E. RQ5: Evolution of Developer Interaction in Developer Se-
curity Activities

To explore the evolution of developer interactions, for each
project, we collect the numbers and calculate the percentages
of the six patterns that only appear in a specific year from
2009 to 2018. Thus, for each pattern, we have 10 different
percentage values in each project. Figure 6 shows the boxplots
of the percentages of each interaction pattern in each project.

The figure shows that overall, the percentages of a pattern
vary dramatically in a project over time, for example, in FFm-
peg, the percentages of pattern CoIntro range from 22.7%
to 63.1% in 10 years. Regarding the dominating patterns, we
find that patterns CoIntro and IntroFix are dominating
on each project over time. In addition, the same phenomenon
is also observed in developers’ non-security activities.

TABLE VII: The correlated patterns in each project.

Project Correlated Patterns
FFmpeg P1, P3, P5
Freebsd P1, P3, P4
Gcc P1, P2, P3, P4
Nodejs P1, P2, P3, P4
Panda P1, P3
Php P1, P3, P4, P5
Qemu P1, P3, P5
Linux P1, P3
Android P1, P2, P3, P4, P5

The percentages of developer interaction patterns vary over
time. While all the projects do not witness a change in
terms of the dominating patterns.

F. RQ6: Impact of Developer Interaction on Software Quality

To explore the relation between the changes of developers’
interaction in security activity and the quality of the software,
following existing studies [7], [90], we use the Spearman rank
correlation [91] to compute the correlations between the per-
centages of patterns and the density of security vulnerability
appeared in each year from 2010 to 2018. The closer the value
of a correlation is to +1 (or -1), the higher two measures
are positively (or negatively). A value of 0 indicates that two
measures are independent. Values greater than 0.10 can be
considered a small effect size; values greater than 0.30 can be
considered a medium effect size [7]. In this work, we consider
the values larger than 0.10 or smaller than -0.10 as correlated,
others are uncorrelated.

Table VII shows the correlated patterns in each project. As
we can see, five of the six patterns are selected as correlated
in at least one project. In addition, the dominating patterns
CoIntro and IntroFix are selected across all experimen-
tal projects.

Developers’ interaction in security activities is correlated
with the density of security vulnerabilities.

VI. THREATS TO VALIDITY

a) Internal Validity: Threats to internal validity are re-
lated to experimental errors. Following previous work [72],
[84]–[86], the process of collection security introducing or
non-security introducing commits is automatically completed
with the annotating or blaming function in VCS. It is known
that this process can introduce noise [72]. The noise in the data
can potentially affect the result of our study. Manual inspection
of the process shows reasonable precision and recall on open

P
1

P
2

P
3

P
4

P
5

P
6

0

0.2

0.4

0.6

0.8

(a) FFmpeg

P
1

P
2

P
3

P
4

P
5

P
6

0

0.2

0.4

0.6

0.8

(b) Freebsd

P
1

P
2

P
3

P
4

P
5

P
6

0

0.2

0.4

0.6

0.8

(c) Gcc

P
1

P
2

P
3

P
4

P
5

P
6

0

0.2

0.4

0.6

0.8

(d) Nodejs
P
1

P
2

P
3

P
4

P
5

P
6

0

0.2

0.4

0.6

0.8

(e) Panda

P
1

P
2

P
3

P
4

P
5

P
6

0

0.2

0.4

0.6

0.8

(f) Php

P
1

P
2

P
3

P
4

P
5

P
6

0

0.2

0.4

0.6

0.8

(g) Qemu

P
1

P
2

P
3

P
4

P
5

P
6

0

0.2

0.4

0.6

0.8

(h) Linux

P
1

P
2

P
3

P
4

P
5

P
6

0

0.2

0.4

0.6

0.8

(i) Android

Fig. 6: The distribution of the number of different patterns in each project from 2009 to 2018. P1 denotes CoIntro, P2
denotes CoFix, P3 denotes IntroFix, P4 denotes SelfIntroFix, P5 denotes SelfIntro, and P6 denotes SelfFix.

source projects [86], [92]. To mitigate this threat, we use the
noise data filtering algorithm introduced in [92].

b) External Validity: Threats to external validity are re-
lated to the generalization of our study. The examined projects
in this work have a large variance regarding project types. We
have tried our best to make our dataset general and represen-
tative. However, it is still possible that the nine projects used
in our experiments are not generalizable enough to represent
all software projects. Our approach might generate similar or
different results for other projects that are not used in the
experiments. We mitigate this threat by selecting projects of
different functionalities (operating systems, servers, and desk-
top applications) that are developed in different programming
languages (C, Java, and JavaScript).

