10

A Monitoring and Testing Framework
for Critical Off-the-Shelf Applications
and Services

Nuno Antunes!, Francesco Brancati?, Andrea Ceccarelli**,
Andrea Bondavalli** and Marco Vieira!

ICISUC, Department of Informatics Engineering, University of Coimbra,
Portugal

ZResiltech s.r.1., Pontedera (PI), Italy

3Department of Mathematics and Informatics, University of Florence,
Florence, Italy

4CINI-Consorzio Interuniversitario Nazionale per 1'Informatica-University
of Florence

One of the biggest verification and validation challenges is the definition of
approaches and tools to support systems assessment while minimizing costs
and delivery time. Such tools reduce the time and cost of assessing Off-The-
Shelf (OTS) software components that must undergo proper certification or
approval processes to be used in critical scenarios. In the case of testing,
due to the particularities of components, developers often build ad hoc and
poorly-reusable testing tools, which results in increased time and costs. This
chapter introduces a framework for testing and monitoring of critical OTS
applications and services. The framework includes (i) a box instrumented for
monitoring OS and application level variables, (ii) a toolset for testing the
target components, and (iii) tools for data storing, retrieval and analysis. We
present an implementation of the framework that allows applying, in a cost-
effective fashion, functional testing, robustness testing and penetration testing
to web services. Finally, the framework usability and utility is demonstrated
based on two different case studies that also show its flexibility.

201

202 A Monitoring and Testing Framework for Critical Off-the-Shelf Applications

10.1 Introduction

Verification and Validation (V&V) has been largely applied in scenarios that
involve life and mission critical embedded systems, and is dominantly used
as a design-time quality control process for the purpose of evaluation of the
compliance between of a product, service, or system [1]. Checking a system
using traditional V&V methods frequently exceeds the effort needed for the
core development time. In fact, rigorous V&V in on the fundaments of critical
applications and has been applied in several domains as the railway [2] and
space [3], and recently a strong effort has been made to standardize these
practices for automotive [4].

Although the industry rapidly turns to system integration based on the
reuse of hardware and software components, also known as off-the-shelf
(OTS) components, it is still necessary to apply rigorous V&V techniques to
assess the applications. While hardware OTS are nowadays widely accepted,
and used (they have their own certification), software OTS still creates serious
difficulties to companies, which are on one hand constrained to meet prede-
fined quality goals, whereas, on the other hand, are required to deliver systems
at acceptable cost and time to market. Large companies mainly follow a
brute-force approach by focusing large volume investment into tooling and
in-house training, but even high-tech SMEs are highly vulnerable to the new
challenges.

In this context, one of the biggest challenges to the V&V community is to
define methods, strategies and tools able to validate a system adequately,
while simultaneously keeping the cost and delivery time reasonably low.
The key part of the challenge is to establish a proper balance between
achievable quality with a particular technique (in terms of RAMS attributes)
and the costs required for achieving such quality. The problem grows when
it is necessary to include COTS components in a critical system that must
be certified. As a matter of fact, although modern standards consider the
possibility of assessing products, which encompass COTS software, this is
still considered a challenge [5].

In industrial practices, integration and usage of OTS software compo-
nents in critical systems is generally supported by two different assessment
processes, both to understand the behaviour of the component and to assess
that it does not introduce hazards in the system. In the first, whenever
applicable, the activity is limited to assess the integration, verifying that
the OTS component is properly wrapped in the system without affecting
system’s safety. In the second, a complete assessment of the OTS component
is performed; this may include activities as production of documentation,

10.1 Introduction 203

reverse engineering, and static analysis, among others. For companies, this
usually means a reasonable amount of effort in developing a specific tool
that can support the testing of a specific OTS component to be integrated in a
certain critical system.

This chapter presents a framework for testing and monitoring critical
applications and services. The framework monitors the variables of the sys-
tem while applying diverse forms of testing over the applications. This way,
it is possible to better detect problems in the applications as well as better
diagnosing them, maximizing the effectiveness of the tests. The framework
is based on an application independent and reusable core infrastructure,
allowing the user to apply cost effective practices. The proposed framework
consists of two main components, as follows.

The first, named Instrumented System is a monitoring environment
where the applications or services can be executed and monitored. The kernel
of the operating system is instrumented to monitor all the variables that are
representative for V&V process. The environment also includes middleware
that is also instrumented to provide values of the all the variables representa-
tive for V&V at this level. The second component named Test and Collect
contains a set of tools for application testing and, data storage and analysis.
The testing tools included should be able to generate different types of testing
including functional testing, robustness testing, security testing, etc. For data
storage the framework includes a database management system and tools to
allow the user, in a semi-automated way, to generate a schema able to store
the values of the monitored variables.

The use of this kind of analysis is essential for the conscious use of
OTS components. By testing the OTS, it is also possible to use wrapping
strategies [6, 7] around the identified problematic parts of the component. An
important part of the implementation is that one instance of this component
can be connected to multiple instrumented systems. This way, the framework
is prepared to be extended for other purposes, as in the case of monitoring a
large scale system with multiple nodes, as it is possible to correlate data from
multiple sources and also analyse more complex systems.

Several works have shown the usefulness of system monitoring to detect
anomalies in the system. Statistical analysis algorithms have been used in
the past for on-line fault detection [8]. This technique overcomes some of
the limitations of static threshold analysis, that for instance in [9] monitoring
techniques are used to detect application hangs. Works towards certifying
OTS components are also not new. The technique [10] tries to determine the
quality of OTS components using black box and fault injection in two phases:
first, the component is tested to make sure it works properly, and second, the

204 A Monitoring and Testing Framework for Critical Off-the-Shelf Applications

system is tested to make sure that the system works even if the component
presents an incorrect behaviour.

The chapter also presents a prototype implementation and demonstration
of the framework. The implementation includes tools that allow the user
to apply to the web services different types of testing: functional, stress,
robustness and penetration testing. During the different testing processes, the
system variables are monitored both at middleware level and at operating
system level. Two different case studies were devised to demonstrate and
evaluate the framework.

