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Abstract—Due to the complexity and size of modern software
systems, the amount of logs generated is tremendous. Hence, it is
infeasible to manually investigate these data in a reasonable time,
thereby requiring automating log analysis to derive insights about
the functioning of the systems. Motivated by an industry use-
case, we zoom-in on one integral part of automated log analysis,
log parsing, which is the prerequisite to deriving any insights
from logs. Our investigation reveals problematic aspects within
the log parsing field, particularly its inefficiency in handling
heterogeneous real-world logs. We show this by assessing the 14
most-recognized log parsing approaches in the literature using
(i) nine publicly available datasets, (ii) one dataset comprised of
combined publicly available data, and (iii) one dataset generated
within the infrastructure of a large bank. Subsequently, toward
improving log parsing robustness in real-world production sce-
narios, we propose a tool, LOGCHIMERA, that enables estimating
log parsing performance in industry contexts through generating
synthetic log data that resemble industry logs. Our contributions
serve as a foundation to consolidate past research efforts, facil-
itate future research advancements, and establish a strong link
between research and industry log parsing.

Index Terms—log parsing, automated log analysis, reliability

I. INTRODUCTION

Logs record system runtime information that is crucial for
assessing, predicting, and improving the reliability, safety,
and security of software systems [1]. For example, logs are
necessary for system monitoring [2], alerting of errors and
anomalies [3], incident mitigation [4], [5], root cause analy-
sis [6] and auditing [7]. These, however, are all challenging
tasks that are expected to become more challenging in the
future due to the increasing pervasiveness, complexity and size
of software systems.

While log data is a key resource for important reliability
engineering tasks, extracting information from log data is chal-
lenging: successfully implementing processes that automate
(at least partially) log analysis can be difficult and resource-
intensive, given the ever increasing systems’ complexity and
log data volumes generated (e.g., TBs of log data daily [8]).
As a result, it is not uncommon for logs to remain mostly
unused [9]. In practice, the harsh but true reality is for logs to

only be looked at in critical situations, where engineers still
analyze logs manually [10], [11]. This classical ‘needle in a
haystack under high pressure’ scenario illustrates the need for
automated approaches to make log analysis more applicable
in modern production scenarios.

In this work, we zoom in on one integral part of automated
log analysis known as log parsing1 (LP), a well-contained and
first step in the log analysis process and therefore an excellent
target for improving this process in practice. Specifically,
motivated by an industry use-case of a large financial institute,
we investigate the performance and applicability of log parsing
solutions in literature and in the context of modern software
systems in practice; we discuss our findings and propose
solutions for solidifying the field and enhancing the way how
log parsers can be evaluated in more realistic settings.

In our study, we discover some aspects of log parsing in
literature that may limit its adoption and may surprise from
a current and practical perspective. We list these aspects and
propose improvements for these gaps to strengthen the fields’
evaluation methodology, toward increasing adoption in modern
production environments. We continue by listing these aspects
and mention how we aim to address them in this work.

We first focus on the aspect of evaluation in literature
and compare it to functional requirements of log parsing
in industry. In literature, across many studies, an evaluation
metric called parsing accuracy [10] is used, adopted as the
standard for evaluation [3], [12]–[14]. However, at a closer
look, even though a valid metric, it provides estimates for
something only marketed as log parsing. Whereas the name
‘parsing accuracy’ implies that this metric measures how well
a text string is processed into separate components, the de-
facto definition of this metric in literature is the segmentation
of text strings into different clusters. This, although relevant
in scenarios where log clustering is the goal, may actually
provide misleading comparisons in literature for log parsing

1‘Log parsing’ is sometimes used interchangeably with ‘log abstraction’ or
‘event template extraction’.
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and a poor translation of results in research and expectation
in industry, leading to e.g., an accuracy of 73% on average in
literature [3] where only 20% of target fields are identified in
practice (Section III-B). This subtle difference has been also
been noticed recently [15], [16], and in our experiments we
further showcase its relevance and the effects of accounting
for it, by conducting an analysis of log parsing performance
on (i) publicly available data, (ii) data that resembles industry
logs, and on (iii) actual real-world industry logs.

The second aspect of focus in this work is the representative-
ness of the evaluation in literature for actual software systems
in industry today. In particular, we argue that evaluation data in
literature stems from large-scale applications standardized on
single technologies [17] (e.g., monolithic application) whereas
modern software systems in industry today are comprised
of flexible and easy-to-evolve architectures [18] (e.g., mi-
croservices) which have a strong tendency to produce more
heterogeneous log data as a result [2], [15]. We argue that
log parsing evaluation data no longer fully reflect what is
found in the context of contemporary real-world systems,
e.g., some of the current evaluation datasets in the field are
even comprised of 15 year-old logs [19]. Ideally, experiments
should be conducted on production data but we acknowledge
that organizations are reluctant to share such data with re-
searchers, for instance, due to privacy, confidentiality, and
security concerns.

In this work, we address the aforementioned issues by pre-
senting a novel tool, LOGCHIMERA, that generates data from
low-complexity public data sets like the ones used in the state-
of-the-art literature and creates new datasets that resemble
industry logs and thereby enable realistic comparisons of a
variety of log parsing methods. We propose two techniques,
mixing and fuzzing, that jointly allow us to approximate the
complexity of real-world production logs.

Our paper makes the following contributions: (1) An evalua-
tion of log parsing considering metrics that aim to strengthen
its connection and applicability to industry, on various log
data, including real-world industry data collected from the in-
frastructure of a large financial institute; (2) An analysis of the
characteristics of industry logs compared to publicly available
data; (3) Two publicly available datasets for benchmarking:
one for running log parsing experiments and one that enables
generating synthetic data that contains similar characteristics
to industry logs; (4) A tool, LOGCHIMERA, that enables
creating data that resembles industry logs’ heterogeneity, and
testing on custom data with varied levels of heterogeneity,
enabling obtaining estimates for log parsing’s performance
in industry contexts. Our contributions lay the foundation for
uniting past research efforts, enabling future research efforts to
compound, and creating a solid connection between research
and industry log parsing.

All code and data used for the implementation as well as
the experiments are available as open source under https:
//github.com/spetrescu/logchimera.