In this work, all the experimental subjects are open source
projects. Although they are popular projects and widely used
in security research, our findings may not be generalizable to
commercial projects or projects in other languages.

VII. RELATED WORK

A. Developer Social Network

There has been a body of work that investigated aspects of
developer social networks built on developers’ activities during
software development [28]–[39], [39]–[65], [93].

Lopez-Fernandez et al. [56], [57] first examined the
social aspects of developer interaction during development,
where developers were linked based on contributions to a
common module. Bird et al. [50] investigated developer
organization and community structure in the mailing
list of four open-source projects and used modularity
as the community-significance measure to confirm the
existence of statistically significant communities. Wolf et
al. [16], [44] introduced an approach to mining developer
collaboration from communication repositories and they
further use developer collaboration to predict software build
failures. Toral et al. [58] applied social-network analysis
to investigate participation inequality in the Linux mailing
list that contributes to role separation between core and
peripheral contributors. Hong et al. [40] and Zhang et
al. [30] explored the characteristics of developer social
networks built on developers interactions in bug tracking
systems and how these networks evolve over time. Surian
et al. [42] extracted developer collaboration patterns from
a large developer collaborations network extracted from
SourceForge.Net, where developers are considered connected
if both of them are listed as contributors to a project. Jeong
et al. [48] and Xuan et al. [66] leveraged network metrics
mined from social networks built in bug tracking systems

to recommend developers for fixing new bugs. Surian et
al. [46] used developer collaboration network extracted from
Sourceforge.Net to recommend a list of top developers that
are most compatible based on their programming language
skills, past projects and project categories they have worked
on before for a developer to work with. Researchers have also
built social networks based on developers’ security activities,
i.e., have co-changed files that contain security vulnerabilities
to predict new vulnerabilities [2], [7], exploring the impact of
human factors on security vulnerabilities [3], [5], [19], and
monitoring vulnerabilities [10], [12].

Most of the above studies construct developer networks
based on a particular form of developer collaboration e.g.,
co-changed files, co-commented bugs, and co-contributed
projects, etc., from bug tracking systems, mailing lists,
or project contribution lists. These developer networks
are homogeneous, which have merely one type of node
(developers) and one type of link (a particular form of
developer collaboration). Wang et al. [43] and Zhang et
al. [45] leveraged heterogeneous network analysis to mined
different types of developer collaboration patterns in bug
tracking system and further used these different collaborations
to assist bug triage.

Our work differs in two ways from most of these prior
studies: (1) We study developers’ social interactions in security
activities; (2) We explore different types of developer interac-
tions during their security activities, which is more complex
and with richer information.

B. Security Vulnerability Analysis

There are many studies to explore, analyze, and understand
software security vulnerabilities [82], [83], [94]–[106].

Frei et al. [98] examined how vulnerabilities are handled
with regard to information about discovery date, disclosure
date, as well as the exploit and patch availability date in large-
scale by analyzing more than 80,000 security advisories pub-
lished between 1995 and 2006. Walden et al. [104] provided
a vulnerability dataset for evaluating the vulnerability predic-
tion effectiveness of two modelling techniques, i.e., software
metrics based and text mining based approaches. Medeiros
et al. [105] examined the performance of software metrics
on classifying vulnerable and non-vulnerable units of code.
Yang et al. [106] leveraged software network to evaluate struc-
tural characteristics of software systems during their evolution.
Decan et al. [97] and Shahzad [99] presented a large scale
study of various aspects associated with software vulnerabili-
ties during their life cycle. Ozment et al. [102] investigated the
evolution of vulnerabilities in the OpenBSD operating system
over time, observing that it took on average 2.6 years for a
release version to remedy half of the known vulnerabilities.
Perl et. al. [83] analyzed Git commits that fixed vulnerabil-
ities to produce a code analysis tool that assists in finding
dangerous code commits. Xu et. al. [103] developed a method
for identifying security patches at the binary level based on
execution traces, providing a method for obtaining and study-
ing security patches on binaries and closed-source software.