The first case study is focused on the services of the Life ray Portal,
an enterprise web platform project that aims for immediate delivery of
robust business solutions for organizations. This case study allowed us to
demonstrate the flexibility, usability and utility of the framework. The results
revealed the services under test performing quite well in the situations
tested. Obviously, the quality of the tests performed depends on the testing
tools used, but this discussion is out of the scope of this work, as the
merits of each tool were evaluated and discussed in different works by their
authors [11, 12].

The second case study is focused on simulator of a railway environment
that includes a system that should detect anomalous and hazardous situations
on the trains running on that line. The stringent requirements of the system
that should be tested and validated exactly in the same setup as it will operate
demonstrated the flexibility of the toolbox, which was able to be easily ported
into such environment.

The chapter is organized as follows. Section 10.2 describes the concepts
behind the framework, while Section 10.3 presents the implementation
details. Section 10.4 presents the case studies used to demonstrate the frame-
work and the respective details. Section 10.5 concludes the section and puts
forward relevant future work.

10.2 Framework Architecture

Our proposal is an advanced framework for testing and monitoring critical
applications and services. Despite the most common approach for testing
OTS web services is the “black box”, the tool has been designed to take
advantages of any piece of information available. The overall architecture
of the proposed framework is depicted in Figure 10.1. As it is possible to
observe, the framework is based on two main components: i) Instrumented
System, which the system in which the web service is running, and ii) Test and
Collect, which is used to stimulated the web service and to collect evidences

10.2 Framework Architecture 205

Test and Collect

Data tools Testing tools
5 =
o 2
5]
H =
(] ©
7% 7%
s o
= Instrumented
System
Web Apps Web Services
- App App
Middleware 1 N
(App Server, Web Container)

Operating System (OS)

/7777,
Figure 10.1 Framework architecture: overall view and interactions.

of its behaviour. Although the current implementation focuses on Java Web
Services running over a Tomcat 7 Application Server (AS) and a Linux
CentOS 6 Operative System (OS), the proposed solution can be evolved to
different platforms and Web Services Middleware (AS).

As we can observe, Figure 10.1 also shows the interactions between
the two systems of the framework: the testing tool invokes methods of the
web service triggering specific functionalities, and at the same time the
analysis tools read information on the overall status of the operative system
and service middleware. The next sections present the concepts behind each
component.

10.2.1 Instrumented System (IS)

The Instrumented System is a monitoring environment where the applications
or services can be executed and tested. Considering that weaknesses can
affect the middleware layer (e.g., depleting available free memory in the heap)
and the operating system layer (e.g., exchanging a huge amount of data or
delaying the overall system), both are object of monitoring.

Figure 10.2 represents the monitored components (Operating System,
Middleware, Applications) and data flows. The key innovation is to monitor
both the variables of the OS and of the Middleware (when applicable) at
the same time the application is being tested. This provides detailed data on
the behaviour of the OTS component, thus going beyond the mere collection

206 A Monitoring and Testing Framework for Critical Off-the-Shelf Applications

data intercepted and collected «——

Web Service Web Service

|Weh Sewice|

Middleware

Operating System

Probes Probes

Figure 10.2 Detailed functioning of the Instrumented System.

of inputs and outputs or the monitoring of specific functions of the underlying
system that the OTS component uses. To achieve this, it is necessary to
instrument the kernel of the OS introducing monitoring probes that report the
value of the selected variables per unit of time. These values should be stored
in a standard format to later be externalized through the Dataflow Out (DO).

As example of middleware, the environment may include an application
server where the user can run the web applications and services that are
necessary to be tested. Also, the application server includes monitoring of the
values of relevant variables that are also stored in a standard format for later
use of the DO. Due to the emerging role that web applications and services
have in critical systems, the inclusion of a monitored application server is a
very important requirement, as this allows gathering the values of variables
that are closer to the applications under test.

The Dataflow In (DI) is necessary to perform the test in the applications.
In the case of web applications and services, which have an interface available
over the network, the DI In is constituted by the ports used to perform
the tests together with OTS components that can execute the tests through
these ports. The environment should also be ready to support the testing of
other applications, with the Dataflow having the responsibility of translating
the tests created by the testing tools in a form that can be executed in the
target application. In practice, the Dataflow In represents the only part of
Instrumented System that the user should implement in order to have his
application tested.

10.2.2 Test and Collect

Test and Collect includes a set of extensible tools that should support the user
in two main activities: (i) festing, and (ii) storage and analysis. The testing

10.2 Framework Architecture 207

component controls the execution of the testing tools. Although the frame-
work is designed to be fully automated, the human interaction cannot be
completely avoided at least for the test execution.

The level of human interaction can vary from test to test; thus, each
testing tool should provide its own interaction interface. It is mandatory that
the testing tool communicates with the storage and analysis module to trace
testing activity, providing information as test input/output, and executions
results and durations that should be logged by the storage module to match
the results provided by the IS during the execution of these tests. Figure 10.3
depicts this relationship, which is detailed below.

The storage and analysis module is also in charge of harvesting data
from the IS probes and of structuring and storing them to facilitate the subs-
equent data analysis. The storage component is made up of three modules:
(1) Probes Collector (PC), (i1) Data Manager (DM), and (iii) Database (DB).

The PC is responsible of reading data from IS probes and due to the
different sources (middleware or OS) it needs to use different policies to
respect the data availability and probe servers’ constraints. Data read are
then managed by the DM component that organizes the data coming from
middleware structuring it to provide the state of the monitored system from a
specific point of view.

Finally, data is stored in the underlying database. To provide more effi-
cient data analysis capabilities, the template schema follows the model of
a star schema from OLAP. In fact, a well-structured data repository and
OLAP analysis can be very useful for analysis of results from dependability
evaluation experiments [13]. Additionally, it makes possible to share and
compare the results of multiple different experimental evaluations [13].

|

Testing storage and anal;

a
@

Tool 1

setting data
structure

Analysis
tools

Tool 2 —L
=

Test and Collect

data
staging

L ==
DataBase

Figure 10.3 Detailed functioning of the Test and Collect.

