
Early Conflict Detection with Mined Models

Leonardo Mariani, Daniela Micucci and Fabrizio Pastore
University of Milano Bicocca

Milan, Italy

Email: {mariani,micucci,pastore}@disco.unimib.it

I. CONFLICT DETECTION

Developers are increasingly adopting Source Code Man-

agement (SCM) systems with extensive support to branching,

parallel development, and merging, such as Git and Mercurial.

For example, 62% of the Debian projects use modern SCM

environments [1], and 40% of the medium and large enter-

prises surveyed in [2] use Git. The use of the branching logic

provided by modern SCM gives flexibility to developers but

also produces issues when multiple branches of development

have to be merged together. For example, Brun et al. report

that 24% of merge operations in open source projects gen-

erate textual conflicts, build problems, and test failures [3];

Microsoft developers report that most of the time dedicated to

merge operations is spent on resolving conflicts and verifying

correctness [4]. In a nutshell, merging multiple branches is
a painful, expensive, and error-prone process that requires
specific techniques to be handled efficiently.

Techniques for the early detection of conflicts and unex-

pected interactions among changes on multiple branches can
reduce the effort required to cope with software evolution and
concurrent development by a significant factor. So far, Brun

et al. [3] and Guimaraes et al. [5] have investigated the idea

of anticipating conflict detection by merging, locally to the

developers’ workspaces, the code in the working copy with

the code extracted from other branches. The analysis executed

on the developers’ machines can detect textual conflicts, build

problems, and test failures, before the merge actually takes

place in the SCM system. These approaches, although useful

to anticipate the discovery of some conflicts, suffer several

practical limitations: the conflict identification mechanism is

limited to textual conflicts and test case execution, which may

miss several subtle faults hard to discover and fix [4]; the

analysis is executed on the developer’s machine while the

verification of evolving software systems should take place

on the SCM server, without bothering developers; and finally

the behavior of software systems is not limited to functional

behavior but also includes other dimensions, such as the

temporal behavior, that may evolve across branches and that

is ignored by these techniques.

The key idea introduced in this paper consists of running
a multi-branch server-side dynamic analysis at every commit
operation. The analysis will execute the test cases available

in the SCM system to trace the behavior of the application

and automatically derive models that capture how the program

behaves according to multiple dimensions. For instance, the

functional behavior of the program can be represented with

method pre- and post-conditions, API usage protocols, and

precedence rules among method invocations. The temporal

behavior of a program can be represented with models that

capture aspects, such as deadlines, periodicity, and constraints

on the timing of the tasks. These models are used on the server

side to run automated conflict detection.

Models are derived for every version in every branch, and

automatically compared every time a change is introduced.

Comparing models allows identifying behavioral conflicts re-
gardless the presence of textual conflicts, which do not need
to be resolved to run the analysis. We call this analysis

Behavioral Driven Continuous Integration (BDCI).

By raising the analysis to the behavioral level, BDCI can

dramatically improve the rate of conflicts that are detected

and resolved early in the process, as well as the rate of the

bugs due to the concurrent modifications of the software that

are revealed and fixed as soon as they are introduced. As

a consequence, the cost and the effort required to complete

merge operations will drastically decrease, and the capability

to timely evolve software will significantly improve.

II. BDCI

The key idea of BDCI is to automatically derive models that

represent the behavior of a program under evolution at multiple

program locations, either recently changed or not, and raise the

detection of conflicts from the source code level to the level

of behavioral models. Although in the following we present

an example referring to the analysis of the functional behavior

of a program, the same kind of analysis can be instantiated to

address other dimensions, such as resource consumption and

timing of the operations.

Figure 1 shows some of the functional models that could

be automatically mined with BDCI for a simple program. The

method pre- and post-conditions capture information about

the values that can be assigned to program variables. In the

example, port must be positive when a socket is created

and open must be true for the returned socket. Finite state

automata (FSA) indicate how components interact. In the

example, the automaton shows how the function sendData
uses the socket library. Precedence rules indicate the execution

order between operations. In the example, the creation of the

conf.xml file must always precede the creation of the socket.