Li et al. [82] conducted an analysis of various aspects of the
patch development life cycle. There also existed some other
studies that explored the characteristics of software general
bugs [62]–[65], [100], [107].

In this work, we propose the first study to characterize and
understand developers’ interaction by considering their activ-
ities in introducing and fixing security vulnerabilities by ana-
lyzing developer networks built on their security activities.

C. Heroism in Software Development

Heroism in software development is a widely studied topic.
Various researchers have found the presence of heroes in soft-
ware projects [20]–[25].

Koch et al. [22] studied the GNOME project and showed
the presence of heroes throughout the project history.
Krishnamurthy [24] conducted a case study on 100 projects
and reported that a few individuals are responsible for
the main contribution of the projects. Agarwal et al. [20]
studied heroism in software development on 661 open source
projects from Github and 171 projects from an Enterprise
Github. They assess the contribution of a developer by the
number of his/her commits submitted. Their experiment
showed that 77% projects exhibit the pattern that 20% of
the total contributors complete 80% of the contributions,
which means hero-centric projects are very common in
both public and enterprise projects. Majumder [21] studies
the heroes developer communities in 1100+ open source
GitHub projects. They built a social interaction graph from
developers’ communication and used the node degree to
represent a developer’s contribution. Based on the analysis,
they found that hero-centric projects are majorly all projects.

The above studies explore the heroism in software devel-
opment from developers’ code contribution and social com-
munication perspectives. In this work, we examine whether
software projects are hero-centric projects when assessing de-
velopers’ contribution in their security activities.

VIII. CONCLUSION

This work conducts a large-scale empirical study to char-
acterize and understand developers’ interaction during devel-
opers’ security activities including both security vulnerability
introducing and fixing activities, which involves more than
16K security fixing commits and over 28K security introducing
commits from nine large-scale open-source software projects.
We first examine whether a project is a hero-centric project
when assessing developers’ contribution with developers’ se-
curity activities. Then we examine the interaction patterns be-
tween developers in security activities, after that we show how
the distribution of these patterns changes in different projects
over time, finally we explore the potential impact of devel-
opers’ interaction on the quality of projects by measuring the
correlation between developers’ interactions and the security
density in a given period of time. In addition, we also charac-
terize the nature of developer interaction in security activities
in comparison to developer interaction in non-security activi-
ties (i.e., introducing and fixing non-security bugs).

Among our findings we identify that: most of the experi-
mental projects are non hero-centric projects when assessing
developers’ contribution by using security activities; different
projects have different dominating interaction structures; de-
velopers’ interaction has correlation with the quality of soft-
ware projects. We believe the findings from this study can
help developers understand how vulnerabilities originate and
fix under the interaction of developers.

REFERENCES

[1] “Heartbleed,” http://heartbleed.com/.
[2] Y. Shin, A. Meneely, L. Williams, and J. A. Osborne, “Evaluating

complexity, code churn, and developer activity metrics as indicators of
software vulnerabilities,” TSE’11, vol. 37, no. 6, pp. 772–787.

[3] A. Meneely and L. Williams, “Secure open source collaboration: an
empirical study of linus’ law,” in CCS’09, pp. 453–462.

[4] ——, “Socio-technical developer networks: Should we trust our mea-
surements?” in ICSE’11, pp. 281–290.

[5] ——, “Strengthening the empirical analysis of the relationship between
linus’ law and software security,” in ESEM’10, p. 9.