208 A Monitoring and Testing Framework for Critical Off-the-Shelf Applications

The testing tools included should be able to generate different types of
testing including functional testing, stress testing, robustness testing, penetra-
tion testing, security testing, etc. The definition of tests is always dependent
on the type of application as well as specific to the domain of the application
(e.g., testing requirements from standards). In the case of web applications
and services, where the interfaces are usually well defined, the test generating
tools usually require only minor configuration. However, in the case of other
applications the user may be requested to configure or even extend the
testing tools. To cope with this, the tools included are prepared to be easily
extensible to accommodate the user needs. As the tools are easy to modify
or replace, the framework provides high flexibility and makes it easier to test
applications.

Functional testing is a black box testing technique that tries to find
discrepancies between the program and the external specification [14] and
it is based on a set of test cases derived from the analysis of the specification.
Stress testing subjects the program to heavy loads or stresses [14]. In this case,
the testing application must submit loads that match (or even surpass) the load
that the application under test is specified to sustain over a period of time. This
is particularly useful in web-based applications where you want to ensure
that your application can handle a specific volume of concurrent users or
requests. Robustness testing is a specific form of black-box testing. The goal
is to characterize the behaviour of a system in presence of erroneous input
conditions. Robustness testing stimulates the system in a way that triggers
internal errors, exposing programming and design errors both in the error
detection and recovery mechanisms. Penetration testing is a specialization
of robustness testing that consists of the analysis of the program execution
in the presence of malicious inputs, searching for potential vulnerabilities.
Penetration testing tools provide an automatic way to search for vulnerabi-
lities avoiding the repetitive and tedious task of doing hundreds or even
thousands of tests by hand for each vulnerability type.

Finally, the toolset should be allowed to be used several data analysis
algorithms; including fault detection mechanisms based in static threshold
analysis algorithms and also statistical analysis algorithms. However, the
main idea is to leave to the user the conditions to perform the analysis using
the algorithms that he is more experienced with and, above of all, that are
most adequate to his business domain. In fact, one strength of the use OLAP
analysis techniques is the optimization of their schema for the use of ad-hoc
queries [13].

10.3 Implementation Details 209

10.3 Implementation Details

To show the applicability of the approach and perform an experimental
evaluation, a prototype was designed and is currently under development.
For cost reduction and to allow bigger flexibility, effort was made to use
low licensing cost solutions resulting many times in preference for free or
open source software. It is important that, in many cases, the selection of
one technology to use impacts the technologies for other layers. The next
sections detail the status of implementation of each one of the components of
the framework as well as the technologies selected to use.

10.3.1 Instrumented System (IS) Implementation

The node component was implemented in a virtual machine. This option for
virtualization provides flexibility as can be easily replicated and maintained.
This will allow the deployment of the node ready to use in any number
necessary for the system. The operating system selected to implement the
prototype was CentOS [15]. First we narrowed our options to Linux based
distributions due to the cost advantage and to the diversity of monitoring
options to monitor the kernel events. From the multitude of options available,
CentOS provides a free enterprise class OS.

The instrumentation of the operating system was implemented in the form
of aloadable kernel module using the SystemTap tool [16]. This tool builds on
and extends the capabilities of the kprobes [17] kernel debugging infrastruc-
ture and allows to program breakpoint handlers using a high-level scripting
language that is later translated into C code. This way, SystemTap simplifies
the development of system instrumentation and also improves the reuse of
existing instrumentations, thus allowing building up on the expertise of oth-
ers. The developers of SystemTap also took into consideration the portability
and safety concerns, both of which have major importance in this work.

The prototype implementation of Instrumented System includes, as exam-
ple of middleware, an application server with monitoring capabilities to allow
testing the web applications and services. The selection of choice was JBoss
Application Server (JBoss AS) [18], an application server that implements
the Java Platform, Enterprise Edition (Java EE). It is free and open source
software available under the terms of the GNU LGPL and it is written in Java
and as such is cross-platform: usable on any operating system that supports
Java. JBoss represents the industry de facto standard for deploying Java-
based Web applications, it has a wide community acceptance, and support

210 A Monitoring and Testing Framework for Critical Off-the-Shelf Applications

subscriptions can be purchased. For monitoring the values of the applications
running inside the app server, it is used Java Management Extensions (JMX)
Technology. JMX provides the tools for building distributed, modular and
dynamic solutions for monitoring devices or applications. It is designed to
provide high flexibility both for legacy systems and for the future. JIMX
is supported by the most relevant Java application servers. This will allow
in the future, porting the monitoring solution to other application servers,
and it was one of the requirements as it is planned to add other servers
to the prototype to provide a broader range of options and compatibility to
the user.

The implementation of the Dataflow In depends greatly on the applica-
tions to be tested. For the case of web applications and web services, OTS
components together with the ports that allow the network traffic constitute
the Dataflow In. For instance, in the case of web services, the toolset includes
the open source tool soapui [19], that is the visible part of the Dataflow In
for the user. This tool allows to easily executing user-defined tests in the
web services under test. In other cases, where the test execution such be
from inside the testing machine, it is under development a daemon to run in
background accepting communication through TPC sockets and performing
the required tests.

Finally, the dataflow out was implemented as folder where the monitoring
systems can write the files and from where the Test and Collect can pool the
files periodically. The data is split in chunks, each file containing the data
respecting to a certain period of time that is identified in the filename. There
are many ways to extract the files from the exterior, but the solution currently
adopted consists of using secure copy (scp), is a protocol to securely transfer
files between two hosts, based on the SSH protocol. This is a preliminary
implementation that will be enough for experimental evaluation but as a
more automated solution is under development and should replace it in a near
future.

10.3.2 Test and Collect Implementation

The Test and Collect includes a set of testing tools ready to use. Most of
these tools are black-box tools, and as the name shows, these tools view the
program as a black box and are completely unconcerned about its internal
behaviour. Our framework by analysing the values of the monitored variables
uses information about the behaviour of the application in a transparent fash-
ion to the testing tools. Most of the tools included also target web services,
one of the main targets of the framework, as they are increasingly used

10.3 Implementation Details 211

in business-critical systems. They provide always a well-defined interface,
allowing an easy use of automated tools. Other types of tools and also targe-
ting other will be added in future versions of the framework. In very specific
domains, the user will need to write the necessary tests and implement the
necessary tools to use them.