While in a traditional SCM only the test cases and the

project source files are stored for each change, in a BDCI

environment each program version and its behavioral models



void sendData(Iterator data) {
properties = Properties.load(new File(¨conf.xml¨));
Socket socket = new Socket(properties.get(¨port¨));
while(data.hasNext(){

socket.write(data.next());
}
socket.close();

}

Socket(int port):: 
ENTER

port>0

Socket(int port):: 
EXIT

this.open = true;

Pre- Post- conditions
for Socket(int)

Precedence Rules

new File(¨conf.xml¨) 
<alwaysPrecedes> 
new Socket

socket.write
<allwaysFollows> 
data.hasNext()

socket.write(…)

Socket(…)

socket.close(…)

FSA for Socket class

Fig. 1. Sample functional behavioral models

are also stored. The availability of the models provides unique

opportunities for the early detection of conflicts and side

effects produced by changes that would not be detectable

otherwise. In particular, models can be compared to identify:

• behavioral changes: BDCI compares two versions on a

same branch to discover the behaviors that have been

affected by the change; this information is useful to assess

the impact of changes;

• behavioral conflicts: BDCI compares the behavioral

changes of two versions belonging to different branches

to detect concurrent and incompatible changes in a same

behavioral model and report the conflict.

Fig. 2. The Commit Process

Figure 2 shows how BDCI can detect conflicts on the func-

tional behavior in a simplified scenario where four branches

of development are active. For simplicity we consider the case

of a single functional model derived for a single program

location: the functional model captures the values assigned

to the integer variable port. When the commit 5 operation

is performed, the SCM server augmented with BDCI auto-

matically checks-out the project, executes the tests, collects

the traces, generates the models (model 1.5), and detects

behavioral conflicts with the other branches.
When comparing two branches for conflict detection (e.g.,

branch 1 and branch 2), BDCI derives behavioral changes

between the most recent models available on the two branches

(models 1.5 and 2.2) and the models available in the most

recent version common to the two branches (models 1.1). The

(concurrent) behavioral changes in the example for the variable

port that are automatically detected are listed in Figure 2:

branch 1 changes the model into port > 1; branch 2 includes

no behavioral changes; branch 3 changes the model into

port ≥ 2; and branch 4 changes the model into port ≥ 0. Two

incompatible behavioral changes on two different branches

generate a behavioral conflict. In the example, branches 1 and

2 show a different behavior for port, but the change occurs

in one branch only and thus BDCI does not report any conflict.

Branches 1 and 3 include two concurrent modifications to the

same behavior of the program but do not produce a conflict

because the changes are compatible (port ≥ 2 and port > 1
are equivalent expressions). Finally, branches 1 and 4 represent

the case of a conflict because there are concurrent and non-

equivalent changes on the two branches: one change allows

more port numbers to be used by the system, while the other

change restricts the number of ports used by the system.
The capabilities offered by BDCI does not come for free.

The cost of the BDCI analysis is higher than the cost of

classic conflict detection algorithms, which do not require

running tests and checking models. When these operations are

particularly expensive, we envision scenarios where BDCI, in-

stead of immediately checking commit operations, is executed

overnight to check all the changes of the day.

III. CONCLUSION

The BDCI analysis introduced in this paper can promisingly

produce three key benefits: (1) the capability to timely dis-

cover the conflicts and side-effects that are introduced during

concurrent changes, with little manual effort; (2) the drastic

reduction of the cost of merge operations thanks to the early

resolution of conflicts; and (3) the significant reduction of the

subtle problems that might escape merging operations, because

working at the level of the behavioral models allows detecting

problems that cannot be detected with textual comparison,

build process, and test case execution.

REFERENCES

[1] Z. Zacchiroli, “Vcs usage for debian source packages,”
http://upsilon.cc/ zack/stuff/vcs-usage/.

[2] K. Noyes, “Git turns 8, sees wide adoption in the enterprise,”
http://www.linux.com/news/enterprise/systems-management/715287-git-
turns-8-enterprise-wide-adoption/.

[3] Y. Brun, R. Holmes, M. D. Ernst, and D. Notkin, “Proactive detection of
collaboration conflicts,” in Proceedings of the ACM Symposium and the
European Conference on Foundations of Software Engineering, 2011.

[4] C. Bird and T. Zimmermann, “Assessing the value of branches with what-
if analysis,” in Proceedings of the ACM International Symposium on the
Foundations of Software Engineering, 2012.

[5] M. L. Guimaraes and A. R. Silva, “Improving early detection of software
merge conflicts,” in Proceedings of the International Conference on
Software Engineering, 2012.