II. BACKGROUND AND RELATED WORK

Automated log analysis involves a sequence of steps that
collectively aim at translating log data into actionable insights.
This reduces the complexity of the overall process by tackling
a number of intermediate (easier) problems that can lead to
distilling critical information from the logs. The first step
usually is to abstract away from runtime logs, as subsequent
steps expect data to have a particular structure. To do that,
most techniques require a basic syntax-derived exploration and
interpretation of the logs [20], known in the literature as log
parsing [3], [13], [21]–[23].

Log parsing transforms runtime logs by attempting to
discover (1) the underlying log templates corresponding to
the static part of the logging statements in the software,
(2) their respective parameters corresponding to the dynamic
part of the logging statements, and (3) by appending log
meta information. Log meta-information, such as PID, Date,
Timestamp, Level, Component, etc. is usually added by a
logging framework [24] and thus relatively easy to obtain [10].
Consequently, the main challenge of log parsing is discovering
log templates and parameters.

LOG.info("Input size for job " + job.jobId + " = " + inputLength + 
 ". Number of splits = " + splits.length);

Original logging statement

Input size for job job_1445062781478_0011 = 1256521728. Number of 
splits = 10

Runtime log

         Input size for job <*> = <*>. Number of splits = <*>

Parsed log

         [“job_1445062781478_0011”, "1256521728", "10"]

Template

Variables

Fig. 1. Example of log parsing process. The discovered constant parts
represent the log template, whereas variables are replaced by generic tokens:
‘<*>’.

Many efforts have gone into log parsing (1), result-
ing in different algorithms such as IPLoM [25], LogClus-
ter [26], LenMa [27], NLM-FSE [28], Drain [29], NuLog [16],
ELA [30], etc., and (2) surveying log parsing to provide useful
overviews of the field [3], [10], [12]–[14].

The different proposed log parsing methods can be grouped
into two main categories by the mode in which they process
logs [10], [13], namely offline and online.

Offline methods process log data in batches and discover
templates given a static set of log messages. They require
a training phase, during which the templates are discovered.
Subsequently, they parse incoming logs by matching with the
templates found during training in either batch or stream [13].
As changes/updates in software can use new log templates, one
drawback of offline approaches is that it requires the training
phase to be re-run periodically.

Online methods process log data item by item in a streaming
manner, and do not require a batch of data to be available
before executing. These (methods) discover log templates

https://github.com/spetrescu/logchimera
https://github.com/spetrescu/logchimera
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Fig. 2. (a) Clustering of offline approaches. (b) Clustering of online approaches.

without an offline training phase, and as log templates are
being updated dynamically, such methods can be integrated
seamlessly for downstream tasks [10]. Online parsers are
recommended when the decision time is relatively short (e.g.,
trying to predict incidents in a software system) and logs need
to be processed on the fly.

In Figure 2, we display the log parsing methods proposed in
the literature, illustrating how these cluster together based on
their underlying algorithmic approach. As we observe in the
figure, many methods are designed for parsing logs offline,
whereas fewer methods parse logs online. However, from
our experience in industry and similarly to what Mahgoub et
al. [31] claim, we observe that there can indeed be hesitance
in industry for applying offline methods, which, although
valuable, are mostly avoided by practitioners as they require
a significantly higher degree of maintenance, such as constant
retraining, and are often times insufficient for real-time use-
cases.

III. A CRITIQUE OF LOG PARSING EVALUATION

While log parsing has been studied since the advent of
commercial software systems, we claim that the de-facto stan-
dard for evaluating log parsing methods provides incomplete
performance estimates, bears a strong potential for generating
confusion around the role of log parsing, and ultimately creates
a disconnect between research and practice. The relevance
of this observation is also confirmed by recent studies [15],
[16], and we further aim to highlight it: we first reiterate the
goals of log parsing, and subsequently discuss metrics that can
complement the current de-facto metric toward strengthening
the evaluation methodology of the field.

A. The Choice of Metrics

Log parsing is formulated clearly as the task of mining the
underlying log templates that generate runtime logs [13], [32]–
[35]. However, a close inspection of the de-facto standard for
evaluation –parsing accuracy [3]– reveals that, even though
a valid metric, it provides incomplete performance estimates,
as this metric disregards the quality of output (parsed logs)
completely. Specifically, it assesses the parsers’ ability to

Runtime logs

Gdth Label 1 “Machine <*> currently at <*> CPU”

Gdth Label 2 “Machine <*> is not responding”

Ground truth label (gold standard)

Template 1 “Machine <*> currently at <*> CPU”

Template 2 “Machine <*> is not <*>”

Output (parsed runtime logs)

Gdth Label 3 “Machine <*> is now connected”

Template 3 “Machine <*> is now <*>”

✔

❌

❌

Runtime Log 1 “Machine AbxHn currently at 80% CPU”

Runtime Log 2 “Machine XnsdeIs is not responding”

Runtime Log 3 “Machine AjdnuNq is now connected”

Log template accuracy = 33.33%Parsing accuracy = 100%

Fig. 3. Difference between parsing accuracy (considered by He et al. [10])
and log template accuracy. Even though Template 2 and Template 3
do not match Gdth Label 2 and Gdth Label 3 respectively, under
the most prevalent metric in the field (parsing accuracy), the templates are
considered to be extracted correctly, with an accuracy of 100%.

classify logs, rather than assessing the quality of the log
templates that they generate. We illustrate this in Figure 3:
even though two out of three parsed logs do not match their
corresponding ground truth templates, a parsing accuracy of
100% can still be obtained. This is problematic in practice,
especially in scenarios where the expected parsed output is to
be used, e.g., if variable names are to be extracted and used
by downstream processes. We attribute the reason why this
disconnect has not been sufficiently researched and addressed
so far to the low adoption of log parsing techniques in practice
and the marginal degree of automation in actual log analysis
pipelines. Overcoming this disconnect between state-of-the-art
evaluation methods and actual requirements for log automa-
tion, however, is paramount to addressing the needs of industry



applications and ensuring that crucial information does not
remain undetected due to the manual effort of analysis.