The testing tools currently available allow performing functional and
stress test, penetration test and robustness test. The testing framework has
been developed minimizing the human interaction especially during the
testing activities. With the present tools, the human interaction is indeed
focused in the configuration phase, which must be performed one time for
each tool. Such tools can provide common configurations as well as they can
propose a configuration that suits the testing needs.

10.3.2.1 Functional and stress testing

Functional test is a quality assurance process based on black-box approach
that aims to provide a proof of implementation correctness regarding the
specifications of the software under test. The test is performed feeding
the software under test with well-known values and examining the output
produced.

Although common functional tests involve the test of single methods,
within this context, it has been followed an approach which tackles high-
level functionalities. The approach consists of a set of workflows that mimic
the behaviour of a software user for executing specific high-level tasks, which
in turn can comprise the invocation of a huge variety of methods [20].

The workflows definition is a cornerstone of this approach and it must
be defined specifically for each service under test considering its interface
and the software specification. Workflows define how and when the service
interface of the software under test should be questioned and, also, they
provide the information needed for the subsequent phase of result validation.
Following the black-box approach the verification is done invoking specific
methods of the service for checking its internal status.

The importance of these workflows is further emphasized since they can
be used as bricks for compound and complex workflows for Stress testing.
Stress testing is a form of deliberately intense testing used to determine the
stability of a given system. The tool developed for functional test, properly
configured with suitable workflows, can stimulate the system under test to
provide evidence of stability. Workflows for Stress testing have been defined
from the high-level tasks identified for the functional tests by parallelizing
multiple high-level tasks invoked from a variety of users and abbreviating to
the minimum the delay between sequential invocations.

212 A Monitoring and Testing Framework for Critical Off-the-Shelf Applications

10.3.2.2 Robustness testing and penetration testing

Robustness testing is a specific form of black-box testing that attempts to
characterize the behaviour of a system in the presence of erroneous or unex-
pected input conditions [21]. The tool instrumented in the testing framework
implements the technique proposed in [22]. The approach consists of a set of
robustness tests that is applied during execution to disclose both programming
and design problems.

The set of robustness tests is automatically generated by applying a
set of predefined rules (see detailed list in [22]) to the parameters of each
operation of the web service during the workload execution. An important
aspect is that rules focus difficult input validation aspects, such as: null and
empty values, valid values with special characteristics, invalid values with
special characteristics, maximum and minimum valid values in the domain,
values exceeding the maximum and minimum valid values in the domain,
and values that cause data type overflow. The robustness of the web services
is characterized according to the failure modes adapted from the CRASH
scale.

Penetration testing is nowadays one of the most used techniques by web
developers to detect vulnerabilities in their applications and services. This
technique assumes particular relevance in the web services environment,
as many times clients and providers need to test services without having
access to the source code (e.g. when testing third-party services), which
prevents the use of more effective techniques that require that access. The
tool instrumented in the testing framework implements a technique targeting
the detection of SQL Injection vulnerabilities in web services. The tool was
originally presented in [11].

10.3.2.3 Data storage and analysis tools

A tool is under development for the generation of the star schema according
to the needs of the user. This tool, based on the template star schema provided,
and after some configuration by the user, generates the schema that will store
the monitored data. This tool will also include capabilities to perform the
extraction, transformation and load (ETL) of the data. It will allow the user
to retrieve the data from the Instrumented Systems using the Dataflow Out
channel and insert the data in the schema. With a wide range of options for
ETL software available, the option for developing a new tool comes from
simplicity reasons: it would be an exaggeration to use a heavy ETL tool
while our toolset only needs for a very specific and simple tool that designed

10.4 Demonstration 213

to work based on a the configuration that the user provides when creating
the star schema for the DBMS. Also, the use of third party ETL tools would
most probably require the user to have knowledge on how to operate them.

A myriad of solutions are available to implement the data storage.
PostgreSQL! is an open source solution with a long history of development
a proven architecture with recognized reputation for reliability, data integrity,
and correctness. It gives to the framework great flexibility as it runs on all
major operating systems, including Linux, UNIX, and Windows. A lot of
tools from the community support PostgreSQL, and it is also widely sup-
ported by open source business intelligence tools as SpagoBI”> and Pentaho
community edition.

As aforementioned, in terms of data analysis, the main goal is to provide
the user the best conditions for the execution of the analysis of his preference.
With this goal, the tool set includes basis tools for data visualization and
query execution. The toolset will also include the more advanced tools as
the mentioned BI tools (SpagoBI and Pentaho CE) as well as other options
that are also considered to be included in the toolset [23]. For better analysis,
it is necessary that the data is correlated to the tests executed, and this is
a very important part of the ETL process. Finally, the toolset will include
ready to use tools that use some more specific algorithms targeting fault
detection, proposed by research community. Examples of these works are
static threshold analysis [9] and statistical analysis algorithms for on-line fault
detection [8].

10.4 Demonstration

Two case studies were devised to demonstrate the applicability and feasibility
of the approach.

The first case study is presented in Section 10.4.1 and uses the Life ray
Portal [24], which is an enterprise web platform project that aims for immedi-
ate delivery of robust business solutions for organizations. An API based on
SOAP web services is provided, containing a diverse range of functionalities.
These services are an interesting case for testing the framework, after the
framework is deployed on top of the instrumented JBoss AS middleware.

'www.postgresql.org
2www.spagobi.org
3http://community.pentaho.com

214 A Monitoring and Testing Framework for Critical Off-the-Shelf Applications

The second case study, presented in Section 10.4.2, is based on the
PMF simulator. SHAPE is a system installed along a specific railway line.
The main purpose of the system is to automatically detect anomalous and
hazardous situations on the trains running on that line. SHAPE aims at
detecting two specific situations: i) SHAPE can detect fires on board a train,
through reading at a distance of the temperature of the external surface of
the trains; ii) it is able to detect possible violations of the reference shape,
through specific laser scanners, in order to identify any dangerous protruding
part of the train.