[6] A. Meneely, H. Srinivasan, A. Musa, A. R. Tejeda, M. Mokary, and
B. Spates, “When a patch goes bad: Exploring the properties of
vulnerability-contributing commits,” in ESEM’13, pp. 65–74.

[7] T. Zimmermann, N. Nagappan, and L. Williams, “Searching for a
needle in a haystack: Predicting security vulnerabilities for windows
vista,” in ICST’10, pp. 421–428.

[8] A. Meneely, P. Rotella, and L. Williams, “Does adding manpower also
affect quality?: an empirical, longitudinal analysis,” in FSE’11, pp. 81–
90.

[9] A. Meneely, L. Williams, W. Snipes, and J. Osborne, “Predicting
failures with developer networks and social network analysis,” in
FSE’08, pp. 13–23.

[10] A. Sureka, A. Goyal, and A. Rastogi, “Using social network analysis
for mining collaboration data in a defect tracking system for risk and
vulnerability analysis,” in ISEC’11, pp. 195–204.

[11] T. Zimmermann and N. Nagappan, “Predicting defects using network
analysis on dependency graphs,” in ICSE’08, pp. 531–540.

[12] S. Trabelsi, H. Plate, A. Abida, M. M. B. Aoun, A. Zouaoui, C. Mis-
saoui, S. Gharbi, and A. Ayari, “Mining social networks for software
vulnerabilities monitoring,” in NTMS’15, pp. 1–7.

[13] C. Bird, N. Nagappan, H. Gall, B. Murphy, and P. Devanbu, “Putting
it all together: Using socio-technical networks to predict failures,” in
ISSRE’09, pp. 109–119.

[14] P. Bhattacharya, M. Iliofotou, I. Neamtiu, and M. Faloutsos, “Graph-
based analysis and prediction for software evolution,” in ICSE’12, pp.
419–429.

[15] A. Younis, Y. K. Malaiya, and I. Ray, “Assessing vulnerability ex-
ploitability risk using software properties,” SQJ’16, vol. 24, no. 1, pp.
159–202.

[16] T. Wolf, A. Schroter, D. Damian, and T. Nguyen, “Predicting build
failures using social network analysis on developer communication,”
in ICSE’09, pp. 1–11.

[17] A. Kumar and A. Gupta, “Evolution of developer social network and
its impact on bug fixing process,” in ISEC’13, pp. 63–72.

[18] X. Zheng, D. Zeng, H. Li, and F. Wang, “Analyzing open-source
software systems as complex networks,” Physica A’08, vol. 387, no. 24,
pp. 6190–6200.

[19] A. Meneely, A. C. R. Tejeda, B. Spates, S. Trudeau, D. Neuberger,
K. Whitlock, C. Ketant, and K. Davis, “An empirical investigation of
socio-technical code review metrics and security vulnerabilities,” in
SSE’14, pp. 37–44.

[20] A. Agrawal, A. Rahman, R. Krishna, A. Sobran, and T. Menzies,
“We don’t need another hero?: the impact of heroes on software
development,” in ICSE-SEIP’18, pp. 245–253.

[21] S. Majumder, J. Chakraborty, A. Agrawal, and T. Menzies, “Why
software projects need heroes (lessons learned from 1100+ projects),”
arXiv preprint arXiv:1904.09954, 2019.

[22] S. Koch and G. Schneider, “Effort, co-operation and co-ordination
in an open source software project: Gnome,” Information Systems
Journal’02, vol. 12, no. 1, pp. 27–42.

[23] A. Mockus, R. T. Fielding, and J. D. Herbsleb, “Two case studies of
open source software development: Apache and mozilla,” TOSEM’02,
vol. 11, no. 3, pp. 309–346.

[24] S. Krishnamurthy, “Cave or community?: An empirical examination of
100 mature open source projects.”

[25] G. Robles, J. M. Gonzalez-Barahona, and I. Herraiz, “Evolution of the
core team of developers in libre software projects,” in MSR’09, pp.
167–170.

[26] C. Bird, P. C. Rigby, E. T. Barr, D. J. Hamilton, D. M. German, and
P. Devanbu, “The promises and perils of mining git,” in MSR’09, pp.
1–10.