To remove the ambiguity around the goal of log parsing,
we (re)define it as the task of identifying log templates and
log variables in runtime log messages, and, to ensure that
log parsing evaluation also reflects this goal, we consider two
evaluation metrics, namely log template accuracy and edit-
distance. We refer to log template accuracy as the ratio of the
number of correctly parsed logs, over the total number of logs;
a log message is parsed correctly if its textual content matches
the ground truth template (generated by human experts or
mined from software code). By doing so, we elevate the task
of log parsing to the same standards as they exist for related
problems in information retrieval. Secondly, to establish a
systematic understanding of the quality of parsing, we rely on
the edit-distance in the form of the Levenshtein distance [36].
This metric is a more fine-grained alternative to log template
accuracy as it determines how close the parsed template is
from its respective ground truth label. The relevance of these
metrics is also confirmed in recent works, where log template
accuracy and edit-distance are adopted by Liu et al. [15] and
Nedolski et al. [16], respectively.

B. Log Parsing Accuracy Scrutinized

Although a large and growing body of literature has investi-
gated the log parsing problem, the implementations of many
log parsing methods are not publicly available. Fortunately,
Zhu et al. [3] implemented 13 of the most representative
approaches in the field, which represents a solid foundation for
comparison. Apart from including these 13 in our experiments,
we selected one other publicly available method (NuLog [16]),
which resulted in evaluating a total number of 14 log parsing
approaches. We display these in Table I.

TABLE I
LOG PARSING APPROACHES USED IN OUR EXPERIMENTS.

Year Method Year Method
2003 SLCT [37] 2015 LogCluster [26]
2008 AEL [38] 2016 LogMine [39]
2009 LKE [40] 2016 LenMa [27]
2010 LFA [41] 2017 Drain [29]
2011 LogSig [42] 2018 MoLFI [43]
2012 IPLoM [25] 2019 Spell [44]
2013 SHISO [45] 2020 NuLog [16]

Based on the goals of log parsing and the performance
metrics considered in the previous section, parsers are tested
on log data in the context of modern software ecosystems.

We consider nine publicly available datasets that have been
used extensively in the field for evaluation. Compared to
log data generated by modern systems, these contain logs
generated within less complex software environments. Conse-
quently, the log parsing methods are expected to perform well.
However, our findings indicate that even for homogeneous
data (of a single, isolated application), parsers are not able
to generate templates that match their respective ground truth
templates, and compared to the previous estimates in the field,

we discover that the actual performance differs by a large
margin. The results of this experiment are summarized in
Tables II and III.

Finding 1: Previous log parsing evaluations misrepresent
the quality of existing solutions. Previous studies obtained
parsing accuracy average results of 0.73 [10]; however, under
the considered metric, an average log template accuracy of 0.2
is obtained. One might think that an average 0.73 parsing ac-
curacy represents matching 1460/2000 templates, whereas, the
actual number of templates matched, indicated by log template
accuracy, is 400/2000. Thus, our results differ from previous
estimates substantially and highlight the incompleteness and
ambiguity of the de-facto standard for evaluation in the field.

Finding 2: Robustness of the method depends on the
dataset. We further discover that, due to the heavily-reliant
design on hard-coded rules and heuristics, performance seems
to correlate with the particularities of datasets. For example,
most methods obtain accuracies of approximately 0.6 for the
Apache dataset, 0.3 for BGL, 0.6 for HPC, 0.1 for Spark, or 0
for HDFS. Nevertheless, we observe that NuLog, on the other
hand, is significantly more robust with an average accuracy of
0.47. Based on this observation, we argue that it is worthwhile
to consider methods that are not heavily reliant on hard-coded
rules and heuristics but instead employ methods based on
machine learning that have the potential to generalize better
in practical applications.

C. The Issue of (Insufficient) Log Complexity

As modern software subsumes various components that gen-
erate log data (data engines, processing systems, compute
infrastructures, etc.), log heterogeneity is something to expect
in industry [2], [46]. Consequently, to test parsers on heteroge-
neous logs, we create a dataset that represents a contemporary
software system by drawing a uniform sample across the nine
datasets considered in the previous experiment. To demonstrate
the similarity between this dataset and real industry data, we
consider three metrics that act as a proxy for log heterogeneity;
in Table IV we present the differences between the log datasets
used in our experiments and we visualize these in Figure 4. We
observe that the combined dataset is more reflective of industry
compared to the other datasets, as it consistently scores high
on all proxy metrics, namely obtaining the highest value for
one of the proxy metrics and two second-to-highest values for
the other two proxy metrics. Thus, this dataset is considered
the baseline for estimating how log parsers perform in practical
settings.

We re-run the log parsing methods on the combined dataset
and we discover that a comparison between the homogeneous
and the heterogeneous case indicates that methods show a
marked performance drop. We attribute this result to the
limited variability of logs that originate from a specific system:
as methods have to parse the same amount of log data as
in the previous experiment, but with fewer logs from the
same distribution (system), it becomes harder for parsers
to recognize variables and to generate quality templates, as
illustrated, for example, by the performance drop of LFA from



TABLE II
LOG TEMPLATE ACCURACY RESULTS AFTER RUNNING EACH METHOD 10 TIMES, FOR EACH DATASET (2K LOGS). THE MEASUREMENTS ARE AVERAGED

OVER 10 RUNS AND ALL STANDARD DEVIATIONS WERE BELOW 1%. WE DEPICT IN BOLD FONT THE BEST RESULTS IN EACH CATEGORY.

Dataset AEL Drain IPLoM LenMa LFA LKE LogCluster LogMine LogSig MoLFI NuLog SHISO SLCT Spell
Apache 0.694 0.694 0.694 0.000 0.688 0.000 0.000 0.694 0.000 0.270 0.560 0.000 0.424 0.694

BGL 0.341 0.341 0.292 0.082 0.230 0.057 0.067 0.220 0.081 0.324 0.853 0.064 0.207 0.196
HDFS 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.435 0.000 0.000 0.000

HealthApp 0.164 0.238 0.158 0.136 0.149 0.133 0.138 0.220 0.126 0.166 0.341 0.041 0.322 0.152
HPC 0.644 0.620 0.638 0.632 0.609 0.360 0.632 0.632 0.509 0.632 0.827 0.226 0.661 0.530
Mac 0.172 0.224 0.041 0.132 0.101 0.172 0.162 0.228 0.118 0.042 0.274 0.163 0.148 0.032