10.4.1 Case Study: Life Ray Web Services

Life ray is free and open sourced Java software that was initially developed
to provide an open source enterprise quality portal. Since the early stages of
development, Life ray has been widely adopted for intranet as well as extranet
enterprise solution. Eventually, it brought Life ray to have a big supporting
community, which, together with the Life ray foundation, contributed to
define a generic and extendible product.

Life ray Portal is an enterprise web platform project that aims for imme-
diate delivery of robust business solutions for organizations. It includes
features that are usually necessary for the development of websites and
portals, as built-in web content and document management system. Life ray
is developed using Java technologies and it is ready to work in a large set
of web/application servers. In fact, the community edition is free and open
source software available under Licensed under the terms of the GNU LGPL.
It follows an extendible architecture by plugins that, in turn, encompass col-
laboration, social networking, and single sign on, per-component privileges
policy as well as e-commerce tools. Third-party plugins are also available
to provide more advanced feature such as Microsoft office integration. A
plugin can be seen as a J2EE-Servlet and is referred to as a portlet. Portlets
communicate with each other using the services that each one exposes that, in
turn perform the portlets business logic. Our installation of Life ray includes
the version 6.0 of the portal and 83 deployed SOAP (Simple Object Access
Protocol) web services. More details on Life ray can be found in [24].

10.4.1.1 Tests performed

During this case study, different types of tests were applied: Functional,
Stress, Penetration and Robustness tests. To verify the correctness of Liferay
services, a study on its plugins interaction has been conducted. The necessity

10.4 Demonstration 215

for the preliminary study has been felt because of the strictly correlated
invocations among methods exposed by web services.

The preliminary study has been exploited to define workloads that could
mimic the behavior of Life ray internal interactions, which correspond to
functional tests. Even simple activity, like posting a message on the blog
by Ul interface, could involve a plethora of plugins including authentication,
user information retrieving, permission checking and finally messaging ser-
vice. To stimulate Life ray in a way that could resemble human activities,
many Workloads have been defined to cover Life ray functionalities by
mimicking the behavior of human interaction. Mimicked actions encom-
pass posting a message in the blog and in the forum, creating an event in
the calendar, creating a directory-tree in the file repository and uploading
afileinit.

These workloads have been used to define other workloads for stress
tests, to highlight possible weakness in terms of concurrency management.
Those tests have been designed from the workloads defined for functional
tests to evaluate Life ray behavior under a heavy load. For each workload,
that mimics a specific action, a new one is defined as a composition of many
copies of the same workload; these copies differ just for the user. The purpose
of this approach is to simulate multiple users’ activities on Life ray, that
stimulate the same services and some shared data. The stress test, as it is
designed, suits especially well when there isn’t a sound knowledge of web
services internal mechanism; the deeper is the knowledge of web service
internals the more effective workloads can be designed.

Regarding robustness testing, due to the preliminary study performed for
the functional test, a generic knowledge of methods invocation was available
to configure the tool to generate better tests. This knowledge was especially
important for the tool to use values that exercise the code of the web service
under test in a more complete way. After the configuration of the tool it
submits the robustness tests in an automated way and reports the robustness
problems found.

As for penetration testing, the available knowledge of methods invo-
cation was a key to configure the tool to generate better workloads and
attack loads. This is especially relevant for this tool as its effectiveness is
depending on the completeness of its workloads. After this configuration, the
test execution is a straightforward process in which the tool submits its work-
load and attack load to the web service and then reports the vulnerabilities
found.

216 A Monitoring and Testing Framework for Critical Off-the-Shelf Applications

10.4.1.2 Tests results
Experiment execution is made up of three phases, where just the final one is
specific for the kind of test to be conducted. The phases are:

1. Set up Service Under Test (SUT),
2. Data Logger execution,
3. Testing tool execution.

On the first phase the service under test is started up. This phase includes also
the startup of middleware and OS probes. The second phase can be launched
simultaneously, as it does not read information from OS or middleware
probes: it just prepares the structures needed for logging. During test exe-
cution, the testing framework logs raw tests results and prints on the console
information on the tests execution (test currently running, test duration, etc.).
This information is useful to monitoring the tests execution. Test results are
collected during test execution; at the tests termination, collected data are
flushed into a database.

Different tools that range from very specific tools such as R or MatLab to
commonly available and general-purpose tool such as OpenOffice-Calc are
installed on the Test and Collect system, connected to the database, and can
be used to retrieve and analyze data.

Due to the wide usage and the extended support that Life ray received
from its community since its development started, it was expected that Life
ray passed all the functional tests defined.

Figure 10.4 shows an extract of the workload (set of services invocations)
used for creating a new event on a calendar (it includes logging in to the
system, listing the available/subscribed calendars, choose to first one and
listing all the events of February, adding the new item then logging out; sub-
sequently further invocations checks that the event was correctly recorded).
The invocation correctness is verified by a visual inspection of Life ray
services.

The output produced during the execution of the test is displayed on the
screen of the Test and Collect system and consists of a sequence of services
methods invocations. For each one of these, the HTTP response code is
printed out. Being a functional test is mandatory that the HTTP response
code would match with the expected one.

The aim of this stress testing is to assess the ability to resist against a
workload which leverage on high frequency of requests, and the results can
be evaluated in term of system loads and resource usage. Table 10.1 shows
the average CPU usage and memory usage; the former one is furthermore

10.4 Demonstration 217

—<tns:Workload name="addEventInCalendar">
—<tns:Choreography>
— <tns:Call portlet="Portlet_Cal_CalEventService" method="getEventsCount/1">
—<tns:Parameters>
<tns:Parameter name="groupld" variable="groupld"/>
<tns:Parameter name="start">0</tns:Parameter>
<tns:Parameter name="end">1393592163</tns:Parameter>
</tns:Parameters>
</tns:Call>
— <tns:Call portlet="Portlet_Cal_CalEventService" method="getEvents/1">
—<tns:Parameters>
<tns:Parameter name="groupld" variable="groupld"/>
<tns:Parameter name="start">0</tns:Parameter>
<tns:Parameter name="end">1393592163</tns:Parameter>
</tns:Parameters>
</tns:Call>
— <tns:Call portlet="Portlet_Cal_CalEventService" method="addEvent/1">
— <tns:Parameters>
<tns:Parameter name="title">titoloEvento</tns:Parameter>

Figure 10.4 An extract of the workload to set a New Calendar Event.