[27] E. Kalliamvakou, G. Gousios, K. Blincoe, L. Singer, D. M. German,
and D. Damian, “The promises and perils of mining github,” in
MSR’14, pp. 92–101.

[28] M. Joblin, W. Mauerer, S. Apel, J. Siegmund, and D. Riehle, “From
developer networks to verified communities: a fine-grained approach,”
in ICSE’15, pp. 563–573.

[29] A. Jermakovics, A. Sillitti, and G. Succi, “Mining and visualizing
developer networks from version control systems,” in CHASE’11, pp.
24–31.

[30] W. Zhang, L. Nie, H. Jiang, Z. Chen, and J. Liu, “Developer social
networks in software engineering: construction, analysis, and applica-
tions,” SCIS’14, vol. 57, no. 12, pp. 1–23.

[31] Y. Tymchuk, A. Mocci, and M. Lanza, “Collaboration in open-source
projects: Myth or reality?” in MSR’14, pp. 304–307.

[32] M. Joblin, S. Apel, C. Hunsen, and W. Mauerer, “Classifying develop-
ers into core and peripheral: An empirical study on count and network
metrics,” in ICSE’17, pp. 164–174.

[33] B. Çaglayan and A. B. Bener, “Effect of developer collaboration
activity on software quality in two large scale projects,” JSS’16, vol.
118, pp. 288–296.

[34] J. Ren, H. Yin, Q. Hu, A. Fox, and W. Koszek, “Towards quantifying
the development value of code contributions,” in FSE’18, pp. 775–779.

[35] F. Palomba, D. A. Tamburri, A. Serebrenik, A. Zaidman, F. A. Fontana,
and R. Oliveto, “How do community smells influence code smells?”
in ICSE-Companion’18, pp. 240–241.

[36] A. Jermakovics, A. Sillitti, and G. Succi, “Exploring collaboration
networks in open-source projects,” in IFIP-ICOS’13, pp. 97–108.

[37] M. Joblin, S. Apel, and W. Mauerer, “Evolutionary trends of developer
coordination: A network approach,” EMSE’17, vol. 22, no. 4, pp. 2050–
2094.

[38] M. Pinzger, N. Nagappan, and B. Murphy, “Can developer-module
networks predict failures?” in FSE’08, pp. 2–12.

[39] F. Thung, T. F. Bissyande, D. Lo, and L. Jiang, “Network structure of
social coding in github,” in CSMR13, pp. 323–326.

[40] Q. Hong, S. Kim, S. Cheung, and C. Bird, “Understanding a developer
social network and its evolution,” in ICSM’11, pp. 323–332.

[41] C. Bird, D. Pattison, R. D’Souza, V. Filkov, and P. Devanbu, “Latent
social structure in open source projects,” in FSE’08, pp. 24–35.

[42] D. Surian, D. Lo, and E.-P. Lim, “Mining collaboration patterns from
a large developer network,” in WCRE’10, pp. 269–273.

[43] S. Wang, W. Zhang, Y. Yang, and Q. Wang, “Devnet: exploring
developer collaboration in heterogeneous networks of bug repositories,”
in ESEM’13, pp. 193–202.

[44] T. Wolf, A. Schröter, D. Damian, L. D. Panjer, and T. H. Nguyen,
“Mining task-based social networks to explore collaboration in software
teams,” IEEE Software’09, vol. 26, no. 1, pp. 58–66.

[45] W. Zhang, S. Wang, Y. Yang, and Q. Wang, “Heterogeneous network
analysis of developer contribution in bug repositories,” in ICCSC’13,
pp. 98–105.

[46] D. Surian, N. Liu, D. Lo, H. Tong, E.-P. Lim, and C. Faloutsos, “Rec-
ommending people in developers’ collaboration network,” in WCRE’11,
pp. 379–388.

[47] D. W. McDonald, “Recommending collaboration with social networks:
a comparative evaluation,” in CHI’03, pp. 593–600.