OpenStack 0.018 0.018 0.000 0.018 0.008 0.010 0.010 0.010 0.010 0.000 0.359 0.018 0.119 0.000
Spark 0.194 0.194 0.192 0.004 0.190 0.001 0.006 0.038 0.000 0.208 0.204 0.004 0.543 0.192

Windows 0.154 0.159 0.001 0.154 0.142 0.148 0.153 0.156 0.150 0.006 0.387 0.151 0.140 0.004
Combined Dataset 0.267 0.258 0.214 0.140 0.180 0.140 0.128 0.258 0.092 0.180 0.323 0.067 0.280 0.186
Industry Dataset 0.054 0.056 0.041 0.001 0.022 0.001 0.002 0.054 0.000 0.048 0.050 0.002 0.034 0.041

TABLE III
EDIT-DISTANCE RESULTS AFTER RUNNING EACH METHOD 10 TIMES, FOR EACH DATASET (2K LOGS). THE MEASUREMENTS ARE AVERAGED OVER 10

RUNS AND ALL STANDARD DEVIATIONS WERE BELOW 1%. WE DEPICT IN BOLD FONT THE BEST RESULTS IN EACH CATEGORY.

Dataset AEL Drain IPLoM LenMa LFA LKE LogCluster LogMine LogSig MoLFI NuLog SHISO SLCT Spell
Apache 10.426 10.426 10.442 13.760 10.576 14.872 16.274 10.426 14.456 10.179 4.679 12.648 11.234 10.442

BGL 5.014 4.930 6.882 8.373 12.524 12.582 12.955 18.598 11.921 10.969 2.981 8.630 9.841 7.900
HDFS 8.820 8.820 16.208 10.762 30.819 17.940 28.340 16.524 18.989 19.843 2.867 10.114 13.641 9.274

HealthApp 19.093 18.502 11.882 16.540 20.277 28.422 16.844 19.598 17.088 21.859 11.595 24.430 13.840 8.540
HPC 1.405 2.015 2.323 2.906 3.182 7.649 3.580 3.218 4.419 4.845 1.275 7.854 2.625 5.129
Mac 19.534 19.882 20.928 19.984 41.804 26.260 21.328 17.048 28.043 28.273 21.417 19.810 34.560 22.593

OpenStack 17.142 28.386 23.330 18.535 28.138 29.173 31.486 23.980 21.881 67.894 5.605 18.582 20.986 27.984
Spark 3.861 3.532 5.246 10.945 9.178 18.116 17.082 16.004 12.968 14.146 2.921 7.910 6.028 6.129

Windows 11.975 6.172 15.758 20.662 10.238 11.834 6.967 6.919 7.667 11.943 6.067 5.624 7.006 4.406
Combined Dataset 13.612 17.302 14.094 18.559 24.144 27.633 21.306 15.858 24.756 19.021 8.721 21.791 22.274 17.454
Industry Dataset 21.959 27.201 24.122 32.280 41.960 68.551 47.006 23.506 37.911 49.145 23.239 31.908 46.690 24.664
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Fig. 4. (a) Unique number of characters versus unique of words. (b) Unique number of log lines’ character length versus unique number of words. (c) Unique
number of log lines’ character length versus unique number of characters.

TABLE IV
STATISTICS FOR THE LOG DATASETS ANALYZED.

Dataset Apache BGL HDFS HealthApp HPC Mac OpenStack Spark Windows Combined Industry
No. unique words 874 2068 3599 1512 510 2981 1445 1970 1206 3123 4421

No. unique characters 46 75 56 71 65 90 72 70 82 91 92
No. unique log lengths 9 114 59 55 50 186 50 63 66 157 181

scores of 0.688 or 0.230 to 0.180 log template accuracy and
from 10.576 or 12.524 to 24.144 edit-distance in Tables II
and III, respectively.

Specifically, one assumption when parsing logs is that it is
expected for log parsers to distinguish between the constant

and variable parts of a message by leveraging access to similar
messages that are different only in terms of variables. For ex-
ample, considering the following log messages: ‘Template
log 1’ and ‘Template log 2’, it is expected for meth-
ods to leverage the similarity between these two, and even-



tually discover the underlying template: ‘Template log
<*>’. However, if log data has more diversity and fewer logs
that originate from the same system, the performance takes
a substantial hit in terms of log template accuracy and edit-
distance, as the initial assumption is violated and methods are
not able to discover patterns in the data as easily.

Finding 3: Currently used log datasets are of insufficient
complexity to generalize to real-world applications. The
field has not adapted to the rapid changes witnessed over
the past decade in the software landscape, which in turn
might make current log parsing methods harder to apply,
given the change of context. Our results indicate that due
to the increase in size and complexity of systems and due
to the plethora of subsumed infrastructure resources, the logs
generated by these systems have become increasingly more
heterogeneous [2], [46], and we showcase that some of the
underlying assumptions for applying log parsing may have
changed and not hold anymore.

To further exacerbate the problem, current and emerging
trends towards more fine-grained componentization (contain-
ers, microservices, etc.) will cause these systems to become
even more complex in the future [47], and consequently
generate log data of significantly larger volume and increased
complexity. Production systems can already create 30-50 Gi-
gabytes of logs per hour [48], some even reaching terabytes
of log data daily [8]. From our own first-hand experience with
industry logs, we observe that contemporary production logs
have a significantly higher length compared to logs generated
within older monolithic architectures that are commonly used
for benchmarks in academic work, which is a consequence
of cascaded information from the plethora of components
subsumed by the system.

D. Industry Data: Dealing with Real-World Complexity

To evaluate the performance of log parsing techniques in real-
world settings, we obtained access to production data through
an ongoing collaboration with a major financial institution.
Unfortunately, it is rare for academics to have access to such
data as it is usually considered sensitive in nature. To make the
data usable for evaluation, we had to manually label it with
the help of domain experts from the institution who work in
job roles that commonly require the analysis of logs for their
operational duties.

As shown in the last rows of Tables II and III, the
results show a significant further performance drop from
our combined dataset. The highest log template accuracy is
roughly 0.05, which indicates that the best performing methods
parse only 100/2000 log messages correctly, highlighting the
difficulty of applying log parsing in production settings. For in-
stance, methods such as LogMine, which previously obtained
accuracies as high as 0.694 for publicly available data and
0.258 for combined publicly available data reach an accuracy
of only 0.050 on the industry data.