Table 10.1 Extract test results for New Calendar Event

Parallel System System Free Non IO Written/
Requests Process CPU CPU Load Free Heap Heap Read
(ny) Load (%) Load (%) Average Memory (B) Mem (B) Data (B)
5 0.3031 0.38245 1.54 100128920 24899588 5959
10 0.1254 0.651 1.195 86411094 22482534 77344
100 0.1342 0.999 2.34 84833658 21993838 184244

detailed distinguishing between process CPU load and system CPU load, with
system CPU load that encompasses any task running on the system. Memory
usage is furthermore detailed as well distinguishing between heap memory,
used for java objects and non-heap memory.

The table encompasses the experiments of 5, 10 and 100 simultaneous
execution of the “New Calendar Event” workload. Data are collected 1 times
per second. Table 10.1 shows that the CPU usage of service process remains
quite stable despite the increase of the number of requests. Process CPU
load, the system load as well as memory usage vary as the number of
parallel requests increase. The table shows that system resources usage
clearly increases due to the waits for Disk Output activities, which rise.

218 A Monitoring and Testing Framework for Critical Off-the-Shelf Applications

Figure 10.5 shows an extract of the robustness test report, in which
all the tests reported robustness problems. This would suggest weakness
in the services, but a manual inspection revealed that while tool reports
“PROBLEM?”, the service correctly identify and discard the invalid request.
We explain this with the help of Figure 10.6.

fact_robustness _test_result_id | field | type | code
1 Field{questionld} of LONG @ [0-1001[ROBUSTNESS PROBLEM
2 Field{questionld} of LONG @ [0-1001[ROBUSTNESS PROBLEM
3 Field{questionld} of LONG @ [0-1001[ROBUSTNESS PROBLEM
4 Field{questionld} of LONG @ [0-1001[ROBUSTNESS PROBLEM
5 Field{questionld} of LONG @ [0-1001[ROBUSTNESS PROBLEM
6 Field{questionld} of LONG @ [0-1001[ROBUSTNESS PROBLEM

Figure 10.5 Extract from robustness test results.

— <soapenv:Envelope>
<soapenv:Header/>
—<soapenv:Body>
—<urn:addQuestion soap dingStyle="http://sch Isoap.org/soap/ ding/">
<titleMapLanguagelds xsi:type="um:ArrayOf xsd_string" soapenc:arrayType="soapenc:string[]"/>
<titleMapValues xsi:type="um:ArrayOf xsd_string" soap arrayType="soapenc:string[]"/>
<descriptionMapLanguagelds xsi:type="um:ArrayOf_xsd_string" rayType="soapenc:string[]"/>
<descriptionMap Values xsi:type="um:ArrayOf_xsd_string" soap rayType="soapenc:string[]"/>
<expirationDateMonth xsi:type="xsd:int">invalidNumber</expirationDateMonth>
<expirationDateDay xsi:type="xsd:int">6</expirationDateDay>
<expirationDateYear xsi:type="xsd:int">2000</expirationDateYear>
<expirationDateHour xsi:type="xsd:int">5</expirationDateHour>
<expirationDateMinute xsi:type="xsd:int">5</expirationDateMinute>
<neverExpire xsi:type="xsd:boolean">true</neverExpire>
<choices xsi:type="um:ArrayOf_tns2_PollsChoiceSoap" soapenc:arrayType="mod:PollsChoiceSoap[]"/>
<serviceContext xsi:type="ser:ServiceContext"> </serviceContext>
</urn:addQuestion>
</soapenv:Body>
</soapenv:Envelope>

(a)

— <soapenv:Envelope>
— <soapenv:Body>
—<soapenv:Fault>
<faultcode>soapenv:Server.userException</faultcode>
— <faultstring>
java.lang NumberFormatException: For input string: "invalidNumber"
</faultstring>
— <detail>
<nsl:hostname>testingBOX</nsl:hostname>
</detail>
</soapenv:Fault>
</soapenv:Body>
</soapenv:Envelope>

(b)
Figure 10.6 Example of robustness test: (a) request; (b) response.

10.4 Demonstration 219

Figure 10.6(a) shows an extract of a robustness test involving the Poll
Service, in particular the “add Question” method. Life ray, relying on Axis2
for parsing values, automatically manages the invalid value for the parameter
“expiration DateMonth” rejecting the request and without passing it to the
“actual” service. The rejection causes an HTTP 533 (which belongs to the
“internal error” family): the tool used for robustness testing, operating at
black-box, can’t distinguished this answer from any other internal error, and
consequently the “PROBLEM” code is displayed in Figure 10.6(b) which
shows the response that Life ray produces for the request.

Life ray uses Axis2 for service publishing and interface, Axis?2 is respon-
sible for parsing values passed by SOAP as well as for invoking the actual
Java method which was remotely requested. The parsing phase consists also
of a validation phase in which the parsed values are validate against their
destination types constraints. The failure of this phase implies the subsequent
rejection of the request and thus the generation of a response with HTTP
code 500.

Figure 10.7 shows an extract of the results of the penetration tests
applied to Life ray Calendar Service. The extracted data, as well as the entire
test results, show the robustness of Life ray against penetration attacks. All the
potentially risky requests are identified and discarded by the Axis2 Layer for
services interface, by the Object Relational Mapping (ORM) layer for objects
persistency and by the permission checking mechanism, which constitute a
cornerstone for Life ray services interoperability.