[48] G. Jeong, S. Kim, and T. Zimmermann, “Improving bug triage with
bug tossing graphs,” in FSE’09, pp. 111–120.

[49] M. S. Zanetti, I. Scholtes, C. J. Tessone, and F. Schweitzer, “Catego-
rizing bugs with social networks: a case study on four open source
software communities,” in ICSE’13, pp. 1032–1041.

[50] C. Bird, A. Gourley, P. Devanbu, M. Gertz, and A. Swaminathan,
“Mining email social networks,” in MSR’06, pp. 137–143.

[51] M. S. Zanetti, I. Scholtes, C. J. Tessone, and F. Schweitzer, “The rise
and fall of a central contributor: dynamics of social organization and
performance in the gentoo community,” in CHASE’13, pp. 49–56.

http://heartbleed.com/

[52] H. Jiang, J. Zhang, H. Ma, N. Nazar, and Z. Ren, “Mining authorship
characteristics in bug repositories,” SCIS’17, vol. 60, no. 1, p. 012107.

[53] M. Zhou and A. Mockus, “Who will stay in the floss community?
modeling participants initial behavior,” TSE’15, vol. 41, no. 1, pp. 82–
99.

[54] ——, “What make long term contributors: Willingness and opportunity
in oss community,” in ICSE’12, pp. 518–528.

[55] M. Gharehyazie, D. Posnett, B. Vasilescu, and V. Filkov, “Developer
initiation and social interactions in oss: A case study of the apache
software foundation,” EMSE’15, vol. 20, no. 5, pp. 1318–1353.

[56] L. López-Fernández, G. Robles, J. M. Gonzalez-Barahona, and I. Her-
raiz, “Applying social network analysis techniques to community-
driven libre software projects,” IJITWE’06, vol. 1, no. 3, pp. 27–48.

[57] L. Lopez-Fernandez, G. Robles, J. M. Gonzalez-Barahona et al., “Ap-
plying social network analysis to the information in cvs repositories,”
in MSR’04, p. 101105.

[58] S. L. Toral, M. d. R. Martı́nez-Torres, and F. Barrero, “Analysis
of virtual communities supporting oss projects using social network
analysis,” IST’10, vol. 52, no. 3, pp. 296–303.

[59] G. Canfora, L. Cerulo, M. Cimitile, and M. Di Penta, “Social in-
teractions around cross-system bug fixings: the case of freebsd and
openbsd,” in MSR’11, pp. 143–152.

[60] C. Bird, N. Nagappan, B. Murphy, H. Gall, and P. Devanbu, “Don’t
touch my code!: examining the effects of ownership on software
quality,” in FSE’11, pp. 4–14.

[61] J. Tsay, L. Dabbish, and J. Herbsleb, “Influence of social and technical
factors for evaluating contribution in github,” in ICSE’14, pp. 356–366.

[62] F. Rahman and P. Devanbu, “Ownership, experience and defects: a
fine-grained study of authorship,” in ICSE’11, pp. 491–500.

[63] B. Zhou, I. Neamtiu, and R. Gupta, “A cross-platform analysis of bugs
and bug-fixing in open source projects: Desktop vs. android vs. ios,”
in EASE’15, p. 7.

[64] D. Izquierdo-Cortazar, A. Capiluppi, and J. M. Gonzalez-Barahona,
“Are developers fixing their own bugs?: Tracing bug-fixing and bug-
seeding committers,” IJOSSP’11, vol. 3, no. 2, pp. 23–42.

[65] D. M. German, “The gnome project: a case study of open source, global
software development,” Software Process: Improvement and Practice,
vol. 8, no. 4, pp. 201–215, 2003.

[66] J. Xuan, H. Jiang, Z. Ren, and W. Zou, “Developer prioritization in
bug repositories,” in ICSE’12, pp. 25–35.

[67] T. T. Dinh-Trong and J. M. Bieman, “The freebsd project: A replication
case study of open source development,” TSE’05, vol. 31, no. 6, pp.
481–494.

[68] C. Izurieta and J. Bieman, “The evolution of freebsd and linux,” in
ISESE’06, pp. 204–211.