Finding 4: Data heterogeneity/diversity is a significant
issue for current log parsing methods. As a consequence of
the results obtained on the combined and industry datasets, we

argue that data heterogeneity is a significant issue for applying
current log parsing methods. To understand the reasons behind
the performance drop, we look at that the similarity between
the industry dataset and the combined dataset and observe that
it is higher than the similarity between the industry dataset and
the individual homogeneous datasets. Specifically, the proper-
ties of the data found in the industry dataset are very similar
to the properties of the combined dataset, as logs originate
(similarly) from different data distributions (systems), as a
consequence of being centralized. In comparison to the com-
bined dataset, the log diversity found in the industry dataset
is higher, but the properties of the dataset are intrinsically the
same (clusters of log data generated by different systems).
Compared to the nine homogeneous datasets, the log diversity
found in the industry dataset is incomparably higher, as it
is generated by a significantly larger number of software
components. Consequently, this makes it extremely difficult
for parsers to discover the underlying templates on industry
data, which is reflected in the log template accuracy results,
and thus the problem is arguably harder than expected from
the results obtained on the combined dataset. In terms of edit-
distance we observe a drop in performance, which can also be
attributed to aspects such as jargon [49] and high information
denseness. Specifically, compared to publicly available data,
for a production log, templates and parameters can be harder
to separate and identify. For example, it might be that an
error occurs on a specific infrastructure resource, which is then
propagated to other resources which concatenate and display
similar information. In this case, parameters can contain
various alphanumeric characters, cascaded messages/nested
templates, and also symbols that make it hard for parsers to
generate templates that match the corresponding ground truth
labels.

Finding 5: Lack of access to real-world data hinders log
parsing’s robustness to real-world scenarios. We observe
that industry data possess qualities that are not as present in
publicly available data, potentially making log parsing prone
to failure in production environments. Given the performance
of log parsing on heterogeneous data, it might be unfeasible
to train and design methods on publicly available data as
they do not contain the characteristics of industry logs, and
it might lead log parsing to ultimately fail in real-world
production scenarios. Thus, to increase robustness in real-
world scenarios and enable designing methods given industry
data characteristics, data that possesses such characteristics is
required.

We acknowledge, however, that having access to real-world
industry data will always be problematic, as it is well known
that companies are reluctant to share production logs due to
various concerns, such as privacy, security, etc. Nevertheless,
lack of access to real-world data might threaten the research
field’s pace of progress and practical relevance, as it corners
log parsing and puts it at a disadvantage, i.e., publicly available
data is easy/easier to parse, and solving log parsing on these
data does not translate well to applying it in real-world
production scenarios. To close this gap, we aim to address this



issue by creating a tool able to generate data that resembles
industry logs, without accessing real-world proprietary data.

IV. LOGCHIMERA: A TOOL FOR EVALUATION ON
HETEROGENEOUS DATA

To address the lack of data for designing and testing log
parsing in real-world production scenarios, we designed and
implemented LOGCHIMERA, a software tool that acts as a
proxy to estimate performance on data that resembles in-
dustry logs. Specifically, the tool enables (1) estimating log
heterogeneity compared to logs as typically found in real-
world industry scenarios, (2) increasing log heterogeneity
for a given dataset (via mixing data and fuzzing), and (3)
enabling a simple interface for both researchers and prac-
titioners to compare state-of-the-art methods using custom
data. The name of the tool is inspired by the mythological
creature chimera, which symbolizes a fusion or combination of
different elements; and in this case, it reflects heterogeneity by
enabling bringing together diverse formats from various logs to
resemble industry-like contexts. In the following sections, we
present the tool by discussing its functionality and evaluating
its capabilities.

A. Functional Requirements for LOGCHIMERA

As we have observed in the previous sections, it becomes
tremendously difficult to parse increasingly heterogeneous data
(Findings 1 to 3). Consequently, to enable designing and
testing using such data, it is necessary to first have a way
to estimate log data heterogeneity for a given dataset (Finding
4). Subsequently, based on the estimated heterogeneity, it is es-
sential to have a method to tackle increasing it further to match
complex production logs, as we have observed that publicly
available data rarely possess the complexity of industry logs
directly (Finding 5). However, heterogeneity cannot be created
artificially from thin air because it needs to be ensured that
the resulting log is still syntactically meaningful and resembles
log output from realistic applications. With LOGCHIMERA, we
present a combination of two methods, mixing and fuzzing,
which jointly can approximate the heterogeneity of production
logs using publicly available log datasets like the ones we used
in the previous evaluation.

To further facilitate the adoption of log parsing methods in
practice, we provide an easy-to-use toolkit where people can
simply plug in new datasets or new methods and evaluate the
resulting performance under realistic conditions. By producing
statistical properties of datasets, we enable industry partners to
communicate fundamental metrics about the heterogeneity of
their log data and consequently researchers to synthetically
generate datasets that resemble these statistical properties.
Thereby, we hope to help close the gap between the evaluation
of log parsers under lab conditions and their performance in
production settings.

Practically, given all of the aforementioned aspects, we con-
sider the following functional requirements for LOGCHIMERA:
FR1: Estimate log heterogeneity for a given dataset:
Given a log dataset as input, estimate its heterogeneity toward

obtaining an estimate of resemblance to industry real world-
production data.
FR2: Create logs that posses industry-like characteristics
from publicly available data: Given a log dataset as input,
modify its contents toward increasing its heterogeneity and
bringing it closer to industry logs.
FR3: Enable access to a simple interface to test state-
of-the-art methods against industry-relevant metrics and
data: Given a log dataset as input and a set of methods
to be tested, provide performance estimates for the quality
of templates generated and the parsers’ capacity to extract
variables.

In developing the tool, we believe that factors such as
usability, transparency and extendability are crucial for future
efforts to compound and for strengthening the connection
between log parsing in academia and industry.

B. Estimating log heterogeneity

LOGCHIMERA estimates heterogeneity as a function of three
proxy metrics, namely (1) number of unique words,
(2) number of unique characters, (3) number of
unique lines of different length. These proxy
metrics are used as they provide a simple while reliable
way for understanding data heterogeneity: we consider these
metrics as logs resemble natural language, and, intuitively,
these metrics offer an estimate for how diverse a set of logs
is, for instance, a text that contains a higher number of unique
of words will be more diverse.