In fact, Life ray exposes its services using Axis2, which validates the
invocation parameters before passing the request to the “actual” service.
Additionally, Life ray relays upon Hibernate (the ORM used) which provides
an SQL parameter sanitizing service, which in turn it uses named queries
that work on top of statements of the JDBC API; all those layers operate
the necessary actions to avoid risks from malicious requests. Finally, the
invocations that include items the user is not authorized to use are identified
by the Life ray Permission Service.

fact_penetration_test_result_id l field l type | code fact_id
Field{questionld} of LONG @ [0-1001(SQL PASSED 56151
Field{questionld} of LONG @ [0-1001] SQL PASSED 56165
Field{questionld} of LONG @ [0-1001[SQL PASSED 56169
Field{questionld} of LONG @ [0-1001(SQL PASSED 56174
Field{questionld} of LONG @ [0-1001 SQL PASSED 56204

e W e

Figure 10.7 Calendar Service penetration tests result.

220 A Monitoring and Testing Framework for Critical Off-the-Shelf Applications

10.4.2 Case Study: SHAPE

We used a second use case to show the flexibility of the approach and also to
demonstrate that the approach is not depending on the concrete technological
implementation. This use case was based on SHAPE, which is a system
installed along a specific railway line. SHAPE has the requirement that the
all the tests to be performed must be done in an environment certified as
equivalent to the target environment.

The main purpose of the system is to automatically detect anomalous and
hazardous situations on the trains running on that line. In particular, SHAPE
aims at detecting two specific situations: i) SHAPE is able to detect fires on
board a train, through reading at a distance of the temperature of the external
surface of the trains; ii) it is able to detect possible violations of the reference
shape, through specific laser scanners, in order to identify any dangerous
protruding part of the train.

SHAPE was designed to be suitable for interfacing with existing signal-
ling systems, thus to send possible alarms useful to safely stop the train and
to properly manage the critical detected event, according to the foreseen
recovery actions. SHAPE is composed by the components: Scanner, Init &
Diagnosis, Data Acquisition, Data Aggregator, Data Analyser and Monitor,
System State.

* Init & Diagnosis — communicates with the scanner in order to collect
diagnostic data and to trigger scanner activation.

* Data Acquisition — receives raw data from scanners.

» Data Aggregator —receives train data from Data Acquisition (e.g. images
produced by the scanner) and aggregates such information, to be sent to
the Monitor component.

* Data Analyser — receives aggregated data from the Data Aggregator and
send analysis results to the Monitor component.

* Monitor — manages all the system states phases according to the data
received from the Shape Component.

* System State — acquires information regarding the system state from
each component and sends them to the WaySide component.

10.4.2.1 Monitoring environment adaptation

SHAPE has stringent requirements whichneeds to be tested in the same
operating system, configuration, and equivalent hardware that it is supposed
to be used in the future. Therefore, to be able to use the monitoring and testing

10.4 Demonstration 221

approach in together with SHAPE, it was necessary to port the monitoring
facilities to the target system and configuration.

The new system uses a different operating system and due to criticality
restrictions, it cannot have new packages installed, as the system moni-
toring tools (SystemTAP) required by used in the implementation of the
Instrumented System. Therefore, the challenge was to implement similar
monitoring functionalities with less intrusive solutions.

The solution used the following tools, which are present in most of unix
and linux distributions:

* top — provides data about cpu and memory usage;
* mpstat — provides data about system load;
* iostat — provides data about I/O usage;

Another tool was necessary because the SHAPE simulator involves a set of
processes and subprocesses that are continuously evolving.

* pstree — allows to track the processes and the respective process tree,
so it is possible to gather data about all the processes relevant for the
monitoring system.

The downside of this solution is the performance. In practice, although less
intrusive than the SystemTAP solution, it takes much more time to obtain
data, and therefore it does not allow small gathering windows. However, we
believe that the window is still small enough to do fine grained analysis of the
system behavior.

10.4.2.2 Tests performed

To demonstrate the solution, we executed the SHAPE simulator during 24h
while monitoring the relevant variables of the system. During this period, the
simulator was exercised using the test cases available to test the correctness
of his responses. At the same time, the newly included probes seamlessly
monitored the variables of interest. Table 10.2 contains the summary of the
most relevant variables monitored during the period.

All the variables were analyzed are stored for each sampling instance.
This allows us to do temporal analysis of the variables. Figure 10.8
presents the evolution of one specific variable over time, in this case the
“Number of SHAPE processes”. As we can observe, the amount of CPU
usage keeps increasing throughout the collection period, but still in relatively
short values.

222 A Monitoring and Testing Framework for Critical Off-the-Shelf Applications

Table 10.2 Summary of the variables monitored

Variable AVG STDV MIN MAX
Total User CPU 0.14 0.08 0.00 0.30
Total System CPU 0.24 0.12 0.00 0.50
Average User CPU 0.14 0.07 0.02 0.26
Average System CPU 0.25 0.12 0.03 0.45
Average 10 Wait CPU 0.11 0.00 0.11 0.12
Memory Used 837945 32356 782680 903032
Memory Free 1031399 32356 966312 1086664
Memory Cached 188067 10077 168972 205268
Swap Used 0.00 0.00 0.00 0.00
Swap Cached 582445 20468 547568 618732
10 Disk Read Per Sec 1.78 0.03 1.74 1.83
10 Disk Write Per Sec 7.15 0.22 6.50 7.52
10 Disk Read 2913344 30 2913256 2913424
10 Disk Write 11674444 527703 10347224 12589656
of SHAPE Processes 2.98 0.17 1.00 4.00
Number of Samples 151146

HHM

Figure 10.8 Evolution of Number of working processes in SHAPE.

10.5 Conclusion

In a context where OTS components are increasingly used on critical
scenarios, companies need tools that help them to understand the quality of
these components. In specific cases of testing, rather than using their own
developed ad-hoc and poorly-reusable testing tools, these companies can
benefit from using cost effective techniques and tools.

References 223

This chapter presented a reusable and adaptable framework for testing
and monitoring of critical OTS applications and services that includes an
instrumented box for monitoring OS and application level variables, a testing
toolset that is adaptable for testing the target components, and tools for data
storage and analysis. The architecture of the framework was described as well
as the status of its implementation.