[69] Y. Tian, J. Lawall, and D. Lo, “Identifying linux bug fixing patches,”
in ICSE’12, pp. 386–396.

[70] U. N. I. of Standards and Technology, “National vulnerability
database,” https://nvd.nist.gov/home.cfm.

[71] M. Corporation, “Common vulnerabilities and exposures,” https://cve.
mitre.org/.

[72] S. Kim, T. Zimmermann, K. Pan, E. James Jr et al., “Automatic
identification of bug-introducing changes,” in ASE’06, pp. 81–90.

[73] D. Wijayasekara, M. Manic, J. L. Wright, and M. McQueen, “Mining
bug databases for unidentified software vulnerabilities,” in ICHSI’12,
pp. 89–96.

[74] S. E. Ponta, H. Plate, A. Sabetta, M. Bezzi, and C. Dangremont,
“A manually-curated dataset of fixes to vulnerabilities of open-source
software,” in MSR’19.

[75] Y. Zhou and A. Sharma, “Automated identification of security issues
from commit messages and bug reports,” in FSE’17, pp. 914–919.

[76] “Sourceclear,” https://www.sourceclear.com/.
[77] J. Wang, M. Li, S. Wang, T. Menzies, and Q. Wang, “Images dont lie:

Duplicate crowdtesting reports detection with screenshot information,”
IST’19.

[78] J. Wang, Q. Cui, Q. Wang, and S. Wang, “Towards effectively test
report classification to assist crowdsourced testing,” in ESEM’16, p. 6.

[79] P. Runeson, M. Alexandersson, and O. Nyholm, “Detection of duplicate
defect reports using natural language processing,” in ICSE’07, pp. 499–
510.

[80] H. Rocha, M. T. Valente, H. Marques-Neto, and G. C. Murphy, “An
empirical study on recommendations of similar bugs,” in SANER’16,
vol. 1, pp. 46–56.

[81] I. H. Witten, E. Frank, M. A. Hall, and C. J. Pal, Data Mining: Practical
machine learning tools and techniques. Morgan Kaufmann, 2016.

[82] F. Li and V. Paxson, “A large-scale empirical study of security patches,”
in CCS’17, pp. 2201–2215.

[83] H. Perl, S. Dechand, M. Smith, D. Arp, F. Yamaguchi, K. Rieck,
S. Fahl, and Y. Acar, “Vccfinder: Finding potential vulnerabilities in
open-source projects to assist code audits,” in CCS’15, pp. 426–437.

[84] J. Śliwerski, T. Zimmermann, and A. Zeller, “When do changes induce
fixes?” in MSR’05, vol. 30, no. 4, pp. 1–5.

[85] D. A. da Costa, S. McIntosh, W. Shang, U. Kulesza, R. Coelho, and
A. E. Hassan, “A framework for evaluating the results of the szz
approach for identifying bug-introducing changes,” TSE’17, vol. 43,
no. 7, pp. 641–657.

[86] T. Jiang, L. Tan, and S. Kim, “Personalized defect prediction,” in
ASE’13, pp. 279–289.

[87] Z. Gu, E. T. Barr, D. J. Hamilton, and Z. Su, “Has the bug really been
fixed?” in ICSE’10, vol. 1, pp. 55–64.

[88] G. Robles and J. M. Gonzalez-Barahona, “Developer identification
methods for integrated data from various sources,” in MSR’05, pp.
1–5.

[89] K. Ehrlich and M. Cataldo, “All-for-one and one-for-all?: a multi-
level analysis of communication patterns and individual performance
in geographically distributed software development,” in CSCW’12, pp.
945–954.

[90] E. Giger, M. Pinzger, and H. C. Gall, “Can we predict types of code
changes? an empirical analysis,” in MSR’12, pp. 217–226.

[91] A. D. Well and J. L. Myers, Research design & statistical analysis.
Psychology Press, 2003.

[92] S. Kim, H. Zhang, R. Wu, and L. Gong, “Dealing with noise in defect
prediction,” in ICSE’11, pp. 481–490.