As it can be inconvenient to account for all three dimensions
at once when returning an estimate for the heterogeneity of a
particular dataset, to obtain a simple and easy to use estimate
of heterogeneity, we add the three dimensions (proxy metrics)
together into a weighted sum, resulting in a single metric:
H (log heterogeneity). This is mainly to provide an intuitive
proxy metric for heterogeneity; internally, the tool accounts
for all three dimensions separately, and the individual scores
can be accessed by the user.

In computing H we assign different weights to each individ-
ual proxy metric: weighing them differently is motivated by
the empirical observation that some of them are more relevant
to how heterogeneous a dataset is than others. For instance, in
Figure 4, although some datasets like HDFS, that are highly
homogeneous –essentially containing a single log line only
with different variables– can score high in some categories,
in this case unique number of words, while actually
not being heterogeneous. Consequently, to test this hypothesis,
we compute the variance of the proxy metrics across all 11
datasets in Table IV: we argue that if the variance is higher, this
means the values are more spread out, resulting in a higher
disconnect between publicly available data and industry (as
industry scores highest), thus providing a better estimate for
heterogeneity. Specifically, data that obtains a lower variance
signifies that, for a that particular metric, industry is closer to
publicly available data, whereas if the variance is higher, we
believe the disconnect is higher. We compute the normalized
variance of each individual metric and display the results in



TABLE V
VARIANCE FOR PROXY METRICS THAT MOTIVATE WEIGHING THESE

DIFFERENTLY WHEN ESTIMATING HETEROGENEITY.

No Metric σ2

1 No. unique words 0.278
2 No. unique characters 0.159
3 No. unique log lengths 0.331

Table V. To account for the the limited number of datasets
used in the analysis, we consider a 40/20/40 weighing, as
we observe that the no of unique characters obtains
roughly half of the variance of the other two metrics2. Conse-
quently, we consider the following formula for estimating log
heterogeneity, H:

H = 0.4 ∗ nuw%+ 0.2 ∗ nuc%+ 0.4 ∗ nuldl%

where nuw, nuc and nuldl are number of unique
words, number of unique characters, and
number of unique lines of different
length, respectively.

C. Increasing Log Heterogeneity through Mixing

From analyzing publicly available data, we discover that it
is usually the case for these data to contain duplicates, or,
in many cases to be generated by only a few amount of
templates. For example, the number of ground truth templates
for the Apache, HDFS, HealthApp, HPC, OpenStack,
Spark and Windows is below 70, which is roughly 3.5%
to the ratio of logs in the dataset, meaning that many logs
share the same ground-truth label, resulting in a low score
of heterogeneity. Consequently, to increase the heterogeneity
in such scenarios, we apply a similar strategy to the one
we (manually) used when designing the Combined Dataset
(Section III-C) and automate the process behind it: based
on the required heterogeneity for a dataset, we replace a
certain amount of logs from the original set and mix in a
percentage of heterogeneous data. This, however, does not
mean that the resulting dataset is changed entirely, but rather,
the previously monolithic application log is augmented to
approximate a more diverse and heterogeneous landscape of
applications contributing to a shared log, as we typically find
it in production settings.

Practically, for increasing the heterogeneity of a dataset via
mixing, we gradually replace a percentage of the most frequent
entries (based on computing a frequency map of the templates)
until a desired level of heterogeneity is obtained: the entries
that are used for replacing the original data are taken from a
pool of heterogeneous logs, which was created by running
an analysis on the nine available datasets and filtering all
logs but the 5% outliers of each dataset, which resulted in
a static pool of approximately 500 log lines over 9 datasets
(of 18K log lines in total). This technique is based on the

2We are aware, however, that this is only an approximation, but finding the
“true” weighing of the metrics is not the focus of this work.

TABLE VI
PERFORMANCE AFTER INCREASING HETEROGENEITY VIA MIXING. ALL

DATASETS CONTAIN 2K LOGS. THE MEASUREMENTS ARE AVERAGED
OVER 10 RUNS AND ALL STANDARD DEVIATIONS WERE BELOW 1%. THE
SCORE IN PARENTHESIS REPRESENTS THE AMOUNT OF LOGS THAT WERE
REPLACED THROUGH MIXING OTHER DATA, E.G., APACHE (5) HAS HAD
5% OF ITS MOST FREQUENT LOG LINES REPLACED BY HETEROGENEOUS

LOGS FROM OTHER DATASETS.

H level Dataset AEL Drain IPLoM
0.219 Apache init 0.694/10.426 0.694/10.426 0.694/10.442
0.530 Apache (5) 0.653/15.925 0.653/15.923 0.653/15.369
0.640 Apache (10) 0.618/19.596 0.618/19.602 0.618/19.414
0.737 Apache (15) 0.586/23.468 0.586/23.495 0.586/22.809
0.816 Apache (20) 0.552/27.504 0.552/27.547 0.552/26.877
0.886 Apache (25) 0.514/32.265 0.514/32.135 0.514/31.34
0.259 HPC init 0.644/1.405 0.620/2.015 0.638/2.323
0.524 HPC (5) 0.605/6.510 0.581/7.081 0.599/7.257
0.661 HPC (10) 0.566/11.734 0.542/12.272 0.560/12.301
0.735 HPC (15) 0.525/16.720 0.501/17.300 0.519/17.124
0.817 HPC (20) 0.486/22.040 0.462/22.566 0.480/21.809
0.881 HPC (25) 0.447/27.875 0.423/28.234 0.441/27.349
0.608 BGL init 0.341/5.014 0.341/4.930 0.292/6.882
0.756 BGL (5) 0.321/11.004 0.321/10.940 0.273/12.665
0.833 BGL (10) 0.303/15.623 0.303/15.495 0.254/16.325
0.908 BGL (15) 0.285/20.665 0.285/20.639 0.251/20.970
0.949 BGL (20) 0.265/25.665 0.265/25.771 0.216/25.926
0.868 Mac init 0.172/19.534 0.224/19.882 0.041/20.928
0.901 Mac (5) 0.169/25.184 0.217/25.518 0.041/26.410
0.919 Mac (8) 0.169/28.507 0.217/28.838 0.041/29.730
0.830 Combined Dataset 0.267/13.612 0.258/17.302 0.214/14.094

1 Industry Dataset 0.054/21.959 0.056/27.201 0.041/24.122

empirical observation that it is usually the case for infrequent
data to contribute to increasing the three proxy metrics, e.g.,
an infrequent log contains words that are not found in other
log lines of the dataset. To access mixing a dataset toward
increasing its heterogeneity, users simply have to provide (1)
the log dataset to be modified, having each entry separated
by a newline character and (2) the percentage of data to be
replaced in the original dataset, ranging from 0 to 1, which
maps to 0% to 25% (which results in varying the level of
heterogeneity of the mixed dataset).