The framework allows users to easily apply functional testing, stress
testing, robustness testing and penetration testing to their web services. The
procedure to use the framework is described and its usability is illustrated
with a case study that uses the Life ray platform, composed of several web
services. The case study shows how flexible is the framework, allowing
integration of multiple third party tools seamlessly. Obviously, in the case
of functional testing, it is necessary to conduct some preliminary study to
emulate its use cases, but this is expected due to the nature of the tests. The
framework can orchestrate the use of the tools and reduce the human effort
by reutilizing the information provided at configuration time within multiple
tools.

The concepts behind the framework can also be extended to setups that
differ from the ones defined in the framework implementation. This was
demonstrated in the second use case, in which the concepts.

Future work includes the integration of failure detection and prediction
algorithms in the box. Additionally, the framework can be modified to use
more than one Instrumented System at the same time, allows testing more
complex systems. Finally, it can be extended to take advantage of other kinds
of information monitoring.

References

[1] Tran, E. (1999). “Verification/Validation/Certification,” in: Topics in
Dependable Embedded Systems, ed. P. Koopman. Carnegie Mellon
University, Pittsburgh, PA.

[2] IEC. (1998). IEC 61508 TC: IEC 61508, Functional Safety of Electrical/
Electronic/Programmable Electronic (E/E/PE) Safety Related Systems,
Part 3: Software Requirements. IEC, Geneva, Swiss (1998).

[3] RTCA. (2011). RTCA: RTCA DO-178C/EUROCAE ED-12C — Software
Considerations in Airborne Systems and Equipment Certification.

[4] ISO. (2011). ISO: Road vehicles — Functional safety — Part 6: Product
development at the software level.

224 A Monitoring and Testing Framework for Critical Off-the-Shelf Applications

[5] IEEE Computer Society. (2012). Software & Systems Engineering Stan-
dards Committee: 1012-2012 — IEEE Standard for System and Software
Verification and Validation.

[6] Ghosh, A. K., Schmid, M., and Hill, F. (1999). “Wrapping Windows NT
software for robustness. In: Fault-Tolerant Computing,” in Twenty-Ninth
Annual International Symposium on Digest of Papers (New York, NY:
IEEE), 344-347.

[7] Popov, P., Strigini, L., Riddle, S., and Romanovsky, A. (2001). “Pro-
tective Wrapping of OTS components,” in Proc. 4th ICSE Workshop on
Component-Based Software Engineering: Component Certification and
System Prediction, Toronto.

[8] Brancati, F. (2012). Adaptive and Safe Estimation of Different Sources
of Uncertainty to Improve Dependability of Highly Dynamic Systems
Through Online Monitoring Analysis (New York, NY: IEEE).

[9] Carrozza, G., Cinque, M., Cotroneo, D., and Natella, R. (2008). “Opera-
ting system support to detect application hangs,” in [nternational
Workshop on Verification and Evaluation of Computer and Communi-
cation Systems, VECoS, Leeds, UK.

[10] Voas, J. M. (1998). Certifying off-the-shelf software components.
Computer 31, 53-59.

[11] Antunes, N., and Vieira, M. (2009). “Detecting SQL Injection Vulner-
abilities in Web Services,” in Fourth Latin-American Symposium on
Dependable Computing (LADC °09), 17-24. IEEE Computer Society,
Joao Pessoa, Brazil.

[12] Laranjeiro, N., Canelas, S., and Vieira, M. (2008). “wsrbench: An
On-Line Tool for Robustness Benchmarking,” in IEEE International
Conference on Services Computing, 2008 SCC *08 (New York, NY:
IEEE), 187-194.

[13] Madeira, H., Costa, J., and Vieira, M. (2003). “The OLAP and data
warehousing approaches for analysis and sharing of results from
dependability evaluation experiments,” in Proc. of 2003 Interna-
tional Conference on Dependable Systems and Networks (DSN 2003)
(New York, NY: IEEE), 86-91.

[14] Myers, G. J., Sandler, C., and Badgett, T. (2011). The art of software
testing. Hoboken, NJ: John Wiley & Sons.

[15] CentOS Project. The Community ENTerprise Operating System. Avail-
able at: http://www.centos.org/

References 225

[16] Prasad, V., Cohen, W., Eigler, F. C., Hunt, M., Keniston, J., and Chen, B.
(2005). “Locating system problems using dynamic instrumentation,” in
2005 Ottawa Linux Symposium (New York, NY: IEEE), 49-64 (2005).

[17] Moore, R. J. (2001). “A Universal Dynamic Trace for Linux and
Other Operating Systems,” in USENIX Annual Technical Conference,
FREENIX Track, Boston, MA, USA, 297-308.

[18] Red Hat. JBoss Application Server. Available at: https://www.jboss.org/
jbossas/

[19] eviware: soapUI. Available at: http://www.soapui.org/

[20] Ceccarelli, A., Zoppi, T., Bondavalli, A., Duchi, F., and Vella, G. (2014).
“A testbed for evaluating anomaly detection monitors through fault
injection,” in 5th IEEE Workshop on self-organizing real-time systems
(SORT 2014), Reno, Nevada, USA.

[21] Koopman, P., and DeVale, J. (1999). “Comparing the robustness of
POSIX operating systems,” in Twenty-Ninth Annual International Sym-
posium on Fault-Tolerant Computing Digest of Papers (New York, NY:
IEEE), 30-37.

[22] Vieira, M., Laranjeiro, N., and Madeira, H. (2007). “Benchmarking
the Robustness of Web Services,” in 13th Pacific Rim International
Symposium on Dependable Computing, 2007 PRDC 2007 (New York,
NY: IEEE), 322-3209.

[23] Golfarelli, M. (2009). “Open source BI platforms: a functional
and architectural comparison,” in Data Warehousing and Knowledge
Discovery (Berlin: Springer), 287-297.

[24] Liferay, Inc. Liferay Portal. Available at: http://www.liferay.com/