[93] S. Astromskis, G. Bavota, A. Janes, B. Russo, and M. Di Penta,
“Patterns of developers behaviour: A 1000-hour industrial study,”
JSS’07, vol. 132, pp. 85–97.

[94] W. Bu, M. Xue, L. Xu, Y. Zhou, Z. Tang, and T. Xie, “When program
analysis meets mobile security: an industrial study of misusing android
internet sockets,” in FSE’17, pp. 842–847.

[95] N. Munaiah, “Assisted discovery of software vulnerabilities,” in
ICSE’18, pp. 464–467.

[96] F. Camilo, A. Meneely, and M. Nagappan, “Do bugs foreshadow
vulnerabilities?: a study of the chromium project,” in MSR’15, pp. 269–
279.

[97] A. Decan, T. Mens, and E. Constantinou, “On the impact of security
vulnerabilities in the npm package dependency network,” in MSR’18,
pp. 181–191.

[98] S. Frei, M. May, U. Fiedler, and B. Plattner, “Large-scale vulnerability
analysis,” in SIGCOMM’06, pp. 131–138.

[99] M. Shahzad, M. Z. Shafiq, and A. X. Liu, “A large scale exploratory
analysis of software vulnerability life cycles,” in ICSE’12, pp. 771–781.

[100] H. Zhong and Z. Su, “An empirical study on real bug fixes,” in ICSE’15,
pp. 913–923.

[101] D. Mu, A. Cuevas, L. Yang, H. Hu, X. Xing, B. Mao, and G. Wang,
“Understanding the reproducibility of crowd-reported security vulner-
abilities,” in USENIX Security’18), pp. 919–936.

[102] A. Ozment and S. E. Schechter, “Milk or wine: does software security
improve with age?” in USENIX Security Symposium’06.

[103] Z. Xu, B. Chen, M. Chandramohan, Y. Liu, and F. Song, “Spain:
security patch analysis for binaries towards understanding the pain and
pills,” in ICSE’17, pp. 462–472.

[104] J. Walden, J. Stuckman, and R. Scandariato, “Predicting vulnerable
components: Software metrics vs text mining,” in ISSRE’14, pp. 23–
33.

[105] N. Medeiros, N. Ivaki, P. Costa, and M. Vieira, “Software metrics as
indicators of security vulnerabilities,” in ISSRE’17, pp. 216–227.

[106] Y. Yang, J. Ai, X. Li, and W. E. Wong, “Mhcp model for quality
evaluation for software structure based on software complex network,”
in ISSRE’16, pp. 298–308.

[107] J. Park, M. Kim, B. Ray, and D.-H. Bae, “An empirical study of
supplementary bug fixes,” in MSR’12, pp. 40–49.

https://nvd.nist.gov/home.cfm
https://cve.mitre.org/
https://cve.mitre.org/
https://www.sourceclear.com/

	I Introduction
	II Background
	II-A Version-Control Systems
	II-B Developer Security Network

	III Data Collection Methodology
	III-A Subject Projects
	III-B Finding Public Vulnerabilities
	III-B1 Collecting Security Vulnerability Fixing Commits
	III-B2 Grouping Security Fixing Commits
	III-B3 Collecting Security Vulnerability Introducing Commits

	III-C Finding Non-Security Bugs
	III-D Identifying Distinct Developers

	IV Research Question
	V Analysis Approach and Results
	V-A RQ1: Distributions of Developers in Security and Non-Security Activities
	V-B RQ2: Heroism in Security and Non-Security Activities
	V-C RQ3: Common Developer Interaction Patterns in Developer Security Activities
	V-D RQ4: Comparison of Developer Interaction Patterns between Security and Non-Security Activities
	V-E RQ5: Evolution of Developer Interaction in Developer Security Activities
	V-F RQ6: Impact of Developer Interaction on Software Quality

	VI Threats to Validity
	VII Related Work
	VII-A Developer Social Network
	VII-B Security Vulnerability Analysis
	VII-C Heroism in Software Development

	VIII Conclusion
	References