The runtime of the mixing process (implemented as a part
of a Python3 package), e.g., is in the order of 300ms for
the Apache dataset used in our previous evaluation when
mixing in 500 log lines (25% of the size of the original
dataset) of heterogeneous log data; the runtime for fuzzing
(also implemented as a part of a Python3 package) in this
scenario is in the order of 1.3s.

For evaluating the capabilities of LOGCHIMERA when using
mixing, we test log parsing on nine publicly available datasets
(the same used for the experiments so far). In displaying the
results, we select a subset of four datasets, namely Apache,
HPC, BGL, Mac, having an increasing level of heterogeneity
(based on the measurements obtained in Table IV), ranging
from homogeneous to heterogeneous, i.e., from Apache
init with H 0.219 to Mac init with H 0.868; results
obtained for the other datasets followed a similar trend, thus
we consider the subset representative of all datasets. Subse-



TABLE VII
PERFORMANCE ON APACHE, HPC, BGL, AND MAC AFTER INCREASING HETEROGENEITY VIA MIXING AND FUZZING. MEASUREMENTS ARE AVERAGED
OVER 10 RUNS, ALL STANDARD DEVIATIONS WERE BELOW 1%. THE SCORE IN PARENTHESIS REPRESENTS THE AMOUNT OF LOGS THAT WERE REPLACED

VIA MIXING, E.G., APACHE (25) HAS HAD 25% OF ITS MOST FREQUENT LOG LINES REPLACED BY HETEROGENEOUS LOGS FROM OTHER DATASETS.

H level Dataset AEL Drain IPLoM LFA LogMine
0.219 Apache init 0.694 0.694 0.694 0.688/10.576 0.694/10.426
0.886 Apache (25) 0.514/32.265 0.514/32.135 0.514/31.34 0.509/20.243 0.515/32.016

1 Apache (25) fuzzed 0.078/77.541 0.118/76.820 0.059/45.555 0.231/38.866 0.060/82.104
0.259 HPC init 0.644/1.405 0.620/2.015 0.638/2.323 0.609/3.182 0.632/3.218
0.881 HPC (25) 0.447/27.875 0.423/28.234 0.441/27.349 0.296/17.434 0.436/30.290
0.954 HPC (25) fuzzed 0.242/97.492 0.260/93.240 0.219/45.718 0.141/42.085 0.236/100.324
0.608 BGL init 0.341/5.014 0.341/4.930 0.292/6.882 0.230/12.524 0.220/18.598
0.949 BGL (20) 0.265/25.665 0.265/25.771 0.216/25.926 0.150/22.355 0.104/33.728

1 BGL (20) fuzzed 0.143/95.117 0.143/96.156 0.073/62.862 0.077/46.389 0.016/79.8035
0.868 Mac init 0.172/19.534 0.224/19.882 0.041/20.928 0.101/41.804 0.228/17.048
0.919 Mac (8) 0.169/28.508 0.217/28.838 0.041/29.73 0.098/51.167 0.224/25.933

1 Mac (8) fuzzed 0.018/135.994 0.011/116.706 0.001/112.063 0.013/79.454 0.022/207.376
0.830 Combined Dataset 0.267/13.612 0.258/17.302 0.214/14.094 0.180/24.144 0.258/15.858

1 Industry Dataset 0.054/21.959 0.056/27.201 0.041/24.122 0.022/41.960 0.054/23.506

quently, for this experiment we showcase the results of using
mixing on a subset of three log parsing methods, namely AEL,
Drain and IPLoM; we chose these specifically, as they cover
both online (Drain) and offline (AEL, IPLoM) workflows,
are used for evaluation by various other works in the field
(see Figure 2) and are amongst the most representative works
in the field by number of citations, and as the other methods
followed a similar trend.

In Table VI we showcase the effects on performance, in
terms of log template accuracy and edit-distance, when mixing
in data to publicly available data. We observe that as more
and more data is mixed in, the performance deteriorates
(confirming Finding 4 again), e.g., HPC (25) decreases its
performance compared to its orginal state, HPC initial, from
0.644 to 0.447. As, for each dataset, when sampling logs to be
mixed in we discard the entries that originate from the dataset
about to be mixed, which consequently results in having less
of a pool of sampling points for datasets that are already
intrinsically heterogeneous (as they themselves contributed
to a greater degree to the original pool of heterogeneous
outliers). Lastly, the gradually degrading performance when
increasing the number of mixed data showcases further that
the measurements get closer and closer to the Combined and
Industry datasets respectively. This, however, is to be expected,
and fulfills the purpose of mixing: generating data that is more
heterogeneous, for parsers to test against.

D. Further Increasing Log Heterogeneity through Fuzzing

Motivated by the fact that after a certain threshold mixing
cannot provide any improvements in increasing heterogeneity
(e.g., as this might mean replacing the dataset entirely) we
consider fuzzing, a technique that is known from testing [50]
and, in our case, intended to help approximate industry logs
even further and increase heterogeneity. As we want to ensure,
however, that the structure of the logs remains as unaltered
as possible during the transformation (instead of replacing
with random data that might not resemble logs) we only

replace the variables found in logs. For every log line in
a particular dataset considered for fuzzing, its variables are
replaced with other variables sampled from a pre-computed
pool of data, similar to the pool of data gathered for mixing
(we extracted the variables from the nine publicly available
datasets considered for the experiments, and create a fixed
dataset that acts as a resource for increasing heterogeneity).

TABLE VIII
COMPARISON BETWEEN H LEVEL OBTAINED LEVERAGING LABELED DATA

VERSUS FULLY AUTOMATICALLY BASED ON PARSING RESULTS AND
WITHOUT REQUIRING ACCESS TO LABELS.

Dataset H level gdth H level parsed
Apache parsed (25) fuzzed 1 0.960

HPC parsed (25) fuzzed 0.954 0.938
BGL parsed (20) fuzzed 1 1
Mac parsed (8) fuzzed 1 0.906

The distinction of variables from the static portion of a
log line is, by itself, the result of parsing log data. As
such, we can fully use the results of the previous step for
detecting opportunities for fuzzing and then produce a more
complex and heterogeneous version of the log data for further
evaluation. Clearly, when doing so, the effectiveness of fuzzing
is a function of the performance of the log parser. Therefore,
we consider two setups in the experimental evaluation, the
automated fuzzing based on previous parsing results and
applying fuzzing on a labeled dataset where variables are
annotated by an expert. While labeled data might not always be
available, it is often a prerequisite for training offline methods
and it can serve as a best-case scenario to assess the general
potential of fuzzing.

Table VII shows the evaluation of LOGCHIMERA when
using both mixing and fuzzing. As the results show, fuzzing
is capable of closing the gap between public datasets and
our complex production logs significantly. Specifically, we
observe that after fuzzing, not only does the H level increase
significantly, e.g., reaching 1 for Apache, BGL and Mac,



but the performance on these datasets resembles the same
order of magnitude as the performance on industry, e.g.,
whereas AEL and Drain obtained roughly 0.25 log template
accuracy on the Combined Dataset their performance
drops down to 0.018 and 0.011 which is in the same order of
magnitude with the performance on Industry, 0.054 and 0.056
respectively. There are, however, cases where even though
fuzzing increases heterogeneity significantly, the results do not
match the Industry performance, as it can be seen for HPC:
although performance deteriorates almost double (from 0.447
to 0.242 for AEL) going from mixed data to fuzzed data,
the parsed logs seem to have less complexity, as the industry
results are in another order of magnitude, i.e., 0.050. We argue
that is likely due to mixing and subsequently fuzzing initial
logs that are too homogeneous and thereby doe not contain
enough properties like distinctly different variables that make
these techniques effective. In these cases, one solution could
be to either mix in more data, or consider such scenarios
as baselines for the level of difficulty parsers have to face.
Alternatively, we observe that when the original data is of
higher heterogeneity initially, after mixing and fuzzing, the
logs seem to posses the characteristics of industry logs, e.g.,
we see that for BGL the performance drops to the same order
of magnitude for three out of the five methods considered,
while for the Mac dataset, the performance drops to the same
order of magnitude for all methods, matching production log
complexity.

Furthermore, in Table VIII we compare the heterogeneity
of the datasets in both setups: with or without access to
labeled data. Consequently, we use Drain for parsing the
four displayed datasets, and use the resulting templates and
variables as the basis for mixing and fuzzing. For the former,
we leverage the statistics of the leveraged templates to mix
in data in places indicating logs are generated by the same
template (if generated templates are the same for multiple log
lines we prioritize replacing them with mixed heterogeneous
data), and observe that we are able to match the heterogeneity
of the ground truth labels. E.g., for Apache we obtain parsed
H level heterogeneity scores that are almost identical; it is
expected that the H level parsed will always be lower than
H level ground truth since the log template accuracy is not
perfect. Furthermore, we observe the effectiveness of using
this process, the statistics generated by the templates are good
enough to serve as a basis for enhancing the datasets through
mixing and fuzzing. For the latter, however, we observe a
greater limitation: the quality of fuzzing is a function of how
well the parsers were able to extract variables. This means that
we expect that for datasets that are intrinsically heterogeneous
initially, it will be harder for this process to show the same
level of effectiveness without having better parsers available.
For instance, compared to the other datasets, Mac scores
slightly lower at 0.906, showcasing the phenomenon. Despite
that, we are able to use the parsed variables extracted success-
fully, and increase the heterogeneity of the mixed dataset, e.g.,
going from an initial H level of 0.219 to 0.960 for Apache.

V. THREATS TO VALIDITY

(1) For the sake of reproducibility, we relied on the same
public datasets criticised for not being representative enough
of industry. With LOGCHIMERA, we showed a way how
researchers can use such datasets and enhance them in com-
plexity through mixing and fuzzing to approximate the dis-
tributions of production logs without needing access to the
raw logs. We did not show, however, that our method works
equally well with other datasets.
(2) While acknowledging that our industry dataset may not
fully represent all production logs, we utilized it as a reference
point in our study. In our efforts, we chose industry data we
considered to be challenging, but also representative. By doing
so, we demonstrated the difficulties involved in approximating
the complexity of such datasets; and, in some cases, depending
on the particularities of the software stack and architecture,
alternative industry datasets might be easier or even harder to
parse.
(3) The pragmatic nature of the proxy metrics that underlined
the H level metric may be a threat, as we were unable
to provide conclusive evidence of its accuracy, and as a
consequence, without considering the varying contributions
of different components in estimating heterogeneity may lead
to potentially overemphasizing or underemphasizing certain
factors. However, our tool can be extended and we encourage
future research efforts to potentially propose and incorporate
improved metrics: by allowing for the integration of superior
metrics, our approach can be improved to address these
limitation.

VI. DISCUSSION & CONCLUSION

We have investigated log parsing within the context of modern
software systems, in an effort of applying it in the infras-
tructure of a large financial institute. In our findings, we
first discovered that log parsing evaluation misrepresents the
quality of existing solutions, and highlighted recently proposed
metrics that might strengthen the evaluation methodology, and
subsequently showed the performance of parsers under these
metrics. This led to discovering that methods’ robustness is
heavily dependent on the particularities of a given dataset,
and that data heterogeneity poses a real problem to parsers.
This is especially relevant, as industry logs are typically
heterogeneous, thus threatening the applicability of log parsing
in practice. Furthermore, we discovered that one of the main
reasons for the issue of performing poorly on heterogeneous
data is the lack of access to designing and testing on it: lack
of access to real-world data hinders log parsing’s robustness
to real-world scenarios. Consequently, to address the lack of
data, we designed and implemented LOGCHIMERA, a software
tool that acts as a proxy for generating and estimating perfor-
mance on data that resemble industry logs. We hope that our
contributions will create a solid connection between research
and industry log parsing, adapting its evaluation to the era of
modern software systems.
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